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Controllability for the fuzzy differential systems with nonlocal
initial conditions
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Abstract

In this paper, we study the controllability of fuzzy differential systems with nonlocal initial conditions. Result of this

paper has improved and expanded in [5].

R”. The distence between A and B is defined by
Hausdorff metric. Denoted by P (R")={ACR™A Iis
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1. Introduction
In [6], Z. Ding and A. Kandel studied the

controllability of fuzzy dynamical system:
[ 2 (H=ADx(D+ BAOU,
2(0)=x,

where A, B are continuous matrices and U(t) is fuzzy
set. Also, D. H. Jeong etc [6] is studied the
controllability of fuzzy differential system with nonlocal
initial condition:

x (D= A)x(D+ B(HU(Y),
{ 2(0) + g(x) = x,

where A(t), B(t) are continuous matrices, U(t) is fuzzy
set and g is given function.

In this paper, we consider the existence of fuzzy
solution and controllability for the following differential
system with nonlocal initial condition:

( x (= ADx( )+ BOUD+ F(t, %),
1.1)
(8 + g(x) = x,

where A(t), B(t) are continuous matrices, U(t) is fuzzy
set, g:E"—E" is linear and satisfies a global Lipschitz
condition, and F:[0, T} XE"—E" is linear with respect
to x, nonlinear with respect to ¢.

2. Preliminary

Let A and B be two nonempty bounded subsets of
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nonempty closed compact convex }.
Denoted by

E"={u: R"—10,11 | u satisfies (1) - (4) below }.

where
(1) # is normal.
(2) u is fuzzy convex.
(3) « is upper semicontinuous.

@) [4]°= (xe R": u(x)>0} is compact.

For 0<e<1, denote
D:E"<E"—>RU{0} by

DXu, v) = sup gqc; el (2], [0]D)

[#]°= {xe R™:u(x)= a}. Define

where dj is the Hausdorff metric. We see that (E”, D)
is a complete metric space.

Theorem 2.1([8]) If » < E”, then

(1) [u]*€P,(R") for all 0<e<l,

(2) [u]l®Clu]™ for all 0<a;<a,<1,

(3) If {a,} is a nondecreasing sequence converging to
>0, then [2]“=1 o l2] ™.

Conversely, if {A%0<ae<1} is a family of subsets of

R" satisfying (1)-(3), then there exists a w=E” such
that [#]°=A° for 0se<] and [#]°=U je1d®C A’

Consider the fuzzy differential equation

2D x(D=Ft,x(8), x(0)=x

where F:[0, TI X E"—E",

Definition 2.1([5]) A mapping x:[0, T]—E" is a fuzzy
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weak solution to (2.1) if it is continuous and satisfies the
integral equation

x(t)=x0+fo'F(s,x(s))¢s, for all te [0, T].

If F is continuous, then this weak solution also
satisfies (2.1) and we call it fuzzy strong solution to
(2.1).

It should be noted that @(#)=e?" is the fundamental
matrix of the equation

X (D=ADx(D), £=0.

3. Main Result

We assume the following hypotheses:
(H) M=max ero. 11 @D || .
(H2) N=max (o, ()1l ,

where u(He[ (H]*

(H3) K=max ,crq. | BOI .

(H4) | g(x))—glx) | <Ll x—x, | forany x;,x,€E".

(H5) F(t,x) is linear with respect to x and nonlinear
function with respect to ¢ satisfied by | F(¢x(#) —
F(t,y)) | <1t x(0)— (D1 .

Now, we will prove the following theorem.
Theorem 3.1 Assume that the hypotheses (H1)-(H5)
are satisfied, ML+MIT<1 and T>0, then system (1.1)

has a fuzzy solution x(#) .
Proof. Let T>0. Consider the differential inclusions

x D eADx (D + BOUWD + F(¢t,x,), t=[0, T1,
(3.1
x,(0) + glx,) = xo.

Let X“ be the solution set of inclusion (3.1).

Next we show that it is nonempty compact and
convex in C([0, 7):R*). Nonempty is obvious since
[T(®H]® has measurable selections. Let x,=X°, then

there is a selection u(He[ U($H]° such that

x,(f) = @(t)(xo—g(xa))Jrfot@(t—s)F(S,xa)ds
+f0'a)(t—s)B(s)u(s)dS
Then
(DI
< 10— gx) | + [ 1 00— 9F(s.x) | ds
n fol | @Ct— )B(s) uls) | ds
< Mlxg | +ML | x,(D | +MENT+ |21 .

So

M
" xa(t) ” < I_MLMMIT ( ][ xO " +KNﬂ
Thus X° is bounded.

Now we will prove that it is equi—continuous. For any
tl,tge[o, T] Wlth 0<t1$l‘2< T,

2l 8) — 2L 1)

= Ot~ gD+ [ Fls,x s
+ fob@(b*s)B(s)u(s)ds— (4 )(x0 — g(x4))
—fO,‘(D(tl—s)B(s)u(s)ds—fth(s,xa(S))ds.

It follows that
[ x.(t2) —2Lt0) |

< 10— 0(t) 1 1l o )|
10 =9- 0= 91 1 B | ds
+ [0~ 9BOu9) | ds
[ 109 - 00t~ 9 1 1 Pl () ] ds
+ [ 10— 9 Pt x| ds

< 10— 0t I (L xod + L1 xo1)
RN 10— 9 004 -9 I ds
VMR |+ M1 (9 L ds
1 100 =9 0t =91 1591 ds.

Since @(# is uniformly continuous on [0,T],

” xa(tZ)_xa(tl) "_’0 as tz—"tl.

Hence x(f) is equicontinuous. Thus X° is relatively
compact. To prove X°® is also compact, it is suffice to
show that it is close. Let x,£X“ and for each x,, there

is u,e[ Ul® such that
*(D= O(D(xy—g(x)+ [ 01— 9B(s) uds
+ fot@(z‘~ F(s, x.(s8))ds .

It follows that
[ x:(D—x(D
< o)l 1 elxp)—galx) ]
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+ [ 10— 9B(3) (e (9 = () 1 ds
+ [0 00— (Fls, x9) = F(s, (9 | ds
< MLIxdD =5 | + ML [ 129 —x(9) | ds

+ 10— 9B (a9 = u(5) | ds.

Then for 1—ML>0,

L) -2 1 < M [ —x(9) 1 a5
+ 1—1ML fo[ I @(t—$)B(s) (s (s) — u(5)) I ds

From the Hahn Banach theorem, we know that
can find x;=Bj](dual unit ball) such that

we

[ 0= 9B(S) (29— u N s 5 |
= 1 f 0t~ 9B(s) (w9 — w5
Therefore
I [ (a9 = u() B(90" (1= 9)xids|
=1 [0t- 9B (ux(9 — uN |

Since for s, @'(t—s) and B*(s) are compact, then
by Alaoglu's theorem, Bj is weak compact. So by
passing to a subsequence, if necessary we may assume
that x} is weakly converges to x" in Bj.

Hence B*(s)®"(t—s)x; converges to some z'(#. We
deduce that

| [ 0tt= 9B (uals) — s ds | =0

as k—oo,
Setting
Tk(t)

— [0 9B (wal9) — ulo) s
1-ML " & k ’
2D — 2D |

< no+ M (Mo - x9) 1 as

By Gronwall’'s inequality, we have

I xe()—2(D) |
M MIT
< t)ef” T—ML dsSrk( He 1My

as koo,
Hence x{()—x(f as k—oo. Thus X? is compact.
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Next we will show that X® is convex. if x,x€X”,
then there are u,(D, u,(f) =L U(H]*such that
%, (0 =ADx (D + B(Hu, (D + F(t, x1),
x5 () = A(Dx (D) + B(Huy (D + F(1, x2)

and let x=Ax;+(1—Ax,, 0<AL].

x (D= Ax, (D+(1—2) x, (B

il

= A(D{x(H+(1—ADxaAD}
+ B(®) {u, () + (1 — Dus(D) }
+ AF(t,x) + (1= ADE(t, x0)

Since [U(D1%is convex, Auw(H+{1—Du() e[ UHI".
Also since AF(t, x,) + (1 — AF(t, x5) = F(t, Ax; + (1 — Axs),
there exists w(He[(H]* and x=X such that

x () =A(x () + B(Hu(h) + F(t,x)
Also, since x,(0) + g(x;) = xg, x2(0) + g(x2) = xp,
2(0) = Ax,(0) + (1 — A)xx(0)
= Axg— Ag(x) + (1 — g — (1 = Dalx)
= xg— g(Ax, + (1— Dxy)
= xo— &(x)

So x=X° Thus X° is convex. Therefore we have
[X(H]°=P(R") for every t=[0, T]. Hence we proved
the condition (1) of Theorem 2.1.

Now, in order to prove conditions (2), let 0<a;<ay<I.

Since [U()]1 “C[(H] ™, we have S'y-CS\ypy- and

x4 (D €AWx (D +BOLUMD] “+ F(t,x,)

CAWDx (D + BOLUD] “ + F(t,x,,).

Thus
% 4(D
t
e O(Bxy+ [ A= 9B Sy (s
t
+ fo O(t—$)F(s, x ,)ds
! 1
C Oxy+ [ O(t=9B(S)S' ()
t
+ [0t (s, x . )ds.
So X®cXx®,

Finally we prove the condition (3) of theorem 2.1. Let
(@) be a nondecreasing sequence converging to a>0.

We need first show that X“= 4»; X, then if this true
we get XD = 11X “(9. Since [U(H]1*= N ju[ U(D] o
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1 — ¢l
we have STypr=Sn, - Thus

% 4 (D)

m

A(Dx D+ BHI UH]*+ F(¢, x,)

AWDx D+ BON [ D]+ Ft,x )
C AWWx (D +BOLUD] "+ F(t,x ), k=1,2,.

So we have X°cX™, k=1,2,- which yields XC

M 2 X “. Also, let x be the solution to the inclusions

x(De Altx,(O+BOLUD]™
+F(t,x,), k=1 ’

Then
x(De OBz, — &)+ [ O(t—F(s, s
+ [ 00= 9B (91
and thus
KD O(D(x— £+ [ O(t—9F(s, )ds
+ [ 00— 9BOISh, iy (s
= 0()(x,— N+ [ o= (s, s
+ [ 00t= 9B S| (s

This mean that xe=X° Therefore M X “CX".

Next we consider the controllability conditions of
fuzzy systems (1.1). The concept of controllability is
concerned with the following problem: given system

(1.1), for the initial state x,— g(x), the state at time T
is a fuzzy set x', find the input (2, t€[0, 7] that
x—g(x) (at 00 x' (at T). We need the

following definition.

transfers

Definition 3.1([6]) The state x,—g(x) of system (1.1)

is said to be controllable on the interval [0,T] where T
is a finite time if some control U over [0, T] exists which
transfers x,—a(x) to the fuzzy state at T. Otherwise

the state x,— g{x) is said to be uncontrollable on [0, T].

Lemma 3.1([5]) Let A#+0 be a continuous function
and U, V are two fuzzy sets. If

T T
NG vdt= [ A1 Vat
then U = V.
Theorem 3.2([5]) System (1.1) ( g{x)=0) is controllable

over the interval [0, T], if ®(7T—# B(® is nonsingular or
equivalently, if the matrix

MO D= [ (T~ BOB()0' (T dat
is nonsingular.

Furthermore, the control X# which transfer the state
of the system from x(0) = x, to a fuzzy state »(7) = x!
can be chosen as

U = —1TB*1(t)<z>*‘(T—t)x1
—B (o (T— )M N0, TYO(T) x

Theorem 3.3 System (1.1) is controllable over the
interval [0,T], if @(#) B(H is nonsingular. Furthermore,
the control U(#) which transfer the state of the system
from x(0)=x,—2(x) to a fuzzy state x(T)=x' can be

chosen as
U= B (Ho (T—1
(L ' = oD — g0
—O(T—1F(t,x)}
Proof.
Since @(T—HB(H is nonsingular, there exists

(O(T-dBH}Y '=B (o (T-9.
If (D exists such that UK#) ransfer x;—g(x) to x'
over [0, 71, then we get

AT =x'= O(Dx— g+ [ " O(T— F(s, 2)ds
T
+ fo O(T— $)B(s) U(s)ds.
Thus

i " O(T— ) B(s) U(s)ds

i

[ G 00D (= gt
— O(T—$)F(s, x)}ds

[T 9898 (90 (19

{5 (2= 0(T) (2o — ()
—O(T—s)F(s, x)}ds.
Hence from Lemma 3.1,

Up=B o (T-9

L (' - 0D (- )~ O(T— DF(L, ).

Example 3.1 Let us consider the system

Do+ Quo+| fZX)

(0
"(’)_( 01 i

1
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We assume that «-level sets of fuzzy sets % are

e { [-0.1{1—a),0.1(1—a)]
1<) ’( [—0.1(1—a),o.1(1—a).1>'
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