DOI QR코드

DOI QR Code

벼 엽록체 small HSP의 과발현에 의한 형질전환 식물체의 내열성 증가

Overexpression of Rice Chloroplast Small Heat Shock Protein Increases Thermotolerance in Transgenic Plants

  • 원성혜 (경북대학교 농업생명과학대학 동물공학과, 농업과학기술연구소) ;
  • 조진기 (경북대학교 농업생명과학대학 동물공학과, 농업과학기술연구소) ;
  • 이병헌 (경상대학교 응용생명과학부(BK21) 축산과학부, 식물분자생물학 및 유전자조작연구소)
  • 발행 : 2003.02.01

초록

엽록체 small HSP의 기능을 조사하기 위하여 벼로부터 분리한 엽록체 small HSP를 구성적으로 발현하는 형질전환 식물체를 제작하였다. 먼저 고온 스트레스 조건하에서의 형질전환 식물체의 내열성을 chlorophyll 형광으로 측정하여 분석하였다. Leaf disc를 고온 스트레스 조건에서 5분간 처리한 후, 광화학계 II의 불활성화를 나타내는 Fo 값과 증가치를 조사하였다. 형질전환 식물체는 고온 스트레스 하에서의 Fo 값의 증가가 현저하게 감소하였다. 또한 무균적으로 Petri dish에서 재배한 유식물체를 치사온도인 $52^{\circ}C$에서 45분간 처리한 후, $20^{\circ}C$ 에서 계속적으로 배양하였을 때, wild-type 식물체는 전부 고사하였으나, 형질전환 식물체의 약 80%는 정상적으로 생존하였다. 또한 과발현된 Oshsp26 단백질의 축적량이 많을수록 내열성의 정도도 증가하였다. 이러한 결과는 엽록체 small HSP가 고온 스트레스 하에서 광합성기구를 보호함으로서 식물체의 내열성을 증가시키는데 있어서 중요한 기능을 담당하고 있음을 나타낸다.

To investigate the function of chloroplast small heat shock protein (HSP), transgenic tobacco plants (Nicotiana tabacum L, cv. SR-1) that constitutively overexpress the rice chloroplast small HSP (Oshsp26) were generated. Effects of constitutive expression of the Oshsp26 on thermotolerance were investigated with the chlorophyll fluorescence. After 5-min incubation of leaf discs at high temperatures, an increase in the Fo level, indication of separation of LHCII from PSII, was mitigated by constitutive expression of the chloroplast small HSP When tobacco plantlets grown in Petri dishes were incubated at $20^{\circ}C$/TEX> for 45 min and subsequently incubated at $20^{\circ}C$/TEX> leaf color of wild-type plant became gradually white and all plantlets were finally died. Under the conditions in which all the wild-type plants died, more than 80% of the transformants remained green and survived. It was also found that the levels of Oshsp26 protein accumulated in transgenic plants were correlated with the degree of thermotolerance. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery, as a results, increases thermotolerance of whole plant during heat stress.

키워드

참고문헌

  1. Plant J. v.13 Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells Banzet, N.;C. Richaud;Y. Deveaux;M. Kazumaier;J. Gagnon;C. Triantaphylides https://doi.org/10.1046/j.1365-313X.1998.00056.x
  2. Mol. Gen. Genet. v.226 Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein Chen, Q.;E. Vierling
  3. Plant Physiol. v.89 Thermotolerance of isolated mitochondria associated with heat shock proteins Chou, M.;Y. Chen;C. Lin https://doi.org/10.1104/pp.89.2.617
  4. FEBS Lett. v.430 The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants Downs, C. A.;S. A. Heckathorn https://doi.org/10.1016/S0014-5793(98)00669-3
  5. Eur. J. Biochem. v.173 Temperature-dependent binding to the thylakoid membranes of nuclear-coded chloroplast heat-shock proteins Glaczinski, H.;K. Kloppsteck https://doi.org/10.1111/j.1432-1033.1988.tb14038.x
  6. Plant Physiol. v.116 The small, methionine-rich chloroplast heat-shock protein protects photosystem Ⅱ electron transport during heat stress Heckathorn, S. A.;C. A. Downs;T. D. Sharkey;J. S. Cleman https://doi.org/10.1104/pp.116.1.439
  7. Plant J. v.6 no.2 Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA Hiei, Y.;S. Ohta;T. Komari;T. Kumashiro https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  8. Plant Mol. Biol. v.37 Evolutionary origin of two genes for chloroplast small heat shock protein of tobacco Lee, B. -H.;Y. Tanaka;T. Iwasaki;N. Yamamoto;T. Kayano;M. Miyao https://doi.org/10.1023/A:1006067817058
  9. Gene v.254 no.2 Expression of the chloroplast-lacalized small heat shock protein by oxidative stress in rice Lee, B. -H.;S. -H. Won;H. S. Lee;W. I. Chung;I. J. Kim;J. Jo
  10. J. Biol. Chem. v.270 Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea Lee, G. J.;N. Pokala;E. Vierling https://doi.org/10.1074/jbc.270.18.10432
  11. Annu. Rev. Genet. v.22 The heat shock proteins Lindquist, S.;E. A. Craig https://doi.org/10.1146/annurev.ge.22.120188.003215
  12. Methods in Molecular Biology v.2 RNA extraction by the guanidine thiocyanate procedure McGookin, R.;Walker, J. M.(ed.)
  13. Photosynthesis v.3 Active oxygen and photoinhibition of photosystem Ⅱ. Mechanisms and Effects Miyao-Tokutomi, M.;B. -H. Lee;N. Mizusawa;N. Yamamoto;Garab G.(ed.)
  14. Physiol. Plant. v.15 A revise medium for rapid growth and bioassays with tobacco tissue cultures Murashige, T.;F. Skoog https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Plant Physiol. v.93 Cloning, squence analysis, expression of a cDNA encoding a plastid-localized heat shock protein in maize Nieto-Sotelo, J.;E. Vierling;H. T. -H. David https://doi.org/10.1104/pp.93.4.1321
  16. Plant Physiol. v.111 Heat-shock response in heat-tolerant and nontolerant variants of Agrostis palustris Huds Park. S.;R. Shivaji;J. V. Krans ;D. S. Luthe
  17. Annu. Rev. Genet. v.27 The function of heat-shock proteins in stress tolerance: degradation and reactivation of proteins Parsell, D. A.;S. Lindquist https://doi.org/10.1146/annurev.ge.27.120193.002253
  18. Biochem. Biophys. Acta v.1363 Low and high temperature depedence of minmum Fo and maximum Fm chlorophyll fluorescence in vivo Pospisil, P.;J. Scotnica;J. Naus https://doi.org/10.1016/S0005-2728(97)00095-9
  19. EMBO J. v.7 Evidence for protection by heat-shock proteins against photoinhibition during heat shock Schuster, G.;D. Even;K. Kloppstechand I. Ohad
  20. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.42 The roles of heat shock proteins in plants Vierling, E. https://doi.org/10.1146/annurev.pp.42.060191.003051
  21. EMBO J. v.7 A heat shock protein localized to chloroplasts is a member of an eukaryotic superfamily of heat shock proteins Vierling, E.;R. T. Nagao;A. E. DeRocher;L. M. Harris
  22. Genetics v.141 The molecular evolution of the small heat-shock proteins in plants Waters, E. R.
  23. J. Exp. Bot. v.47 Evolution, strucure and function of the small heat shock proteins in plants Waters, E.R.;G, J. Lee;E. Vierling https://doi.org/10.1093/jxb/47.3.325