DOI QR코드

DOI QR Code

Energy Demand in Steel Structures with Buckling Restrained Braces

좌굴이 방지된 가새가 설치된 철골조 건물의 에너지 요구량

  • 최현훈 (성균관대학교 건축공학과) ;
  • 김진구 (성균관대학교 건축공학과)
  • Published : 2003.04.01

Abstract

In this study, a story-wise distribution of hysteretic energy in steel moment resisting framse(MRF), buckling restrained braced frames(BRBF), and hinge-connected framed structures with buckling restrained braces(HBRBF) subjected to various earthquake ground excitations was investigated. Sixty earthquake ground motions recorded in different soil conditions were used to compute the energy demand in model structure. According to analysis results, the hysteretic energy in MRF and BRBF turned out to be the maximum at the base and monotonically diminishes with increasing height. However the story-wise distribution of hysteretic energy in HBRBF was relatively uniform over the height of the structure. In this case damage is not concentrated in a single story, and therefore it is considered to be more desirable than other systems. The story-wise energy distribution pattern under three different soil types turned out to be approximately the same.

본 연구에서는 지진하중에 의하여 철골 모멘트저항골조(MRF)와 좌굴이 방지된 가새골조(BRBF) 그리고 힌지로 접합된 좌굴이 방지된 가새골조(HBRBF)에서 발생하는 층별 이력에너지의 분포에 대하여 고찰하였다. 예제 구조물의 에너지 요구량을 산정하기 위하여 다른 지반조건에서 계측된 60개의 지진기록을 사용하였다. 해석결과에 따르면 MRF와 BRBF에서의 이력에너지는 밑면에서 최대가 되고 상부층으로 갈수록 점진적으로 감소하여, 상부층에서는 부재의 이력거동이 거의 발생하지 않았다. 그러나 HBRBF에서의 층별 이력에너지는 구조물의 높이에 따라 상대적으로 균등하게 분포하였으며, 이러한 경우 손상이 한 층에 집중적으로 발생하지 않아 다른 시스템에 비하여 보다 바람직하다고 할 수 있다. 연암 지반, 연약한 토사, 단층 근처의 지반 조건에 따른 에너지의 분포형태는 거의 동일하게 나타났다.

Keywords

References

  1. Housner and George, “Limit design of structures toresist earthquakes,” Proceedings of the First World Conferenceon Earthquake Engineering, Berkeley, California, 1956.
  2. Zahrah, T. and Hall, J., “Earthquake energy absorptionin SDOF structures,” Journal of Structural Engineering,Vol. 110, No. 8, 1984, pp. 1757-1772. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1757)
  3. Uang, C. M. and Bertero, V. V., “Use of energy as a design criterion in earthquake resistant design,” Report No. UCB/EERC 88/18, Earthquake Engineering Research Center, University of California at Berkeley, 1988
  4. Chou, C. C. and Uang, C. M., “Evaluation of site specific energy demand for building structures,” Seventh U.S. National Conference on Earthquake Engineering, Boston, Massachusetts, 2002.
  5. Akbas, B., Shen, J., and Hao, H., “Energy approach in performance based seismic design of steel moment resisting frames for basic safety objective,” The Structural Design of Tall Buildings, Vol. 10, 2001, pp. 193-217. https://doi.org/10.1002/tal.172
  6. Estes, K. R. and Anderson, J. C., “Hysteretic energy demands in multistory buildings,” Seventh U.S. National Conference on Earthquake Engineering, Boston, Massachusetts, 2002.
  7. Clark, P. W., Aiken, I. D., Tajirian, F. F., Kasai, K., Ko, E., and Kimura, I., “Design procedures for buildings incorporating hysteretic damping devices,” Int. Post SmiRT Conf. Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures, Cheju, South Korea, 1999.
  8. Huang, Y. H., Wada, A., Sugihara, H., Narikawa, M., Takeuchi, T., and Iwata, M., “Seismic performance of moment resistant steel frame with hysteretic damper,” Proceedings of the Third International Conference STESSA, Montreal, Canada, 2000.
  9. Yamaguchi, M., Yamada, S., Wada, A., Ogihara, M., Narikawa, M., Takeuchi, T., and Maeda, Y., “Earthquake resistant performance of moment resistant steel frames with damper,” Proceedings of the Third International Conference STESSA, Montreal, Canada, 2000.
  10. Chopra, A. K., Dynamics of Structures, Prentice Hall, 1995.
  11. Tsai, K. C. and Li, J. W., “DRAIN2D+, A general purpose computer program for static and dynamic analyses of inelastic 2D structures supplemented with a graphic processor,” Report No. CEER/R8607, National Taiwan University, Taipei, Taiwan, 1997.
  12. Somerville, P., Smith, H., Puriyamurthala, S., and Sun, J., “Development of ground motion time histories for phase 2 of the FEMA/SAC steel project,” SAC Joint Venture, SAC/BD 97/04, 1997.