Implementation of Medical Information System for Korean by Tissue Mineral Analysis

모발분석 및 처리를 위한 한국형 의료 정보 시스템 구축

  • 조영임 (평택대학교 컴퓨터과학과)
  • Published : 2003.02.01

Abstract

TMA(Tissue Mineral Analysis) is very popular method in hair mineral analysis for health care professionals in over 48 countries medical center. Assesment of nutritional minerals and toxic elements in the hair is very important not only for determining adequacy, deficiencies and unbalance, but also for assessing their relative relationships in a body. In Korea, there are some problems in TMA method. Because of not haying a medical information database which is suitable for korean to do analyze, the requested TMA has to send to TEI-USA. However, as the TMA results from TEI-USA is composed of English documents and graphic files prohibited to open, its usability is very low and a lot of dollars has to be payed. Also, it can make some problems in the reliability of the TMA results, since the TMA results are based on the database of western health and mineral standards, To solve these problems, I developed the first Medical Information System of TMA in Korea here. The system can analyze the complex tissue mineral data with multiple stage decision tree classifier. It is also constructed with multiple fuzzy database and hence analyze the TMA data by fuzzy inference methods. The effectiveness test of this systems can be shown the increased business efficiency and satisfaction rate 86% and 92% respectively.

현재 세계 48개국의 의료기관에서 임상을 위해 널리 사용 중인 모발분석(TMA)은 중요 미네랄 비율을 분석하여 체내에 과잉, 결핍 및 불균형 상태를 평가하고 인체에 미치는 영향을 예측하여 건강유지 방향을 제시하는 임상 영양학 및 독성학 검사방법을 말한다. 그러나 국내 모발분석방법에는 몇 가지 문제점이 있다. 즉, 모발분석결과를 처리하고 해석할 수 있는 한국형 의료정보 데이터베이스가 없으므로 미국에 의뢰하고 있는데, 외화낭비는 물론 보내오는 모발분석 검사결과지가 영문이고 철저한 보안 위주파일이므로 국내의료 기관에서의 활용도가 매우 낮다. 또한 모발분석 결과가 서구식 데이터베이스로부터 분석된 것이므로 검사결과의 신뢰성 문제도 발생한다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 국내 최초로 TMA 기반 한국형 의료정보시스템을 구축하였다. 이 시스템은 복잡한 모발분석 자료의 분류를 다단계 통계분석 방법에 의한 결정트리 분류기를 통해 수행하고, 다중 퍼지 규칙방식의 데이터베이스를 구축하여 지능형 퍼지추론 방법에 의해 모발분석 자료를 분석한다. 본 시스템의 성능을 실제 작업 환경에서 측정한 결과, 시스템을 사용하는 경우가 사용하지 않았을 경우보다 업무능률과 사용자 만족도가 각각 86%, 92% 증가하였다.

Keywords