Molecular Bases of High-Level Streptomycin Resistance in Pseudomonas marginalis and Pseudomonas syringae pv. actinidiae

  • Han, Hyo-Shim (Department of Biology, Sunchon National University) ;
  • Nam, Hye-Young (Department of Biology, Sunchon National University) ;
  • Koh, Young-Jin (Department of Applied Biology Sunchon National University) ;
  • Hur, Jae-Seoun (Department of Environmental Education Sunchon National University) ;
  • Jung, Jae-Sung (Department of Biology, Sunchon National University)
  • Published : 2003.03.01

Abstract

We have collected eight high-level streptomycin-resistant strains of Pseudomonas marginalis and P. syringae pv. actinidiae which were isolated from kiwifruit orchards in Korea and Japan, The molecular mechanisms of resistance were investigated by the PCR, susceptibility tests, and nucleotide sequence analysis. Of the eight high-level streptomycin-resistant strains, four harbored strA-strB genes, which encode streptomycin-inactivating enzymes. While the three Korean strains of R marginalis did not have plasmid and carried the resistant genes in the chromosomes, the Japanese strain of P. syringae pv. actinidiae had a plasmid containing strA-strB genes. The myomycin susceptibility test demonstrated that the high-level resistance to streptomycin of the remaining four strains is associated with mutations in the rpsL gene. Nucleotide sequence analyses revealed that they contain a single base-pair mutation in codon 43 of their rpsL gene.

Keywords

References

  1. J. Med. Microbiol. v.36 Antibiotic resistance in bacteria Amyes, S.G. B.;C.G. Gemmell https://doi.org/10.1099/00222615-36-1-4
  2. Current protocols in molecular biology Ausubel,F.M.;R. Brent;R.E. Kingston;D.D. Moore;J.G. Seidman;J.A. Smith;K. Struhl
  3. Proc. Natl. Acad. Sci. USA 75 Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichis coli Brosius, J.;J.L. Palmer;H.P. Kennedy;H.F. Noller
  4. Phytopathology v.78 Streptomycin resistnance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid Burr, T.J.;J.L. Norelli;B. Katz;W.F. Wilcox;S.A. Hoying https://doi.org/10.1094/Phyto-78-410
  5. Phytopathology v.81 The analysis of plasmid-mediated streptomycin resistance in Erwinia amylovora Chiou, C.-S.;A.L. Jones https://doi.org/10.1094/Phyto-81-710
  6. J. Bacteriol v.175 Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negaative bacteria Chiou, C.-S.;A.L. Jones https://doi.org/10.1128/jb.175.3.732-740.1993
  7. Phytopathology v.85 Molecular analysis of high-level streptomycin resistance in Erwinia amylovora Chiou, C.-S.;A.L. Jones https://doi.org/10.1094/Phyto-85-324
  8. Antimicrob. Agents Chemother. v.40 Characterization of streptomycin resistance mechanism among Mycobacterium tuberculosis isolates from patients in New York city Cooksey, R.C.;G.P. Morlock;A. McQueen;S.E. Glickman;J.T. Crawford
  9. J. Antibiot. v.41 Myomycin: Mode of action and mechanism of resistance Davis, J.;M. Cannon;M.B. Mauer https://doi.org/10.7164/antibiotics.41.366
  10. Int. J. Antimicrob. Agents v.15 Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain Del Campo, R.;C. Tenorio;C. Rubio;J. Castillo;C. Torres;R. Gomez-Lus https://doi.org/10.1016/S0924-8579(00)00169-2
  11. Mol. Microbiol. v.9 Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot Finken, M.;P. Kirschmer;A. Meier;A. Wrede;E.C.Bottger https://doi.org/10.1111/j.1365-2958.1993.tb01253.x
  12. The molecular basis of antibiotic action Gale, E.F.;E. Cundliffe;P.E. Reynolds;M.H. Richmond;M.J. Waring
  13. Laboratory guide for identification of plant pathogenic bacteria(2nd ed.) Pseudomonas Hildebrand, D.C.;M.N. Schroth;D.C. Sands;N.W. Schaad(ed.)
  14. J. Appl. Microbiol. v.86 Characterization of plasmids that encode streptomycin-resistance in bacterial epiphytes of apple Huang, T.-C.;T.J. Burr https://doi.org/10.1046/j.1365-2672.1999.00719.x
  15. Plant Dis. v.75 Detection of streptomycin-resistant pseudomonas syringae pv. papulans in Michigan apple orchards Jones, A.L.;J.L. Norelli;G.R. Ehret
  16. Kor. J. Plant Pathol. v.10 Outbreak and spread of bacterial canker in kiwifruit Koh, Y.J.;B.J. Cha;H. J. Chung;D.H. Lee
  17. Nucleic acid tecniques in bacterial systematics 16S/23S rRNA sequencing Lane, D.J.;E. Stackebrandt(ed.);M. Goodfellow(ed.)
  18. Phytopathology v.69 Pseudomonas morsprunorum the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Latorre, B.A.;A.L. Jones https://doi.org/10.1094/Phyto-69-335
  19. Can. J. Microbiol. v.43 Identification of gene loci controlling pectate lyase production and soft-rot pathogenicity in Pseudomonas marginalis Liao, C.H.;D.E. McCallus;W.F. Fett;Y. Kang https://doi.org/10.1139/m97-060
  20. Ver. Microbiol. v.75 Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella thyphimurium Madsen, L.;F.M. Aarestrup;J.E. Olsen https://doi.org/10.1016/S0378-1135(00)00207-8
  21. Nucleic Acids Res v.16 A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin Melancon, P.C.;Lemieux;L. Brakier-Gingras https://doi.org/10.1093/nar/16.20.9631
  22. Antimicrob. Agents Chemother. v.43 Aminoglycoside: activity and resistance Mingeot-Leclercq, M.;Y. Glupczynski;P.M. Tulkens
  23. Phytopathology v.80 Plasmidmediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria Minsavage, G.V.;B.I. Canteros;R.E. Stall https://doi.org/10.1094/Phyto-80-719
  24. Ann. Phytopathol. Soc. Jpn. v.61 Similarity of streptomycin resistance gene(s) in Pseudomonas syringae pv. actinidiae with strA and strB. of plasmid RSF1010 Nakajima, M.;S. Yamashita;Y. Takikawa;S. Tsuyumu;T. Hibi;M. Goto https://doi.org/10.3186/jjphytopath.61.489
  25. Annu. Rev. Biochem. v.53 Structure of ribosomal RNA Noller, H.F. https://doi.org/10.1146/annurev.bi.53.070184.001003
  26. Appl. Environ. microbiiol. v.63 A relative of the broad-host range plasmid RSF1010 detected in Erwinia amylovora Palmer, E.L.;B.L. Teviotdale;A.L. Jones
  27. Gene v.75 Complete nucleotide sequence and gene organization of the broad-host range plasmid RSF1010 Scholz, P.;V. Haring;B. Wittmann-Liebold;K. Ashman;M. Bagdasarian;E. Scherzinger https://doi.org/10.1016/0378-1119(89)90273-4
  28. Plant Dis v.79 Copper, oxytetracycline, and streptomycin resistance of Pseudomonas syringae pv.syringae stains from pear orchards in Oregon and Washington Spotts, R.A.;L.A. Cervantes https://doi.org/10.1094/PD-79-1132
  29. Nature 406(6977) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen Stover, C.K.;X.Q. Pham;A.L. Erwin;S.D. Mizoguchi;P. Warrener;M.J. Hickey;F.S. Brinkman;W.O. Hufnagle;D.J. Kowalik;M. Lagrou;R.L. Garber;L. Goltry;E. Tolentino;S. Westbrock-Wadman;Y. Yuan;L.L. Brody;S.N. Coulter;K.R. Folger;A. Kas;K. Larbig;R. Lim;K. Smith;D. Spencer;G.K. Wong;Z. Wu;I.T. Paulsen;J. Reizer;M.H. Saier;R.E. Hancock;S. Lory;M.V. Olson
  30. Appl. Environ. Microbiol. v.59 Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae Sundin, G.W.;C.L. Bender
  31. Appl. Environ. Microbiol. v.61 Expression of the strA-strB Streptomycin resistance genes in Pseudomonas syringae and Xanthomonas compestris and characterization of IS6100 in X. campestris Sundin, G.W.;C.L. Bender
  32. Mol. Ecol. v.5 Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals and plants Sundin, G.W.;C.L. Bender https://doi.org/10.1111/j.1365-294X.1996.tb00299.x
  33. Ann. Phytopathol. Soc. Jpn. v.55 Pseudomonas syringae pv. actinidiae pv. nov.: The causal bacterium of canker of kiwifruit in Japan Takikawa, Y.;S. Serizawa;T. Ichikawa;S. Tsuyumu;M. Goto https://doi.org/10.3186/jjphytopath.55.437