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Band Structure Analysis of Strained Quantum Wire Arrays
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A numerical approach for the analysis of quantum wire structures has been presented using a
finite-element method which includes the strain analysis and the band analysis of the Luttinger-
Kohn Hamiltonian with the deformation potential. A systematic implementation of the multiband
Hamiltonian in the finite-element scheme is outlined and the corresponding variational functional
is derived for arbitrarily shaped strained quantum wire arrays. This method is then applied to
calculate the band structures of strained quantum wire arrays.
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I. INTRODUCTION

Strained quantum wire structures, which provide an
additional quantum confinement due to the deforma-
tion potential, have undergone extensive study and de-
velopment for their enhanced optical gain compared to
the unstrained counterpart [1-4]. Obviously the main
purpose of fabricating quantum wires is to generate
semiconductor heterostructures with properties supe-
rior to quantum wells. The lateral superlattice is one
of the most promising structures for its small size and
higher wire density [5-7]. One drawback, however,
is the relatively weak lateral confinement due to the
lateral material intermixing [6,7]. Recent successes
in the fabrication of the strained lateral superlattice

quantum wire arrays to assess the effect of the strain
on the optical properties of the quantum wire struc-
tures.

II. LUTTINGER-KOHN HAMILTONIAN FOR
STRAINED SEMICONDUCTORS

Strain in a crystal causes deformation in the atomic
geometry which in turn results in a new crystalline
potential. If the strain is weak enough to preserve the
lattice periodicity, the effect of the strain in the peri-
odic structure can be analyzed by perturbation theory
as [8,9]

quantum wire structures point to the possibility of Hy = Dg O H 1
additional lateral confinement due to the deformation 1=| ¢ D, |THo (1)
potential [1,2]. In this paper, a systematic methodol-
ogy will be presented to analyze the band structures of where
|
lege + m(eyy + €:2) NExy Né€g,
D = NEyz leyy + mlegr + €22) neEy, (2)
M€z NEzy lesy + m(egy + €yy)

is the orbital strain Hamiltonian for 6p orbitals, and
Ho is the unperturbed Hamiltonian [10-12]. [, m,
and n are the strain matrix elements and e,g’s are
the strain tensor with & and 3 running through z, y,
and z. Eq. (1) has a great similarity to the k - p
Hamiltonian. As a result, the 4 band orbital strain

Hamiltonian for HH and LH bands would have the
same form as the Luttinger-Kohn Hamiltonian under
unitary transformation and crystal rotation {13,14]. It
can be directly obtained from the k - p Hamiltonian
(10] by substituting A , B, C, and kqkg with I, m, n
and eqg, respectively. Conventionally the strain ma-
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trix elements are expressed in terms of the deforma-
tion potential constants as [13,15]

[+2m [—-m n
=3 b= 3 d= 7 (3)
where a, represents the valence band energy change
due to the hydrostatic stress, and b and d represent the
splitting of the HH and LH bands due to the uniax-
ial stress along [001] and [111] directions, respectively
[16]. The sign convention is taken positive for the en-
ergy lower than the top of the bulk valence band. The
expressions in (3) also have similar forms with the Lut-
tinger parameters in the k - p Hamiltonian [10]. By
comparing these two equations, one can find the co-
efficients of the 4 band strain Hamiltonian from the
unperturbed Hamiltonian {11] by substituting [14]

b d
z o 4

For instance, the 4 band strain Hamiltonian for cubic
axes orientation can be expressed as

ay
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Hst = ST 0 p—q -r (5)
0 st —rt p4g
where

P = ay(€zz + €yy + €22)
b

q= _§(fzx + €yy — 2€22)

T =d(€y, + i€:z) (6)
V3 .

5= _717(512 — €yy) T idegy

When the crystal orientation is 45° rotated in (z —y)
plane, s modifies to
s = —%d(eM — €yy) + 1V 3begy. (7)

The expressions in (6) and (7) are slightly different
from the expressions commonly referred in the liter-
atures [17,18]. This is because the phase of the uni-
tary matrix for the 6 band spin orbit Hamiltonian is
taken directly from the Luttinger-Kohn formulation
[10] while others take it alternatively [19]. Variations
in the definition of the deformation potential also di-
versified the coefficients of the strain Hamiltonian. A
detailed comparison can be found in the Kane’s work
[20] for the various stress orientations in the crystal.

Using the strain Hamiltonian in (5), the top of the
valence band structure can be analyzed by finding the
solution of the variational functional

J=<J,Huk + Hgt + V(y,2)I|1T, >
— < J|E|J, >=0 (8)

using the finite-element method as discussed in the
previous section.

Like the k - p Hamiltonian, the strain affects the
conduction band energy levels too. Since the conduc-
tion band has a spherically symmetric basis function,
only the diagonal components of the strain tensor have
non-zero perturbation. Thus the energy level shift in
the conduction band can be expressed as

AEC = ac(ezz + €yy + 522) (9)

where a, is the deformation potential in the con-
duction band due to the hydrostatic stress. Here
€zz + €yy + €, represents the ratio of the volume
change, AV/V.

One thing to note in the valence band is that both
the HH and LH valence bands shift by p = a, (e +
€yy +€22). Thus the bandgap change due to the strain
effect can be expressed as

AE; = (ac + ay)(€zz + €yy + €22) (10)

For uniaxial stress along [001] direction, the strain
coefficient can be expressed as [21]

_ __ Gsub — Qlayer
€xx = €yy =

C’12E
~ Ctxz
Cn

Alayer

(11)

€22 = —2

where asup and aiayer denote the lattice constants of
the substrate and the strained layer, respectively. Ci;
and ()5 are the elastic constants. Then the volume
change €;; + €,y + €;, can be expressed in terms of
€zz, hence the band gap change can be simplified to
21)

a2(C11 —Ch2)

AE, = oo €z

(12)

where a = a, + a,. The sign of the deformation po-
tential is negative in most III-V semiconductors and
Ch1 is always larger than C12. Therefore, the bandgap
change has the opposite sign to the strain coefficient.
With the compressive strain, where the lattice con-
stant of the layer is larger than that of the substrate,
the energy gap increases by AEy since a and e,; in
(12) are both negative. Thus the conduction band
shifts upwards by a./a of the total bandgap change
and the valence band shifts downwards by a, /a of the
bandgap change as shown in Fig. 1. The opposite will
happen for the tensile strain [22].

The splitting of the HH and LH bands can be esti-
mated from the eigenvalues of the strain Hamiltonian
in (5). The 4x4 matrix has two twofold degenerate
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FIG. 1. Band diagrams of a strained semiconductor bulk
under the uniaxial strain along [001] direction [22].

eigenvalues at the zone center [18] as

AEpy =p+ sgn(q)\/q* + |r|> + |s|?
AELy =p — sgn(q)\/q® + [r|? + |s|?

each one for the HH and LH subband, respectively.
Here the effect of the SO band is neglected. For the
uniaxial strain along the [001] direction, r and s be-
comes zero from (11) and (6) since the shear strain is
zero and €z; = €yy. Then the energy gap between the
LH band to HH band becomes [21,22]

(13)

C1 + 2C12
b———=¢

A(ElLH - EHH) =-29= Cii Tz

(14)

1
U= / dv [5011(63’“” + ef,y +€e2,) + 2044(e§y + ezz +€2,) + Cral€yy€sz + €2z€an + fzzfyy)] .
v

Using the linearized Galerkin method, the strain co-
efficients can be expressed in terms of the lattice coor-
dinates [25]. Fig. 2 shows the lattice deformation due
to the strain in the crystal. The coordinate of the each
intersection of the lattice grid is given by (u, v, w) and
the coordinates of the computing grid are given by
(z,y,2). Since the quantum wires are uniform along
the z-axis, only the vw and yz plane are shown. If
one assumes that the crystal is strained to match the
substrate lattice constant along the wire direction, the
x components of the strain tensor can be expressed as

_ QAgub — A3
6:::1: -
a;

(16)

€xy = €xz = 0

where q; is the lattice constant of the unstrained

Since the uniaxial deformation potential, b, is neg-
ative in most III-V semiconductors [16], the splitting
between the LH and HH bands has the opposite sign
with the strain coefficient. In other words, with the
compressive strain, the HH subbands have smaller en-
ergies with respect to the valence band top, hence they
shift towards the top of the valence band. The LH sub-
bands shift toward lower valence band energy. With
the tensile strain, the LH subbands have smaller ener-
gies than HH subbands hence they shift to above the
HH subbands as shown in Fig. 1.

III. STRAIN PROFILE IN QUANTUM WIRE
ARRAY

In quantum wires the strain profile is no longer uni-
axial when the lattice constant along the lateral di-
rection is not uniform. The lattice constants of the
quantum wire layer, the barrier layer, and the sub-
strate can be all different. In that case there exists
the shear stress as well as the hydrostatic stress. Thus
those strain coefficients need to be calculated first for
a realistic strain Hamiltonian analysis. There are sev-
eral numerical techniques to calculate the strain profile
including the finite-difference method and the finite-
element methods [23,24]. In this paper the strain
profile will be calculated using the linearized finite-
element technique [11]. If the stress in the material
is sufficiently below the nonlinear regime or the rup-
ture condition, the strain is linearly proportional to
the stress governed by the Hook’s law [25]. Then the
elastic strain energy can be expressed in terms of the
linear strain coefficients as [26,27]

(15)
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FIG. 2. Cross section of the strained lattice profile. The
regular dashed grid is the computing window (y, z) and the
deformed solid grid represents the actual lattice geometry
(v,w). The = and u coordinates are omitted since they are
uniform along the direction into the figure. a; is the lattice
constant of the unstrained material in the ¢-th rectangle,
and asup is that of the substrate.
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FIG. 3. Profiles of the strain tensor in a 50 A wide
100 A thick Ing.3Gag 7As quantum wire array surrounded
by Alp.1GagsAs. () €z, (b) €yy, () €22, and (d) €.
The quantum wires are parallel to the z-axis and are dis-
tributed along the y-axis.

material in the i-th rectangle, and a4, is the lattice
constant of the substrate as shown in Fig. 2.

The strain coefficients along the transverse direction
can be expressed in terms of the lattice coordinates as
mentioned earlier. For the i-th rectangle, one can es-
timate the strain coefficients as

R 1 Vig1 — V4 Viy1 — Vy a;
fy’y = -2" + —

Yivl — ¥ Yj+1 — Y5 Asub
s = = (””“ ot B2 “’J") -5 an
2 Ziy1l — Zj+1 2 — 25 QAsub
1 [ ow + ov
€yz = = | — + —
V2 9\ 0y Oz
where
ow _ 1 (wm Wi Wil = wj)
Oy 2\ yiy1 — yj+1 - Yj
1 <Zz+1 % Zit) T Zj)
2 \Yit1 — ¥ y]+1 - Y5
[ 1<Vz+1*V]+1+Vi—Vj)
0z 2 241 Zj41 2; — <5
1 (yz+1 Yi+1 | i yg> ‘ (18)
2 Zit+l — Zj41 2y — 25

The (yi, z:) is the coordinate of the crossing point of
the dashed grid corresponding to (v;,w;), and so on

so forth. Substituting the strain coefficients in (15)
using (16)—(18) one can express the elastic internal
energy U in terms of the deformed lattice coordinates
(v,w). The variation principle states that the inter-
nal energy becomes minimum at the correct strain
profile. Thus the strain profile can be obtained by
minimizing U with respect to the lattice coordinates,

S = ("'l/i,wiaui 1, W; 1’...)173,5
8U
= KgS + 9
S+ M, (19)

where K and M are the matrices resulting from (15).
Eq. (19) leads to a boundary value problems [21] for
the lattice coordinates, S. This can be solved using
the standard linear algebra procedures such as the LU
decomposition or SOR algorithm [26,27). From the
lattice coordinates, one can obtain the values of the
strain coeflicients using (16)—(18) again.

Fig. 3 shows the cross-sectional profiles of the non
zero components of the strain tensor in a 50 A wide
100 A thick Ing3Gag7As quantum wire array sur-
rounded by Alg 4GageAs. The InGaAs and AlGaAs
material parameters are listed in the reference [16].

IV. RESULTS

The band discontinuities in the conduction and the
valence band without the strain effect are 663 meV
and 285 meV, respectively. The lattice constants of
the wire material and the surrounding material are
5.7748 A and 5.6574 A, respectively, yielding 2.1 %
lattice mismatch between them. The strain profile of
€z is uniform inside the quantum wire and has a neg-
ative value since the wire material has a larger lattice
constant that the substrate as expressed in (16). The
strain profiles for €y, and e,, are strongly distorted
due to the lattice mismatch along the vertical and hor-
izontal directions. The shear strain €,, shows a point
symmetric profile with peak values at the corners of
the quantum wire rectangle. One thing to note here
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FIG. 4. The horizontal strain profile along the y-axis at
z = 0 (a), and the vertical strain profile along the z-axis
at y = 0 (b). Thick lines indicate the volume change
AV/V = ece + €yy + €22 .
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FIG. 5. The horizontal band profile along the y-axis at
z = 0 (a), and the vertical band profile along the z-axis
at y = 0 (b). The dashed lines indicate the bulk band
positions for the unstrained materials.

is that the €y, and €., have the opposite values, i.e.,
their signs are opposite and the magnitudes are almost
the same. Thus the summation of €55 , €4y, and €., is
almost the same with ez, since e,y and ¢,, canceled
each other out. Fig. 4 shows the strain profile along
the lateral direction and along the vertical direction at
the center of the quantum wire. Unlike the uniaxial
stress as in the quantum well structures, the quantum
wire structure has non uniform ¢, and ¢,, profiles as
shown in Fig. 4. Thus, the HH and LH band sepa-
ration cannot be simplified to the expression in (14)
where the energy separation is proportional to €.

The band profiles of the conduction band, heavy
hole and light hole bands are instead estimated using
(9) and (13), and are plotted in Fig. 5. If there is no
strain effect, the conduction and the valence band off-
sets are 663 meV and 285 meV, respectively. Due to
the compressive strain inside the quantum wires, the
conduction band in the quantum wires shifts upward
and the valence bands shift downward. However, in
the compressive strain, the signs of p and ¢ in (16)
are opposite with each other, and the magnitudes of
the deformation potentials p and 1/¢2 + |r|2 + [s[? are
almost the same. Hence the shift of the HH band is
actually quite small, while the LH band is suppressed
down simultaneously by the hydrostatic strain term p
and the uniaxial strain term /g2 + |r|? + |s|2. Quan-
titatively, the conduction band moves upwards by 148
meV, and the HH band moves downwards by 21 meV,
whereas the LH band moves downwards by 107 meV
at the center of the quantum wires, yielding 86 meV of
the HH-to-LH band separation. Hence the conduction
band and the heavy hole band offsets along the lateral
direction are modified to 514 meV and 201 meV, re-
spectively.

The eigen energy levels in this strained quantum
wire array and its optical properties will be discussed
in the next subsection including the comparisons to
various types of strained quantum wire arrays and the
unstrained quantum wire arrays

V. CONCLUSIONS

In this paper an efficient finite-element method has
been developed to numerically solve the Luttinger-
Kohn Hamiltonian for the strained quantum wire ar-
rays. The required variational functional is formulated
through integration by parts with proper boundary
conditions. This method offers a significant compu-
tational advantage compared to other methods and
can be applied to any arbitrarily shaped geometry.
The strain profile is rigorously calculated numerically
including the hydrostatic and the shear strain com-
ponents using the linearized Galerkin method. The
effect of the strain in the various types of the strained
quantum wire arrays are quantitatively analyzed for
the InGaAs quantum wire arrays. This method will
provide a very efficient numerical tool for the analysis
of the polarization dependence of the optical gain in
the actual quantum wire arrays.

*Corresponding author : wave@hongik.ac.kr.
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