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1. Introduction The above studies dealt with continuous structures such as
beams and truss structures. Wave propagation in periodic

Active vibration suppression in structures and mechanical ~ structures of lumped systems has long been treated(Brillouin,
systems consists primarily of the modal vibration control and ~ 1946), but wave absorption control research on lumped
wave-absorption control. Modal vibration control is based on  Systems has been less so. Examples include O'ccoure’s(1998)
natural vibration modes, i, the system’s standing-wave state.  treatment of a lumped parameter mass-and-spring system as a
Wave absorption control is based on vibration energy model of a flexible arm and Saigo et al.’s(1998) study of a
absorption by impedance matching ie, the system's multiple-pendulum  system. Another problem of wave
progressive-wave state. Modal vibration control is used widely — absorption control is that the control law includes the square
in different fields, but wave absorption control has advantages 100t of Laplacian s, which cannot be implemented in real
over modal vibration control in certain fields. The wave hardware by usual methods, meaning most studies in
absorption process is conducted based on local wave experiments have used approximations of the control law. To
propagation properties, with no need to deal with total Overcome this problem, we present a new method(Saigo et al,
system to control, and it is applicable to any system even if ~1998) that uses online computer simulation of a large
only information on the structure where waves propagate is  degree-of-freedom (DOF) structural system having properties
known. Wave absorption control, however, requires Similar to the actual controlled system. This “imaginary"
information on where waves propagate, making it suitable for ~ System is connected virtually to the real system by an
1-dimensional (ID) structures or assemblies of 1D-elements. ~actuator satisfying the continuity condition between real and
Wave control on 1D-structures has been widely studied. Von — imaginary systems, which we term wave-absorption control
Flotow (1986a, 1986b) and Miller and Von Flotow(1989) treated ~ With an imaginary system (WCIS). WCIS realizes an infinite
truss structures and power flow, and Fujii et al.(1992a, 1992b) ~ structural system free of wave reflections in the controlled real
discussed design procedures for wave-absorption controllers ~ System if a suitable process is conducted to clear the vibrating
with non-collocated sensors and actuators. Elliott and energy in the imaginary system at appropriate timing. For
Billet(1993) studied controllers with adaptive digital filters for ~ this, WCS initializes the imaginary system where deflections
beams, and Gardonio and Eiliott(1996) dealt with longitudinal ~and velocities of all elements are set to zero except for the
and flexural waves in beams. Matsuda et al.(1998) discussed a  end element of the connecting side. Initialization should be
FEM-based transfer matrix approach, and Utsumi(1999) done before the reflecting wave from the end of the

presented analytical implementation of wave absorption control ~ imaginary system reaches the real system. In a previous
for beams. study(Saigo et al., 1998), we applied WCIS to free vibrations

where total vibration energy is limited. It is not clear at this
AAA} FEF AEH : Tsukuba Central 2, Ibaraki, Japan stage if WCIS is applicable to a general mechanical vibration
+81-90-5316-4887 dh.nam@aist.go.jp system such as the mode-based vibration control strategy.
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We apply WCS to forced torsional vibration of
multiple-DOF systems, studying the properties of initializations
simulation. We studied wave propagation
properties in a multiple-DOF periodic system theoretically to
obtain optimal parameters for the imaginary system,
conducting experiments to verify the effectiveness of WCIS.

by numerical

2. Control Law

2.1 Control strategy

The 1D torsional vibration system considered consists of
torsional bars and rigid discs (Fig. 1). Rigid lines represent
the real system and dotted lines the imaginary system. Our
control is to compensate for torque, ie., generated at the
imaginary connecting torsional bar between the real and
imaginary discs, #,.,¢ .+, by an actuator, and to absorb
vibration energy in the real system propagated to the
imaginary system. The imaginary system is assumed to have
cufficient DOF. This process involves a quasi-infinite system
end realizes nearly steady-state wave propagation. The
procedure is explained as follows by the use of the equation
of motion:

Consider an (m+n)-DOF torsional vibration system in
which the controlled real is m-DOF and the
imaginary system n-DOF. If only T, as disturbance torque,

system

is applied to the left end disc of the real system, The
equation of motion is expressed as
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Fig. 1 Real and imaginary torsional vibration systems connected

where k;,I;, ¢, are the spring constant of i-th torsional
bar, the moment of inertia of i-th rigid disc, and the
torsional angle of i-th torsional bar, respectively. External
disturbance on the i-th disc is expressed as 7, The
moment of inertia of the left-end disc and the external
disturbance on it are represented by [; and T.

The vibration energy in the real system propagates to the
imaginary system based on propagation properties when Eq.
(1) is completely realized. Elements whose suffixes exceed
(m+1) in Eq. (1) are virtual, so we must compensate for the
(underlined in Eq. (1)) as control

acceleration. Equations of motion including variables whose

term relating to ¢,

suffixes exceed (m+1) are solved by online calculation,

where variable ¢,, (underlined in Eq. (1)) is measured. This
process is a feedforward control with single input and
single output because the measured variable ¢, is not
compensated for directly.
The above control strategy is based on the concept that
to making the
reflections at the

wave-absorption  control is
controlled
boundary, i.e, to virtually realize an infinite structure in a
finite structure. Our control strategy to connect a virtually
large DOF system with initialization detailed in the section

below is wave-absorption control, even though the control

equivalent
system having no wave

strategy does not use wave absorption conditions as in

wave control of elastic continuous structures.
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Fig. 2 Initialization of R-type for m-DOF real and n-DOF
imaginary systems

@ RDI: @pii= @ ms=0 (=1 ton)at ¢,=0,

(b) RVI: ¢, = ¢ msi=0 (=1 ton) at ¢,=0,

{© RDL ¢, i=¢pi1= ¢ nri=0 (T2 ton) at ¢,=0,

(d) RVLE: ¢, i=bmi1= Smii=0 (=2 ton)at ¢,=0
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2.2 Initialization of imaginary systems

In an insufficient-DOF imaginary system for total energy
to be absorbed, the imaginary system must have no kinetic
or potential energy, with initialization of the imaginary
system at appropriate timing, We use the following

initialization (Saigo et al, 1998); when ¢,=0 or ¢.=0,

¢m+z’= '¢’m+i:0
(i=1 to n), which we term RDI' and RVI'. These initializing

timings are considered to influence the real system less

all imaginary variables are set to zero,

because no energy or energy flow exists in connecting
spring £, at this moment. The continuity of ¢, in
RDI' and ¢,.,, in RVI' may enhance control performance,

termed RDI and RVL, RDI sets ¢,y =@nmsi= @ myi=0

(i=2 to n) when ¢,=0 and keeps ¢, unchanged, and

RVI sets ¢,1i= Smi1= &me;=0 (=2 to n) when

#,=0 and keeps ¢, ,, unchanged. These are tried for the
first time, to our knowledge, in this paper. The above 4
methods initializing at ¢,,=0 or ¢,=0, RDI', RVI, RDI
and RVI (R-methods) are modified to IDI', IVI, IDI, and IVI
(I-methods)  initializing at  ¢,,;=0 or Gme1=0.
R-methods are based on the vibration state of the real
I-methods on the imaginary
diagrammed R-methods (Fig. 2), initialization is conducted at

é,=0. Tt is sufficient to

system and system, In
each timing of ¢,=0 or
initialize systems after condition |[¢ ,.,l=¢e is satisfied,
where positive
number of initializations per unit time diminishes the
undesirable influence of initialization on the real system, but
it is difficult to get optimum ¢ theoretically because it

e is given appropriately. Reducing the

depends on the vibration state of the system.

2.3 Optimization of imaginary system

To obtain optimal parameters of the imaginary system as
we analyzed a periodic
The k-th

a vibration energy absorber,
disc-and-torsional  spring system theoretically.

equation of motion of the system (Fig. 3) is

1 1
Ikkk

k-1 k k+1

Fig. 3 Homogeneous disc and torsional spring system with
terminal impedance

Srr1— 02 Bpt2 0’ brer— @ brr2=0 )
(I)OZEk/I.
Laplace transformation of Eqn.(2) is

where

¢k+2(s) - (2 + 0)0232)@k+ ‘(S) + @k(S) = G (3)

where @,(s) is Laplace transformation of ¢(#).
Substituting general solution @y(s)= g* into Eq. (3), we
obtain the specific roots

B=1+s*03/2 ?\Rl+sza)3/2)2—l @

=1+2%2 VB = "5
and the general solution
D) =cr(9 (B + () (B)*=0(H+ 0 () )

where ¢;(s) and c,(s) are arbitrary constants determined
by boundary conditions. .

When 4’ in Eq. (4) i negative, " represents a positive
propagating solution and 4  a negative propagating
(7 is the imaginary unit),
the condition of existence of propagating solution <0

solution. By introducing s= jo

gives the limit frequency as

w<2w, ©)
The mechanical impedance for the positive propagating
solution is

2 (s)= o @)

s
1-87)

When terminal impedance z, is 27(s), no wave reflection

occurs.

The no wave reflection above is ideal as a wave absorber

and expressed in mobility form as

=Kl 1= -ige ®

Eq. (6) shows that the disc-and-torsional spring wave
absorber must have a specific frequency ie., wo=V k1
greater than half of the disturbance frequency of the
controlled system. Eq. (8) shows that a larger spring
constant better absorbs the vibration energy for a given
input velocity and a specific frequency.

From Eq. (4), we obtain

BT =1 ©)

which means the steady state wave amplitude is constant
regardless of the frequency. The wave propagation condition
thus realizes no resonance occurring in the standing-wave
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condition, but antiresonance phenomena simultaneously
clisappear. The amplitude of the wave propagation condition
near the frequency of antiresonance occurring in a
standing-wave condition may exceed that of uncontrolled
emplitude, although these amplitudes are very small.

The phase difference between two adjacent elements in a

wave propagation condition is obtained by substituting
of Eq. (4) (Fig. 4) where v= w/w,.
Eq. (9) and Fig. 4 evidence the wave propagation condition

s=jo(=juwy)) to B*
of a vibrating system.

3. Numerical Simulation

Here, we treat a 3-DOF real system where all torsional
springs and discs are the same. Parameters of the analytical
real system are the same as those of the experiment detailed
in the next section, the moment of inertia I=0.0123kgm?,
end spring constant of torsional bar k=214 Nm. Parameters
of the imaginary system are the same as for the real system
except for the number of DOF. Disturbance torque 7y is
applied to the left end disc of the real system.
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Fig. 5 Calculated response of 3-DOF real system to disturbance
sin(vwyd) (wy=V k/L; v=0.566) using 40-DOF
imaginary system and IDI’ initialization
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Fig. 6 Response by control starting 2 s of 3-DOF real system
at resonance speeds with 40-DOF imaginary system and VI
initialization at (a) first resonance speed 1=0.765, (b) sencond
resonance speed =141, and (c) third resonance speed 1=1.85.

Fig. 5 shows the controlled amplitude versus disturbance
frequency with a 40-DOF imaginary system and IDI
initialization. A denotes the steady-state amplitude in which
the influence of initialization died away, and < the
maximum amplitude just after initialization. Steady-state
amplitudes are constant below the wave propagation limit
frequency given by Eq. (6), which coincides with the
analytical result Eq. (9). These steady-state amplitudes
coincide with a sufficiently large-DOF system obtained by
modal vibration analysis with nearly zero frequency
disturbance, not with those of a 3-DOF system.

Fig. 6 shows the timing chart at resonance frequencies.
Control starts 2 seconds after disturbance is applied. These
are typical features of wave control; after control starts, all
amplitudes propagate with the same magnitude and constant
phase shift through a transient period. We compare the
phase difference in a wave propagation state between ¢,
and ¢; (Fig. 6) and analytical states (Fig. 4). The theoretical
phase shift between adjacent elements at frequencies v=
0.765 (first resonance frequency), 141 (second resonance
frequency) and 1.85 (third resonance frequency) are 45, -90
and -135 degrees. Note the phase difference between ¢,
¢,) is about 2x(45), 2x(-90) and 2x(-135)
degrees, coinciding with the theoretical ones.

We have presented 8 types of initialization - RDI, RDI,
RVI, RVI, IDI, IDI', IVI, and IVI. We found no general
qualitative tendency among these methods by simulation,
because
computation conditions such as initial conditions, & detailed
in Section 2.2, and the number of DOF of real and imaginary

and ¢; (not

however, controlled  amplitudes depend on
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Fig. 7 Maximum response of ¢; by wave control with (a)
10-DOF and (b) 40-DOF imaginary systems

systems. We cannot yet conclude which method is best.
Below, we show results of I-methods as examples.

Fig. 7 maximum amplitudes versus disturbance
frequency for 10-DOF and 40-DOF imaginary systems.
Maximum amplitudes depend significantly on the disturbance
frequency. Frequent initialization due to the smallness of the

shows

imaginary system does not give a steady-state condition.
Initialization occurs before steady state vibration is established.
It is not easy to theoretically determine the general tendency of
after
depends on the vibration state of the real system and

initialization because amplitude just initialization
initializing timing. Comparing Figures 7(a) and 7(b), the
40-DOF imaginary system shows better performance in
initialization than the 10-DOF imaginary system, so the best
way to avoid the undesirable influence of initialization is to
use a large DOF imaginary system.

4. Experiment

Fig. 8
vibration system consists of discs 200 mm in diameter and
20 mm thick and torsional bars 4 mm in diameter and 100
mm long for 2- and 3-DOF systems and 210 mm long for

shows the experimental apparatus. The real

1-DOF systems. AC servomotors are used for drive and
control. The drive motor has a rated torque of 0.9 Nm and
a rated speed of 3000 rpm and the control motor has a
rated torque of 016 Nm and a rated speed of 3000 rpm.
The measurement system consists of rotary encoders, a
torsional angle converter, low-pass and high-pass filters, and
a personal computer (CPU clock: 266 MHz). Torque
disturbance is applied by torque fluctuation of the AC drive

Tramtol

=
e

Fig. 8 Experimental apparatus

motor in constant speed mode, which is 4 times, 2 times,
and 1 time per rotation, so resonance may occur at a
rotation speed of 1/4, 1/2, and 1/1 of the natural
frequency. Torque magnitude cannot be adjusted. A 10-DOF
imaginary system is computed by the Euler method with a
sampling period of 3 ms. Experiments are conducted for 1
DOF, 2 DOF, and 3 DOF.

Fig. 9 shows controlled and uncontrolled amplitudes at
the first resonance frequency of the 2-DOF real system,
where control starts at about 0.8 sec. Fig. 9(a) shows
amplitudes of ¢, and ¢,. Figures 9(b) and 9(c) show ¢,
and 2¢, on the magnified time scale. Amplitudes are
suppressed considerably by control and the phase between
¢, and ¢, of the controlled amplitudes is shifted. The

nondimensional frequency of the first torsional resonance of
the 2-DOF real system .}
theoretical phase shift is -60 degrees (Fig. 4).
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Fig. 9 Experimental waveforms of 2-DOF real system at 4.32
Hz excitation (first mode resonance frequency); angl:

$1, ang2: ¢,
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Fig, 12 Experimental response of 3-DOF real system

Tig. 9(c) shows the phase difference between ¢, and 4, is

about -60 degrees. The correspondence of phase shifts
between experimental and theoretical results shows that
wave control is realized in the experimental setup.

Fig. 10 shows experimental results for the 1-DOF real
system with RDI' initialization. Resonance occurs at 1.1 rps,
22 rps, and 44 rps when uncontrolled, and the effect of
vibration suppression by control is marked at these
resonance speeds. Fig. 11 shows experimental results for the
*-DOF real system with RDI’ initialization. Resonance occurs
at 092 rps and 4.3 rps of the first mode resonance, and

.81 rps and 3.62 rps of the second mode resonance when

uncontrolled. At these resonance speeds, vibration
amplitudes are markedly suppressed by control. Fig. 12
shows experimental results for the 3-DOF real system with
RVY initialization. Resonance occurs at 0.84 rps and 3.37 rps
of the first mode resonance, 148 rps and 59 rps of the
second mode resonance, and 3.86 rps and 7.72 rps of the
third mode resonance. Though control effect is somewhat
worse than for 1-DOF and 2-DOF systems,

amplitudes are suppressed in this case, also.

vibration

The present experimental apparatus is not perfect for
WCIS, but experimental results show that it is possible to
realize easily wave-absorption control with an imaginary
system for forced vibration.

5. Conclusions

In this paper, we have investigated the effectiveness of
wave-absorption control in suppressing torsional forced
vibration, by simulation and experiment. Wave absorption
control is possible in a 1D multiple-DOF torsional forced
vibration system by connecting the imaginary and real
systems and compensating for connection torque. And we
have found that a larger DOF imaginary system reduces
undesirable effects of initialization more than a smaller DOF
imaginary system. The basic idea of this control method is
easily applicable to any vibrating system even if only
information on the structure where waves propagate is
known. This control can be applied in many engineering
fields through further work.
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