Examination of the Antioxidant Potential of Pycnogenol under Conditions of Oxidative Stress in Escherichia coli Mutants Deficient in HP1 and Superoxide Dismutase Activities

  • Youm, Jeong-A (Department of Biological Science, College of National Sciences, Chosun University) ;
  • Kim, Young-Gon (Department of Biological Science, College of National Sciences, Chosun University)
  • Published : 2003.03.01

Abstract

Pycnogenol (PYC) is believed to have potential as a therapeutic agent against free radical-mediated oxidative stress. It is important, therefore, to understand the interactions between PYC and cellular defenses against oxidative stress. Toward this end, we analyzed the survival rates on the gene expression responses of E. coli sod katG mutants to PYC after pre-treatment of PQ or H$_2$O$_2$-mediated stress under aerobic conditions. We identified SOD induced by PYC, but not HP1 in sod hate mutants. A striking result was the PYC induction of SOD with antioxidant property in single katG mutant cells, particularly MnSOD and CuZnSOD. These inductions were further increased with oxidative stress, while HP1 was not induced in these conditions. The effects of pycnogenol treatment on these cells depend in part on its concentration on the stress response. Protective effects of PYC exposure which affected gene expression in cells were consistent with cell survival rates. Our results demonstrate that pycnogenol may alter the stress response gene expression in a specific manner such as SOXRS because PYC induction of single mutant only worked under increased PQ stress. All together our data indicate that SOD activity is essential for the cellular defense against PQ-mediated oxidative stress, suggesting that PYC may not be effective as an antioxidant in only oxidative stress conditions. On the other hand, it was expected that PYC may play a role as a pro-oxidant and if it is available for use, it should be evaluated carefully.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA 78 Uric acid provides and antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis Ames, B.N.;R. Cathcart;E. Schwiers;P.Hochstein
  2. Integr. Med. v.2 Pine bark extract reduces platelet aggregation Araghi-Niknam, M.;S. Hosseini;D. Larson;P. Rohdewald;R.R. Watson https://doi.org/10.1016/S1096-2190(00)00002-0
  3. Anal. Biochem. v.44 Superoxide dismutase: Improved assays and applicable to acrylamide gels Beauchamp, C.;I. Fridovich https://doi.org/10.1016/0003-2697(71)90370-8
  4. J. Biol. Chem. v.44 A spectrophotometetric method for measuring the breakdown of hydrogen peroxidase by catalase Beers, R.F.;I. W. Sizer
  5. Free. Radic. Biol. Med. v.28 Pine bark extract pycnogenol down regulates IFN-gamma-induced adhesion of T cells to human keratinocytes by inhibiting inducible ICAM-1 expression Bito, T.;S. Roy;C. K. Sen;L. Packer https://doi.org/10.1016/S0891-5849(99)00229-4
  6. Pharmazie v.52 Anti-inflammatory and superoxide radical scavenging activities of procyanidines containing extract from Pinus pinaster Ait. after oral and cutaneous application Blazso, G.;M. Gabor;P. Rohdewald
  7. EMBO J. v.5 Isolation of superoxide dismutase mutants in Escherichia coli:is superoxide dismutase necessary for aerobic life? Carlioz A.;D. Touati
  8. Life Sci. v.58 Immunomodulation by pycnogenol in retrovirus-infected or ethanol-fed mice Cheshier, J.E.;S. Ardestani-Kaboudanian;B. Liang;M. Araghiniknam;S. Chung;L. Lane;A. Castro;R. R. Watson
  9. Ann. N.Y. Acad. Sci. v.928 Inhibition mechanisms of bioflavonoids extracted from the bark of Pinus maritima on the expression of proinflammatory cytokines Cho, K.J.;C.H. Yun;L. Packer;A. S. Chung https://doi.org/10.1111/j.1749-6632.2001.tb05644.x
  10. J. Biol. Chem. v.254 Purification of the orthodianisidine peroxidase from Escherichia coli B Claiborne, A.;I. Fridovich
  11. Free. Radic. Biol. Med. v.27 Electron spin resonance study of free radicals formed from a procyanidin-rich pine(Pinus maritima) bark extract, pycnogenol Guo, Q.;B. Zhao;L. Packer https://doi.org/10.1016/S0891-5849(99)00168-9
  12. J. Biol. Chem. v.261 One- and- two electron oxidation of reduced glutathione by peroxidases Harman, L. S.;D. K. Carver;J. Schreiber;R. P. Mason
  13. Anticancer. Res. v.20 Selective induction of apoptosis in human mammary cancer cells (MCF-7) by pycnogenol Huynh, H.T.;R. W. Teel.
  14. Proc. Nutr. Soc. v.57 Antioxidant micronutrients and gene expression Jackson, M. J.;A. McArdle;F. McArdle https://doi.org/10.1079/PNS19980044
  15. FEMS Micorbiol. Letters. v.28 Isolation of paraquat-resistant mutants of Escherichia coli: lack of correlation between resistance and the activity of superoxide dismutase Kao, S. M.;H. M. Hassan https://doi.org/10.1111/j.1574-6968.1985.tb00771.x
  16. J. Int. Fed. Clin. Chem. v.10 Use of antioxidants in the prevention and treatment of disease Kelly, F. J.
  17. Doctoral dissertation Superoxide dismutase: gene replacement studies Kim, Y. G.
  18. Acta. Physiol. Pharmacol. Bulg. v.24 Studies on paraquat-induced oxidative stress in rat liver Konstantinova, S. G.;E. M. Russanov
  19. J. Bacteriol. v.157 Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of KatE, a locus that affects catalase activity Loewen, P. C.
  20. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lorwy, H.;N. J. Rosenbrough;A. L. Farr;R. J. Randall
  21. US Patent 4698360 Plant extract with a proanthocyanidins content as therapeutic agent having radical scavenger effect and use thereof Masquelier, J.
  22. Can. J. Physiol. Pharmacol. v.60 The pathophysiology of superoxide: roles in inflammation and ischemia McCord, J. M.;I. Fridovich
  23. Redox. Rep. v.4 Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state Moini, H.;A. Arrovo;J. Vava;L. Packer https://doi.org/10.1179/135100099101534729
  24. Gene. v.73 Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli Mulvey, M. R.;P. A. Sorby;B. L. Triggs-Raine;P.C. Loewen https://doi.org/10.1016/0378-1119(88)90498-2
  25. Biochem. Mol. Biol. Int. v.42 Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidatns using the computerized JES-FR30 ESR spectrometer system Noda, Y.;K. Anzai;A. Mori;M. Kohno;M. Shinmei;L. Packer
  26. Nutrition v.16 Sickle cell anemia: a potential nutritional approach for a molecular disease Ohnishi, S.T.; T. Ohnishi;G. B. Ogunmola https://doi.org/10.1016/S0899-9007(00)00257-4
  27. Free. Radic. Biol. Med. v.27 Antiodxidant activity and biologic proterties of a procyanidin-rich extract from pine(Pinus maritima) bark, pycnogenol Packer, L.;G. Rimbach;F. Virgili https://doi.org/10.1016/S0891-5849(99)00090-8
  28. J. Microbiol. v.36 Response of CuZnSOD and HP1 conjugated gene in Escherichia coli double mutants to oxidative stress Park, H. Y.;Y. G. Kim
  29. FEBS Lett. v.465 Activity of monomeric, dimeric, and trimeric flavonoids on NO production, TNF-alpha secretion, and NF-kappaB-dependent gene expression in RAW 264.7 macroephages Park, Y. C.;G. Rimbach;C. Saliou;G. Valacchi;L. Packer https://doi.org/10.1016/S0014-5793(99)01735-4
  30. Cell. Mol. Life. Sci. v.57 Pycnogenol inhibits tumor necrosis factor-alpha-induced nuclear factor kappa B activation and adhesion molecule expression in human vascular endothelial cells Peng, Q.;Z. Wei;B. H. Lau https://doi.org/10.1007/s000180050045
  31. Biochem. Mol. Biol. Int. v.46 Relationship between rate and extent of catechin absorption and plasma antioxidant status Pietta, P.;P. Simonetti;C. Gardana;A. Brusamolino;P. Morazzoni;E. Bombardelli
  32. Free. Radic. Biol. Med. v.15 Current status of antioxidant therapy Rice-Evans C. A.;A. T. Diplock https://doi.org/10.1016/0891-5849(93)90127-G
  33. Flavonoids in health and disease Structure-antioxidant activity relationship of flavonoids and phenolic acids Rice-Evans, C. A.;N. J. Miller;G. Paganga;Rice-Evans,C(ed.);I. Packer(ed.)
  34. Redox. Rep. v.4 Effect of procyanidins from Pinus maritima on glutathione levels in endothelial cells challenged by 3-morpholinosydnonimine or activated macrophages Rimbach, G.;F. Virgili;Y. C. Park;L. Packer https://doi.org/10.1179/135100099101534873
  35. Biotechnol. Ther. v.5 Pycnogenol protects vascular endothelial cells from t-butyl hydroperoxide induced oxidant injury Rong, Y.;L. Li;V. Shah;B. H. Lau
  36. Can. J. Micobiol. v.34 Response of hydroper-oxidase and superoxide dismutase deficient mutants of Escherichia coli K-12 to oxidative stress Schellhorn, H. E.;H. M. Hassan
  37. Free. Radic. Biol. Med. v.20 Marchantins and related polyphenols from liverwort:physico-chemical studies of their radical-scavenging properties Schwartner,C.;C. Michel;K. Stettmaier;H. Wagner;W. Bors https://doi.org/10.1016/0891-5849(95)02036-5
  38. Methods Enzymol. v.299 Flow cytometric determination of cellular thiols Sen, C. K.;S. Roy;L. Packer https://doi.org/10.1016/S0076-6879(99)99024-9
  39. Crit. Rev. Food. Sci. Nutr. v.32 Phenolic antioxidants Shahidi, F.;P. K. Wanasundara https://doi.org/10.1080/10408399209527581
  40. Phytother. Res. v.15 Treatment of vascular retinopathies with Pycnogenol. Spade, L.;E. Balestrazzi https://doi.org/10.1002/ptr.853
  41. Free. Radic. Res. v.34 The role of nitric oxide in paraquat-induced cytotoxicity in the human A549 lung carcinoma cell line Tomita, M.;T. Okuyama;T. Ishikawa;K. Hidaka;T. Nohno https://doi.org/10.1080/10715760100300181
  42. FEBS Lett. v.431 Procyanidins extracted from pine bark protect alpha-tocopherol in ECV 304 endothelial cells challenged by activated RAW 264.7 macrophages:role of nitric oxide and peroxynitrite Virgili, F.;D. Kim;L. Packer https://doi.org/10.1016/S0014-5793(98)00778-9
  43. Exp. Gerontol. v.36 Stress, DNA damage and ageing - an integrative approach von Zglinicki, T.;A. Burkle;T. B. Kirkwood https://doi.org/10.1016/S0531-5565(01)00111-5
  44. Gen. Pharmacol. v.33 Ginkgo biloba inhibits hydrogen peroxide-induced activation of nuclear factor kappa B in vascular endothelial cells Wei, Z .;O. Peng;B. H. Lau;Y. Shah https://doi.org/10.1016/S0306-3623(99)00027-0
  45. J. Toxicol. Environ. Health A. v.58 Protective role of germanium-132 against paraquat-induced oxidative stress in the livers of senescence-accelerated mice Yang, M. K.;Y. G. Kim https://doi.org/10.1080/009841099157250