DOI QR코드

DOI QR Code

동적결합둥지형 모형에 의한 동해안 쓰나미 시뮬레이션

Simulation of Tsunamis in the East Sea Using Dynamically-Interfaced Multi-Grid Model

  • 발행 : 2003.02.01

초록

상세한 지진해일 범람 현상을 규명하기 위하여 수립된 전회의 동적결합 차분 모형(Choi et al.)이 1983년 동해중부지진에 의한 지진해일 연구를 위해 우리나라 동해안 전역에 적용되었다. 계산영역은 격자의 크기가 다른 몇 개의 둥지영역이 평행하거나 경사가 진 방향으로 연결되어 구성되어 있다. 제일 안쪽의 둥지 영역은 해안을 따라 순차적으로 16영역으로 구성되었으며, 격자간격은 약 30m이다. 천수방정식(선형과 비선형)이 적용된 수치 시뮬레이션은 둥지영역의 격자크기에 따라 직각 또는 구면좌표계가 채택되었으며, 평행 및 경사 접합이 제일 안쪽의 둥지형 모형에 적용되었다. 시뮬레이션에 의한 결과는 지진해일 사상에 대한 처오름 높이의 관측치와 잘 일치하였다. 지진해일고 분포곡선의 개선이 수치적으로 연구되었으며, 지진원으로부터 거리가 먼 경우에는 대수정규분포를 따르는 경향을 보인다.

A dynamically-interfaced multi-grid finite difference model for simulation of tsunamis in the East Sea(Choi et al.) was established and further applied to produce detailed feature of coastal inundations along the whole eastern coast of Korea. The computational domain is composed of several sub-regions with different grid sizes connected in parallel of inclined directions with 16 innermost nested models. The innermost sub-region represents the coastal alignment reasonably well and has a grid size of about 30 meters. Numerical simulations have been performed in the framework of shallow-water equations(linear, as well as nonlinear) over the plane or spherical coordinate system, depending on the dimensions of the sub-region. Results of simulations show the general agreements with the observed data of run-up height for both tsunamis. The evolution of the distribution function of tsunami heights is studied numerically and it is shown that it tends to the log-normal curve for long distance from the source.

키워드

참고문헌

  1. Choi, B. H., Pelinovsky, E., Hong, S. J., and Woo, S. B., “Computation of tsunami in the East (Japan) Sea using dynamically interfaced nested model,” Pure and Applied Physics, 2002, Accepted.
  2. Murty, T., “Seismic sea waves-tsunamis,” Bull., No. 198, Dep. Fisheries, Canada, 1977, pp. 337.
  3. Pelinovsky, E., “Nonlinear dynamics of tsunami,” Inst. Appl. Phys., 1982, pp. 226.
  4. Abbott, M. B., McCowan, A. D., and Warren, I. R., “Numerical modeling of free-surface flows that are two-dimensional in plan,” In: Transport Models for Inland and Coastal Waters, Ed. H. B. Fisher, Academic Press, 1981, pp. 222-283.
  5. Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., and Synolakis, C. E., “Runup of solitary waves on a circular island,” J. Fluid Mech., Vol. 302, 1995, pp. 259-285. https://doi.org/10.1017/S0022112095004095
  6. Cho, Y. S. and Yoon, S. B., “A modified leap-frog scheme for linear shallow-water equations,” Coastal Engineering Journal, Vol. 40, No. 2, pp. 191-205. https://doi.org/10.1142/S0578563498000121
  7. Aida, I., “A source models of the 1983 Nihonkaiearthquake tsunami,” Proceeding of 3rd United States-Japan Cooperative Program in Natural Resources Tsunami Workshop, 1984, pp. 57-76.
  8. Manshinha, L. and Smylie, D. E., “The displacement fields of inclined faults,” Bull. Amer. Seism. Soc., Vol. 61, No. 5, 1971, pp. 1433-1440.
  9. Tsuji, Y. et al., “Report of the 1983 Nihonkai Chubu earthquake tsunami along the east coast of the Republic of Korea,” National Research Center for Disaster Prevention, Japan, 1985, pp. 49-86.
  10. NIDP, “Study on tsunami hazards mitigations along the Korean eastern coast(I),” Report of NIDP(National Institute for Disaster Prevention), 1999, pp. 192.
  11. Van Dorn, W. G., Tsunamis, In Advances in Hydroscience, Ed. V. T. Chow, Academic Press, London, Vol. 2, 1965, pp. 1-48.
  12. Kajiura, K., “Some statistics related to observed tsunami heights along the coast of Japan,” In: Tsunamis - Their Science and Engineering, Terra Pub., Tokyo, 1999, pp. 131-145.
  13. Choi, B. H., Pelinovsky, E., Ryabov, I., and Hong, S. J., “Distribution function of tsunami wave heights,” Natural Hazards, Vol. 25, No. 1, 2002, pp. 1-21. https://doi.org/10.1023/A:1013379705323

피인용 문헌

  1. Estimation of Wave Parameters for Probabilistic Tsunami Hazard Analysis Considering the Fault Sources in the Western Part of Japan vol.18, pp.3, 2014, https://doi.org/10.5000/EESK.2014.18.3.151
  2. Application of Probabilistic Tsunami Hazard Analysis for the Nuclear Power Plant Site vol.19, pp.6, 2015, https://doi.org/10.5000/EESK.2015.19.6.265