불균질한 다공성 매질에서의 지하수위 변동을 고려한 저밀도 비수용성유체(LNAPL)의 흐름 모의

Simulations of the Flow and Distribution of LNAPL in Heterogeneous Porous Media under Water Table Fluctuation Condition

  • 발행 : 2003.03.01

초록

불포화대에서 저밀도 비수용성유체의 이동과 분포를 모의하기 위하여 STOMP(Subsurface Transport over Multiple Phase) 시뮬레이터를 이용하였다. 균질한 매질에서의 저밀도 비수용성유체의 이동은 조립질 매질에서 빠르고, 세립질 매질에서는 불포화대에 더 많이 잔류한다. 조립질 매질 내에 세립질층이 존재할 경우, 이 층이 지하수면으로부터 멀수록 저밀도 비수용성유체가 불포화대에 더 많이 잔류된다. 조립질 매질에 세립질 또는 더 조립질인 매질이 렌즈 상으로 존재하는 경우에는 저밀도 비수용성유체가 이들 렌즈를 통과하지 못한다. 불균질한 렌즈가 존재할 때의 저밀도 비수용성유체의 분포를 초기조건으로, 지하수면의 변동에 따른 저밀도 비수용성유체의 이동을 모의하였다. 지하수위의 변동에 따라 불포화대에 잔류되어 있던 저밀도 비수용성유체의 수직방향 이동이 증가되었다. 특히, 지하수면의 하강 시 저밀도 비수용성유체가 조립질 렌즈를 통해 이동하나, 세립질 렌즈를 통해서는 이동하지 못한다. 일련의 수치실험의 결과로부터 유류 등의 저밀도 비수용성유체의 오염분포는 매질의 불균질성 그리고 지하수위 변동과 같은 수리지질학특성에 의해 크게 영향을 받을 수 있음을 알 수 있다.

A series of numerical simulations were carried out using STOMP( Subsurface Transport over Multiple Phase) simulator. The flow and distribution of LNAPL were analyzed in homogeneous fine and coarse sand. Vertical movement of LNAPL is faster in the coarser sand. But the total volume of LNAPL retained in the unsaturated zone is larger in the finer sand. A fine layer in the coarse sand domain is also simulated. The results showed that the retained LNAPL volume and shape are highly influenced by the Position of the fine layer. Flow and distributions of LNAPL were simulated when there were heterogeneous lenses in the sand domain. Water table fluctuation was also considered. In these cases, it was found that the heterogeneous lens was a barrier to LNAPL flow, and water table fluctuation stimulated the downward movement of retained LNAPL. The LNAPL flow and distribution observed in these numerical experiments show that in the subsurface environment, the behaviors of LNAPL highly depend on heterogeneities of unsaturated zone and the dynamic hydrogeologic condition such as water table fluctuation. These results can explain some of the complexity of LNAPL flow and distribution Patterns in LNAPL contaminated field sites.

키워드

참고문헌

  1. Water Resour. Res. v.21 no.12 A multiphase approach to the modeling of porous media contamination by organic compounds 1, Equation development Abriola L. M.;Pinder G. F. https://doi.org/10.1029/WR021i001p00011
  2. Water Resour. Res. v.24 Developing joint provability distributions of soil water retention characteristics Carsel R. F.;Parrish R. S. https://doi.org/10.1029/WR024i005p00755
  3. Water Resour. Res. v.23 no.1 A compositional multiphase model for groundwater contamination by petroleum products 1, Theoretical considerations Corapcioglu M. Y.;Baehr A. L. https://doi.org/10.1029/WR023i001p00191
  4. J. Contam. Hydrol. v.34 Infiltration and redistribution of perchloroethylene in partially saturated, stratified porous media Hofstee C.;Oostrom M.;Dane J. H.;Walker R. C. https://doi.org/10.1016/S0169-7722(98)00101-6
  5. J. Contam. Hydrol. v.5 Modeling multicomponent organic chemical transport in three-fluid-phase porous media Kaluarachchi J. J.;Parker J. C. https://doi.org/10.1016/0169-7722(90)90025-C
  6. Trans. Am. Inst. Min. Metall. Pet. Engng. v.243 Calculation of imbibition relative permeability for two and three phase flow from rock properties Land C. S.
  7. J. Contam. Hydrol. v.50 Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer Lee J. Y.;Cheon J. Y.;Lee K. K.;Lee S. Y.;Lee M. H. https://doi.org/10.1016/S0169-7722(01)00101-2
  8. J. Hydrol. v.102 Water flow in unsaturated soil in layered slopes Miyazaki T. https://doi.org/10.1016/0022-1694(88)90098-4
  9. Water Resour. Res. v.12 no.3 A new model for predicting the hydraulic conductivity of unsaturated porous media Y. Mualem https://doi.org/10.1029/WR012i003p00513
  10. Application guide. PNNL-11216 STOMP: Subsurface Transport over Multiple Phases Nichols W. E.;Aimo N. J.;Oostrom M.;White M. D.
  11. Ground Water v.29 no.4 On the numerical modeling of capillary barriers Oldenburg C. M.;Pruess K.
  12. Water Resour. Res. v.29 no.3 Emplacement of nonaqueous liquids in the vadose zone Pantanzidou M.;Sitar N. https://doi.org/10.1029/92WR02450
  13. Water Resour. Res. v.23 no.4 A parametric model for constitutive properties governing multiphase flow in porous media Parker J. C.;Lenhard R. K.;Kuppusamy T. https://doi.org/10.1029/WR023i004p00618
  14. J. Environ. Eng. v.124 no.12 Mass loss from LNAPL pools under fluctuating water table conditions Reddi L. N.;Han W.;Banks M. K. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1171)
  15. J. Contamin. Hydrol v.32 Three phase immiscible fluid movement in the vicinity of textural interfaces Schroth M. H.;Istok J. D.;Selker J. S. https://doi.org/10.1016/S0169-7722(97)00069-7
  16. Adv. Water Resour. v.22 no.2 Multifluid flow in bedded porous media: laboratory experiments and numerical simulations Schroth M. H.;Istok J. D.;Selker J. S.;Oostrom M.;White M. D. https://doi.org/10.1016/S0309-1708(97)00043-2
  17. Water Resour. Res. v.29 no.6 Compositional simulation of groundwater contamination by organic compounds 1, Model development and verification Sleep B. E.;Sykes J. F. https://doi.org/10.1029/93WR00284
  18. Thery Guide PNNL-11217 STOMP: Subsurface Transport over Multiple Phases White M. D.;Oostrom M.
  19. J. Contamin. Hydrol. v.17 Laboratory and model simulations of a LNAPL spill in a variably-saturated sand 1, Laboratory experiment an image analysis techniques Geel P. J.;Sykes J. F. https://doi.org/10.1016/0169-7722(94)90075-2
  20. Soil. Sci. Soc. of Am. J. v.44 A closed form equation for predicting the hydraulic conductivity of unsaturated soils van Genuchten M. https://doi.org/10.2136/sssaj1980.03615995004400050002x