DOI QR코드

DOI QR Code

복합구조물에 대한 비선형 직접스펙트럼법의 신뢰성

Reliability of Nonlinear Direct Spectrum Method with Mixed Building Structures

  • 발행 : 2003.04.01

초록

대부분의 구조물들은 강한 지진을 받을 경우, 비선형 거동의 변형이 예상된다. 구조물의 내진평가는 구조물에 가해진 지진력에 대한 변위요구와 같은 구조물의 성능평가를 필요로 한다. 여러 가지 비선형해석법 가운데 구조물의 내진역량을 계산하기 위한 가장 정확한 방법은 비선형 시각이력해석(NRHA)이긴 하나 많은 시간과 노력이 요구되고 있다. 따라서 구조물의 비선형 거동을 보다 간편하게 예측하기 위한 정확하고 실용적인 비선형 약산해석법에 관한 연구들이 활발히 진행되고 있다. 일부 약산적 방법 중 능력스펙트럼법(CSM)은 개념적으로는 간단하나 반복적인 계산과정과 함께 때로는 해가 없거나 중복적인 해를 갖는 약점을 갖고 있다. 본 연구에서는 강성골격곡선으로부터 산정한 구조물의 초기 탄성진동주기 T와 응답스펙트럼으로부터 산정한 비선형 유사가속도 h$_{y}$ /g 및 연성비 $\mu$를 사용하여, 반복적인 계산과정 없이 복합구조물의 내진성능을 평가하는 비선형 직접스펙트럼법(NDSM)을 고려한다. 다양한 지진과 복합구조물에 대한 NDSM의 신뢰성과 실용성을 비선형 시각이력해석(NRHA) 결과와 비교함으로써 검토하였다.

Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. Among them, the capacity spectrum method(CSM) is conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper considers a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of mixed building structures without iterative computations, given dynamic property T from stiffness skeleton curve and nonlinear pseudo acceleration $A_{y}$/g and/or ductility ratio $\mu$ from response spectrum. The nonlinear response history analysis has been performed and analyzed with various earthquakes for estimation of reliability and practicality of NDSM with mixed building structures.

키워드

참고문헌

  1. Chopra, A. K. and Goel, R. K., “Capacity-demanddiagram methods for estimating seismic deformation of inelastic structures : SDF systems,” Report No. PEER- 1999/02, Pacific Earthquake Engineering Research Center, University of Berkeley, Berkeley, 1999, p. 67.
  2. Freeman, S. A., “Development and use of capacity spectrum method,” Proceedings of 6th U.S. National Conference on Earthquake Engineering, Seattle, CD-ROM, Oakland, Calif, EERI, 1998.
  3. Paret, T. F., Sasaki, K. K., Eilbekc, D. H., and Freeman, S. A., “Approximate inelastic procedures to identify failure mechanisms from higher mode effects,” 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 1996, Paper No. 966.
  4. Bommer, J. J. and Elnashai, A. S., “Displacement spectra for seismic design,” J. Earthquake Engng, Vol. 3, 1999, pp. 1-32. https://doi.org/10.1142/S1363246999000028
  5. Applied Technology Council, “Seismic evaluation andretrofit of concrete buildings,” Report ATC-40, 1996.11, p. 319.
  6. FEMA, “NEHRP guidelines for the seismic rehabilitation of buildings,” Report No. FEMA-273, Federal Emergency Management Agency, Washington D.C., May 1997, p. 439.
  7. Fajfar, P., “Capacity spectrum method based on inelasticdemand spectra,” Earthquake Engineering and StructuralDynamics, Vol. 28, 1999, pp. 979-993. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
  8. Reinhorn, A. M., “Inelastic analysis techniques in seismic evaluations,” Seismic design methodologies for the next generation of codes, eds. P. Fajfar and H. Krawinkler, Rotterdam, Balkema, 1997, pp. 277-287.
  9. Vidic, T., Fajfar, P., and Fischinger, M., “Consistent inelastic design spectra : strength and displacement,” Earthquake Engineering and Structural Dynamics, Vol. 23, 1994, pp. 502-521. https://doi.org/10.1002/eqe.4290230504
  10. Mehmet Inel, Bretz, E. M., Black, E. F., Aschheim, M. A., and Abrams, D. P., “USEE 2001: Utility software for earthquake engineering report and user's manual,” Civil and Environmental Engineering, University of Illinois at Urbana-Campaign, Urbana, Illinois, 2001. 10, p. 88.
  11. Li, K. N., CANNY 99, 3-dimensional nonlinear static/dynamic structural analysis computer program-users manual, CANNY Structural Analysis, CANADA, program- users 2000, p. 215.
  12. FEMA, “Evaluation of earthquake damaged concrete and masonry wall buildings- Technical resources,” Report No. FEMA-307, Federal Emergency Management Agency, Washington D.C., 1998, p. 254.
  13. Chopra, A. K. and Goel, R. K., “A model pushover analysis procedure to estimate seismic demands for buildings: Theory and preliminary evaluation,” Report No. PEER-2001/03, Pacific Earthquake Engineering Research Center, University of Berkeley, Berkeley, 2001, p. 87.
  14. Otani, S. and Matsumori, T., “Correlation of damage and analysis: Experience from the 1995 Kobe Earthquake,” Proceedings of 7th International Conference on Computing in Civil and Building Engineering, Seoul, Korea, 1997. 8, pp. 841-856.
  15. 강병두, 전대한, 김재웅, “입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성”, 한국지진공학회 논문집, 제6권, 제1호, 2002. 2, pp. 55-62. https://doi.org/10.5000/EESK.2002.6.1.055
  16. 대한건축학회, 건축물 하중기준 및 해설, 태림문화사, 2000, p. 345.
  17. 강병두, 김재웅, “내진성능평가를 위한 비선형 직접스펙트럼법의 특성”, 한국지진공학회 논문집, 제6권, 제4호, 2002. 8, pp. 65-73. https://doi.org/10.5000/EESK.2002.6.4.065
  18. 강병두, 박진화, 전대한, 김재웅, “복합구조물에 대한 비선형 직접스펙트럼법의 적용”, 한국지진공학회발표 논문집, 제6권, 제2호, 2002. 9, pp. 258-265.