DOI QR코드

DOI QR Code

Domain Selection Using Asymptotic Decider Criterion in Volume Modeling Based on Tetrahedrization

사면체 기반의 볼륨 모델링에서 점근선 판정기를 이용한 영역의 선택

  • 이건 (한동대학교 전산전자공학부) ;
  • 권오봉 (전북대학교 전자정보공학부)
  • Published : 2003.03.01

Abstract

3-D data modeling of a volumetric scattered data is highly demanded for geological structure inspection, environment visualization and supersonic testing. The data used in these area are generally irregularly scattered in a volume data space, which are much different from the structured points data (cuberille data) used in Marching cube algorithm. In this paper, first we explore a volume modeling method for the scattered data based on tetrahedral domain. Next we propose a method for solving the ambiguity of tetrahedral domain decision using asymptotic decider criterion. Last we implement a simple visualization system based on the proposed asymptotic decider criterion and compare it with a system based on sphere criterion. In deciding tetrahedral domain, sphere criterion considers only positional values but asymptotic decider criterion considers not only positional values but also functional values, so asymptotic decider criterion is more accurate on deciding tetrahedral domain than sphere criterion.

3 차원 산포 볼륨 데이터의 모델링(3-D Scattered Data Modeling)은 지질구조 조사, 환경가시화, 초음파 검사 등의 분야에 사용된다. 이러한 분야에 사용되는 데이터는 마칭큐브 알고리즘에서 사용하는 규칙적인 데이터와는 다르게 일반적으로 불규칙적으로 흩어진 데이터이다. 이 논문에서는 우선 불규칙적으로 흩어진 데이터에 적합한 사면체를 영역(domain)으로 하는 볼륨 모델링 기법에 대하여 고찰한다. 다음에 사면체 영역 결정에 애매성이 발생하였을 때 점근선 판정기(asymptotic decider critrion)로 애매성을 해결하는 방법을 제안하고 수식을 구한다. 마지막으로 제안한 방법을 이용하여 간단한 가시화 시스템을 구현하여 구 판정기(sphere criterion)와 비교한다. 사면체의 영역을 결정하는데 있어서 구 판 정기는 점의 좌표만을 이용하나 점근선 판정기는 점의 좌표와 그 점이 가지고 있는 함수 값을 이용하므로 보다 정확한 영역 분할이 가능하다.

Keywords

References

  1. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, Prentice Hall PTR, 1997
  2. H. Hagen, M. Muller, and G. M. Nielson, Focus on Scientific Visualization, Springer-Verlag, 1993
  3. K. Lee, 'Data Dependent Tetrahedrization,' Vision Geometry V, SPIE-2826, pp.90-97, 1996 https://doi.org/10.1117/12.251815
  4. K. Lee, and O. Gwun, 'Three-Dimensional Image Modeling Based on Least Squares Fitting by Using Adaptive Sub-Division of Tetrahedron,' Vision Geometry VI,SPIE-3168, pp.250-261, 1997 https://doi.org/10.1117/12.279667
  5. K. Lee, and O. Gwun, '3-D Image Modeling based on Tetrahedral Domain by Using Wavelet Transformation,' Vision Geometry VII, SPIE-3454, pp.110-120, 1998 https://doi.org/10.1117/12.323248
  6. K. Lee, and O. gwun, '3-D Image Modeling based on Data Dependent Tetrahedrization,' Vision Geometry VIII, SPIE-3811, pp.179-192, 1999 https://doi.org/10.1117/12.364092
  7. K. Lee, 'Three-Dimensional Medical Image Modeling of Scattered Data based on Data Dependent Criteria,' Vision Geometry IX, SPIE-4117, pp.91-99, 2000 https://doi.org/10.1117/12.404838
  8. 권오봉, 이건, '웨이블릿 변환과 사면체 분할을 이용한 볼륨 데이터 모델링,' 정보처리학회지논문지, Vol.6, No.4, pp.1081-1089, June, 1999
  9. W. E. Lorensen and H. E. Cline, 'Marching Cubes : A High-resolution 3D surface Construction Algorithm,' Computer Graphics, Vol.21, No.4, pp.163-169, July, 1987 https://doi.org/10.1145/37402.37422
  10. B. Joe, 'Construction of Three-dimensional Delaunay Triangulations Using Transformations,' Computer Aided Geometric Design, CAGDD-8, pp.123-142, 1991 https://doi.org/10.1016/0167-8396(91)90038-D
  11. G. M. Nielson, 'The Side-Vertex Method for Interpolation in Triangles,' Journal of Approximation Theory, Vol.25, pp.318-336, 1979 https://doi.org/10.1016/0021-9045(79)90020-0
  12. G. M. Nielson, H. Hagen, and H. Muller, Scientific Visualization, IEEE Computer Society, Washington, pp.477-525, 1997
  13. B. Joe, GEOMPACK users guide, Department of Computer Science, University of Alberta, Canada, 1993
  14. S. Rippa, 'Adaptive Approximation by Piecewise Linear Polynomials on Triangulations of Subsets of Scattered Data,' SIAM J. Sci. Statist. Comput, Vol.13, pp.1123-1141 https://doi.org/10.1137/0913065
  15. G. M. Nielson, and B. Haman, 'The Asymptotic Decider : Resolving the Ambiguity in Marching Cubes,' Proceedings of Visualization'91, pp.83-93, 1991 https://doi.org/10.1109/VISUAL.1991.175782
  16. S. V. Matveyev, 'Approximation of Iso-surface in the Marching Cubes : Ambiguity Problem,' Proceedings of Visualization'94, pp.288-292, 1994
  17. S. V. Matveyev, 'Resolving the Topological Ambiguity in Approximating the Iso-surface of Scalar Function,' Proceedings of Visualization and Machine Vision'94, , pp.18-21, 1994
  18. T. Moller, and E. Haines, Real-Time Rendering, AK Peters, 1999
  19. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for Computer Graphics Theory and Applications, Morgan Kaufman, 1996