DOI QR코드

DOI QR Code

Serratia plymuthica AL-1이 생산하는 chitinase에 의한 대파 흑색썩음균핵병균의 생육억제

Growth Inhibition of Sclerotium Cepivorum Causing Allium White Rot by Serratia plymuthica Producing Chitinase

  • 김진호 (상주대학교 식물자원학과) ;
  • 최용화 (상주대학교 식물자원학과) ;
  • 강상재 (상주대학교 원예학과) ;
  • 김영훈 (상주대학교 식물자원학과) ;
  • 주길재 (경북대학교 농화학과)
  • 발행 : 2003.02.01

초록

대파 흑색썩음균핵병균 (Sclerotium cepivorum)에 길항력을 가진 Serratia plymuthica L-1의 길항 메카니즘을 조사한기 위해 S. plymuthica L-1이 생산하는 세포외 chitinase를 정제하여 그 특성을 조사하였다. Colloidal chitin이 함유된 배지에서 생산된 S. plymuthica L-1 chitinase는 $(NH_4)_2$$_2$$SO_2$ 40~70% precipitation, affinity adsorption, DEAE-sephadex A-50 column chromatography 및 sephadex G-200 column filtration 과정을 통하여 정제하였다. 정제된 chitinase는 7.3% 회수율과 19.8의 정제도를 나타내었으며, 전기영동시 단일밴드를 얻었으며, 분자량은 55kDa로 나타났다. 정제된 chitinase의 최적 pH 및 온도는 5.5, $55^{\circ}C$이었고, 온도안정성 조사에서 정제효소는 $50^{\circ}C$까지 90%의 잔존활성을 유지하였으나 $60^{\circ}C$이상에서는 급격하게 효소활성이 실활되었다. $Ca^{2+}$, $Mn^{2+}$, $Mg^{2+}$ 등의 이온은 대략 20군 이상의 효소를 활성화시켰으나 $Cu^{2+}$이온은 약 80%의 효소활성을 억제시켰고, SDS, p-CMB, MIA 등도 효소활성을 저해하는 작용을 하였으며, colloidal chitin에 대한 Km값은 3.26 mg/$m\ell$로 나타났다. 정제효소에 의한 각종 병원균에 대한 생육 억제정도는 흑색썩음균핵병균, 고추 검은무의병균, 고추 탄저병균, 도라지 줄기마름병균, 고추 흰별무늬병균, 오이 균핵병균, 수박 덩굴쪼김병균 등에는 길항력을 나타내었으나 고추 역병균과 무 모잘록병균에서는 길항력이 아주 낮게 나타났다. 정제 chitinase에 의해 대파 흑색썩음균핵병 S.. cepivorum의 균사는 팽창과 균사 끝의 용균, 분해 및 변색현상을 관찰할 수 있었고 chitinase 기능과 Iysozyme 기능을 모두 가지고 있을 것으로 추정된다.

An allium rhizobacterium Serratia plymuthica AL-1 was previously selected as a biocontrol agent of allium white rot. The chitinase from S. plymuthica AL-1 produced in medium containing colloidal chitin was purified by ammonium sulfate precipitation (40~70%), affinity adsorption, column chromatography on DEAE-sephadex A-50 and sephadex C-200 gel filtration. The enzyme was purified 10.8-fold with a yield of 7.3% from the starting culture broth. The purified chtinase gave a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it's molecular weight was estimated to be 55 kDa. The optimum pH and temperature of the purified enzyme were pH 5.5 and $55^{\circ}C$, respectively and it is stable up to $50^{\circ}C$ and maintains around 90% of its activity for 60min. The enzyme were activated by $Ca^{2+}$, $Mn^{2+}$ and $Mg^{2+}$ and inhibited by $Cu^{2+}$, SDS, $\rho$-CMB, MIA, respectively. The purified chitinase showed broad spectrum of antifungal activities against plant pathogenic fungi Sclerotium cepivoruin, Alternana alternnta, Colletotrichum glceosporioidrs, Phoma sp., Sclerotinia sclerotiorum, Stemphylium solani, Fusarium oxysporium f. sp. niveum but rarely inhibited Phytophthora capsici and Pythium ultimum.. The purified chitinase from S. plymuthica AL-1 caused swelling, lysis, deceleration and degradation of the hyphal tips of S. sczerotiorum causing allium white rot. It suggest that S. prymuthica AL-1 chitinase play an important part in the bifunctional chitinase / lysozyme activity.

키워드

참고문헌

  1. J. Ferm. Bioeng. v.75 Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solid state fermentation Akihiro, O.;A. Takashi;S. Makoto https://doi.org/10.1016/0922-338X(93)90172-5
  2. chitin, chitosan and related enzymes Biomedical applications af chitin and chitosan Allan, G. G.;L. C. Altman;R. E. Bensinger;D. K. Ghosh;S. Hirabayashi;S. Neogi;Zikakis J. P.(ed.)
  3. Plant and Soil v.109 Differential reactions of wheat and pea genotypes to root inoculation with growth affecting rhizobacteria Alstrom, B.;B. Gerhardson https://doi.org/10.1007/BF02202093
  4. J. of Plant Disease and Protection v.103 Rhizobacteria of oilseed rape antagonistic to Verticillium dahliae Berg, G.
  5. Can. J. Microbiol. v.28 Degradation of plant pathogenic fungi by Trichoderma harzianum Elad, Y.;I. Chet;Y. Henis https://doi.org/10.1139/m82-110
  6. FEMS (Federation of European Microbiological Societies) Microbiol. Lett. v.160 Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and its proteolytic cleavage into an active 35-kDa enzyme Gal, S. W.;J. Y. Choi;C. Y. Kim;Y. H. Cheong;Y. J. Choi;S. Y. Lee;J. D. Bahk;M. J. Cho https://doi.org/10.1111/j.1574-6968.1998.tb12905.x
  7. J. of General Microbiol. v.98 Taxonomy of the genus Serratia Grimmont, P. A. D.;F. Grimmount;H. L. C. Dulong De Ronay;P. H. A. Sneath https://doi.org/10.1099/00221287-98-1-39
  8. The distribution and quantitative importance of chitin in animals, proceedings of fisrt international conferance on chitin/chitosan Jenuiaux, C.;Muzzarelli, R. A. A.(ed.)
  9. Kor. J. Appl. Microbil. Biotech. v.23 Isolation of microorganism producing chitinase for chitooligosac-charides production, purification of chitinase, and its enzymatic characteristics Jeong, E. J.;Y. H. Lee
  10. Kor. J. Microbiol. Biotechnol. v.30 Chitinase production and isolation of Serratia plymuthica AL-1 antagonistic to white rot fungi from Allium fistulosum roots Joo, G. J.;I. H. Lee;J. H. Kim
  11. Biological Control of Plant Diseases Progress and Challenges for the Future Nato ASI Series a v.230 Rhizosphere populations dynamics and internal colonization of cucumber by plant growth promoting rhizobacteria which induce systemic resistance to Collectotrichum orbiculare Kloepper, J. W.;G. Wie;S. Tzun;Tjamos, E. C.(ed.);G. C. Papavizas(ed.);J. Cook(ed.)
  12. Nature v.227 Cleavages of structural proteins during the assembly of the had of bacteriophage T4 Laemmi, U. K. https://doi.org/10.1038/227680a0
  13. Kor. J. Appl. Microbil. Biotech. v.18 The production and purification of chitnase from Aeromonas salmonica YA7-625 Lee, K. P;C. N. Kim;J. H. Yu;D. H. Oh
  14. sp. dianthi. Appl. Environ. Microbiol. v.59 Antagonistics effect of nonpathogenic Fusarium oxysporium F047 and Pseudobacterium 358 upon pathogenic Fusarium oxysporium f. Lemanceau, P.;P. A. H. M. Bakker;;W. J. De Kogel;C. Alabouvette;B. Schippers
  15. Appl. Environ. Microbiol. v.57 Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent to plant root rot Lim, S. H.;K. S. Kim;S. D. Kim
  16. International J. of Food Microbiol. v.28 Incidence of histamine-forming bacteria and histamine content in scombroid fish species from retail markets in the barcelone area Lopez-Sabater, E. I.;J. J. Rodriguez-Jerez;M. Hernandez-Herrero;M. T. Moria-Ventura https://doi.org/10.1016/0168-1605(94)00007-7
  17. Mol. Plant Pathol. v.83 Antifungal synergistic interaction between chitinlytic enzymes from Trichoderma harzanum and Enterobacter cloacae Lorito, M.;A. Di Pietro;C. K. Hayes;S. L. Woo;G. E. Harman
  18. European J. of Plant Pathol. v.102 Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root of cucumbers grown in rockwool and effects on yield McCullagh, M.;R. Utkehde;J. G. Menzies;Z. K. Punja;T. C. Paulitz https://doi.org/10.1007/BF01877149
  19. Plant and Soil v.173 Survey of indigenous bacterial endophytes from cotton and sweet corn McInroy, J. A.;J. W. Kloepper https://doi.org/10.1007/BF00011472
  20. CLAO Journal v.22 Microbial contamination of contact lens among medical students Midelfart, J.;A. Midelfart;L. Bevanger
  21. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  22. Can. J. Microbiol. v.9 Lysis of soil fungi by bacteria Michell, R.;M. Alexander https://doi.org/10.1139/m63-023
  23. Can. J. Microbiol. v.15 The chitinase of Serratia maecescens Moneal, J.;E. T. Reese https://doi.org/10.1139/m69-122
  24. FEMS Microbiol. Lett. v.157 Production and purification of a chitinase from Ewingella americana, a recently described pathogen of the mushroom, Agaricus bisporus. Peter, W. I.;J. F. Peberdy https://doi.org/10.1111/j.1574-6968.1997.tb12772.x
  25. J. Gen. Microbiol. v.134 Plant and bacterial chtinase fidder in antifungal activity Robert, W. K.;C. P. Seliternnikoff
  26. Lett. Appl. Microbiol. v.20 Purification and properties of a chtiniase from Penicillum oxalicum autolysates Rodriuez, J.;J. L. Copa-patino;M. I. Perez-Leblic https://doi.org/10.1111/j.1472-765X.1995.tb00404.x
  27. Plant Pathol. v.43 Biocontrol of post-harvest fungal dieseases on Dutch white cabbage by Pseudomonas and Serratia antagonists in storage trials Stanley, R.;M. Brown;N. Pool;D. Rodgerson;C. Sigee;C. Knight;H. Ivin;A. S. Epton;C. Leifert https://doi.org/10.1111/j.1365-3059.1994.tb01597.x
  28. Soil Biol. & Biochem. v.33 Suppression of Sclerotinia sclerotiorum apothecial formation by the siol bacterium Serratia plymuthica:identification of a chlorinated macrolide as one of the causal agents Thaning, C. ;C. J. Welch;J. J. Borowicz;R. Hedman;B. Gerhardson https://doi.org/10.1016/S0038-0717(01)00109-2
  29. FEBS (Federation of European Biochemical Societies) Letters v.441 Proposition for the biochemical mechanism occurring in the sucrose isomerase active site Veronese, T.;P. Perlot https://doi.org/10.1016/S0014-5793(98)01582-8
  30. Enzyme and Microbial Technol. v.24 Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthica ATCC15928 Veronese, T.;P. Perlot https://doi.org/10.1016/S0141-0229(98)00115-X
  31. Appl. Environ. Microbiol. v.63 Purification and characterization of two bifunctional chitinase/lysozyme extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium Wang, S. L.;W. T. Chang
  32. Agronomy J. v.88 Utilization of allelopathy for weed management in agroecosystems Weston L. A. https://doi.org/10.2134/agronj1996.00021962003600060004x