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1. Introduction

Knowledge space theory was initiated by Doignon and
Falmagne [2]. A knowledge domain is represented by a
finite set @ of problems and a knowledge state is the
set of problems a person is capable of solving. A family
3 of knowledge states is called a knowledge structure
if the empty set and @ are elements of 3. When 7 is
closed under union, the structure is called a knowledge
space (see [1,2,3,4,5]).

We consider two main applications of knowledge
space theory in M. Schrepp [4,5]. First, knowledge
spaces can be used for an efficient assessment of
knowledge. Second, knowledge spaces can be used to
test psychological models of problem solving processes.
Psychological models of problem solving processes
describe the basic cognitive abilities subjects must
possess in order to solve problems from the underlying
knowledge domain. Such a detailed analysis of the
cognitive processes allows one often not only to predict
whether or not a subject with specific abilities will solve
a problem, but also to predict how far the subject will
come in his/her effort to solve problem. Therefore, the
assumption that every problem is solved either correctly
or incorrectly by a subject is too restrictive. M. Schrepp
{4] obtained that the assumption were generalized to
problem domains in which solutions were evaluated on a
linear scale concerning their equality.

In references [7, 8 9], we have studied some new
concepts and their applications in fuzzy set theory. Fuzzy
set theory is very useful tool to the issue which
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Knowledge spaces, fuzzy knowledge spaces, fuzzy sets, fuzzy surmise relations, fuzzy surmise functions.

concerns the effects of vagueness. So, we will use fuzzy
set theory to generalize knowledge space theory. In
particular, we define new concepts of fuzzy knowledge
structures, fuzzy knowledge spaces, quasi-ordinal fuzzy
knowledge spaces, fuzzy surmise relations, fuzzy surmise
functions and investigate some properties of them.

2. New concepts and basic properties.

In this section, we introduce new concepts of fuzzy
knowledge space theory. Using this concept of a fuzzy
set in [10], we define a fuzzy knowledge structure and a
fuzzy knowledge space. Let ¥ (&) be the power set of a
finite set @ of problems. A fuzzy set ¥ of a set $(Q)
1s defined by

= {(A,mg(A)) | A= (Q)}

where my: $(Q) — [0,1] is a function and it is called

the membership function of a fuzzy set % (Q).

Definition 2.1 A fuzzy set of % (@) is called a fuzzy
knowledge structure ¥ on @ if wmi{©®)=1 and

m{ @) =1.

Definition 2.2
called a fuzzy knowledge space on @
F,F,es(Q\{2},

A fuzzy knowledge structure ¥ is
if for each

me{ F\UFy) = max {me{Fy), mg(F2)}.
Definition 2.3 A fuzzy knowledge space ¥ is called a

quasi-ordinal fuzzy knowledge space on @ if for each
F,F,es(Q\{2},
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mg{ FyNFy) = min {myu(F), mg(F3)}.
Let 0<ae<1. We note that
Ur={Fe8(Q) | my(F)za}

is called the a-level knowledge space of a fuzzy
knowledge space ¥. Clearly, we then have the following
theorem.

Theorem 2.4 (1) If ¥ is a fuzzy knowledge space on
@ and 0<e<l, then the ae-level knowledge space ¥ on
Q is a knowledge space.

(2) If ¥ is a quasi-ordinal fuzzy knowledge space on
@ and 0<e<l, then the «a-level quasi-ordinal
knowledge space ¥ on @ is a quasi-ordinal knowledge
" space.

Proof. (1) If F,,F,e¥®
mF|)=za and my(Fy)=a. Thus

then we have that

me( FiUF,) =max {mu(F)), m{ Fyy} 2.

That is, F\UF,s ¥,
(2) By (1), ¥°is a knowledge space. Let F), F,e ¥".
We then have that mg{(F))=a and myg(F;)=a. Thus

mel F1NFy) =min {mo(F}), my(Fy}2a.

That iS, FlmFZE e,

3. Fuzzy surmise relations and fuzzy
surmise functions.

Let (@, J) be a knowledge structure and £ a
surmise relation on @ defined by

p=g e p=NT,

where p,g=@Q and T ,={Fe7J | geF}. In this section,
we will define a fuzzy surmise relation and discuss some
their properties.

Definition 3.1 Let
structure and 0<e<1.
(1) A fuzzy surmise relation =, on @ is defined by

(Q,®) be a fuzzy knowledge

P=sqg = peENY,
¥,={Fe%(Q)lgesF and my(F)>0}.

(2) The a-level surmise relation &7 on Q of E; is
defined by

where

PEf g peNY; .

Since ¥ is a knowledge space, it is easily to show
that =% is a surmise relation on @ for each a=(0,1].
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Theorem 3.2 If ¥ is a fuzzy knowledge space on @
and ¢= @, then we have that

(1) @, is a finite set.

(2) inf{ma(F) | FE¥,}>0, and

(3) there exists ay=(0,1] such that &,= & .

Proof. (1) Since @ is a finite set, the power set % (Q)
of @ is finite.

(2) By (1), ¥, is a finite set and hence

{my(F)=(0,1]1 | Fe¥,}
is a finite set. That is, there exists Fye ¥, such that

inf{mp(F)=(0,1] | Fe¥,}=my(Fy)>0.

(3) Clearly, ¥;'C¥, Let F=¥, By (2), there exists

ap= inf{mo FF T,}>0

and hence m{F)=a;,. So Fe¥,. That is, ¥,C¥;.
We remark that since ¥, is a finite set, there exists a
set {a, @z, ,@,} such that 0<g;<@;<-*<a,<1 and

QF Y CY,CCUCY,

Theorem 3.3 If ¥ is a fuzzy knowledge space on @
and if any p,q=Q and p=;q and e is as in Theorem

32 (3), then there exists a;=[ag,1] such that =g
Proof. By Theorem 3.2 (3), there exists ay=(0,1]

such that ¥,= ¥;". We can choose a; with
a1 = inflaslag, 1] | p=NT}.
Since {es{ag 11| peNP;} is finite,
a s {a=(ag, 11 | peNT3}

We then have p=N ¥, and so p=;'q.

Now, we define a fuzzy relation S} by
=g e moi(p,0>0

where mc.: @xQ — [0,1] is a function.
Defined by

mci(p, @)= inf{m F)|peF for all Fe¥,}

for all (p,9=@*x Q. Then,
theorem.

we have the following

Theorem 34 (1) If ¥is a fuzzy knowledge space on
Q and if any p,¢q=Q and p=} g , then there exists

a,€[ap, 1] such that mc.(p,¢)=a; and peNF,’.
(2) If ¥is a fuzzy knowledge space on @ and if any
$,qeQ with pS} g and m.(p, @) =a,, thenp=7 ¢ .



Proof. (1) By the definition of p=;} g, we can choose

a;€lap, 1] such that a;=p=}q. Since @, is finite,
my(F)=a, for all FE¥, and peF.

We then have peN ¥
(2) If p=7 g, then by(l) we can take e, with
peN®; . We then have p= ¢ g

Using Theorem 3.3(3) and Theorem 3. 4 (2), we note
that if p,¢ge@ and a=a,=a, then o-level surmise

relations of these two fuzzy surmise relations are equal,
that is, =, = =7 . We also wil
properties of fuzzy surmise relation.

have more

Theorem 35 If ¥ is a fuzzy knowledge space on
and any pe@, then p=; p and p=7; .

Proof. Let p=Q. We clearly have p=M¥, and so
p=; p. By Theorem 3.2 (3), there exists a,=(0,1] such

that ¥,= ¥, . We note that for all Fe¥, , we have
my(F)Zay. Since
mc(p, @)= inf{my(F)p=F for all FE ¥},
me(p, @) 2a>0 and so p=; p.
From Theorem 3.5, we have the following corollary.
Corollary 36 If ¥is a fuzzy knowledge space on @

and fuzzy surmise relations =, and &; on @x@Q are
reflexive.

Theorem 3.7 If ¥ is a quasi-ordinal fuzzy
knowledge space on @ and if p=} ¢ and ¢=; » for all
b, q, 7€ Q, then we have p=; r.

Proof. Let p=; g and ¢=7 r for all p,q,7€Q. We
then have that

m (b, q)

= inf{mu(F)IpeF for all FEe ¥,}>0
and

mc(q, 7

= inf{m{F)igeF for all Fe¥,}>0)

Since ¥, and ¥, are finite, there exist F;=¥, and
F,e¥, such that peF,, g F, and

mep, @=ml(F1)>0, m (g, 7)=me(F3)>0.
Since ¥ is a quasi-ordinal fuzzy knowledge space,
pEFlmFQE wqm W,C qrr

and
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m{ FyNF3) = min{mo{(F}), me( F5)}>0.

We note that since F), and F, are two elements

which have smallest degrees mqg{F,) and m{F;) of

my(F) = inf{m(F)|pe F for all Fe ¥,}
and
my(Fp) = inf{my(F)lgeF for all FE ¥},

respectively. So, we can clearly know that FyNF, is the
element which is

m(FINFy) = inf{m{ F)lpeF for all Fe¥,}
We then have mc.(p,N=mdFNF)Y>0 and so

PEG 7

Finally, we will define a fuzzy surmise function and
discuss some properties of them.

Definition 38 Let F(%(Q)) be the family of all
fuzzy sets of 5 (Q. A fuzzy  mapping
8 Q@ — F(%(Q)) is called a fuzzy surmise function if
it has the following properties ;

(1) m s (E)<xp(a),

(i) for each Ee%(Q), IE % () with ECE and
min {#m 3., (E), xe(9) }<m 50(E'),

(iii) for each E,E =% (Q) with ECE’,

1—min {m gxq)(E), m Ma)(E’)}zXEﬁE’

where p,ge@ and xji is the characteristic function of E

on Q.

We note that a mapping 6: @ — ¥ (% () is called
a surmise function if it has the following properties ;

(i) wedlq) — q=W,

(i) Wes(g)N\pe W—I W 's&(p) (W' CW),

(i) WwWedg \WCW —W=W",

Let @=(0,1] and we consider the a-level surmise

function &7 of a fuzzy surmise function ¢, defined by

85() = (Ec 6 (Q) | m s4(E)=a}.

We then easily know that Then we will prove that &7

is a function from @ to % (% (g)), and will prove that
these a-level surmise functions are surmise functions.

Theorem 39 Ifé;: Q- F(s(Q) is
surmise function and 0<e<1, then the a-level surmise
function 8% : @ — % (5 (Q))

Proof. We will prove the conditions of the definition
of surmise functions.

(1) If Fe6i(qg), then we have

a fuzzy

is a surmise function.

2@ 2m o (F) 2a>0.
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Since xr is the characteristic function of F, xr(g)=1
and hence ¢ge=F. Thus, the condition (i) of the definition
of surmise functions is proved.

(ii) Let Fed9(q) and pF. By the condition (ii) of a
fuzzy surmise function, there exists F ‘€% (Q)(F 'CF)
and

min{ma,(q)(F),ZF(P)}SB,‘(D)(F ).
Since m 5p{F)=a and x(p)=1, we have
a<min{m 5,(F), xr(p) }<SLP) (F )

and so F 'e6j(p). Thus, the condition (ii) of the
definition of surmise functions is proved.
(i) Let FCF' and F,F '8{(qg). We then have

m s p(F)2a and m ;,(F )=ea and so
asmin{m s3(F), m s»(F )}.
Thus, we have
trar <l—min{m 5 (F), m 55(F )}
=1—-a{l,

where F° is the complement of a set F. This means
that ¥y ~~=0 and hence F 'NF‘=®. Since FCF’,

F=F’', Thus, the condition (iii) of the definition of
surmise functions is proved.

4. Remarks

Using new concepts of fuzzy knowledge space theory,
we can apply to the connection of quasi-order fuzzy
knowledge spaces with fuzzy surmise relations and to a
similar connection between fuzzy knowledge spaces and
fuzzy surmise functions. In future, we will study some
properties of fuzzy knowledge spaces which are
well-graded, compatability, the maximal mesh and
entailment, etc.
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