DOI QR코드

DOI QR Code

THE NUMBER OF POINTS ON ELLIPTIC CURVES E : y2 = x3 + cx OVER Fp MOD 8

  • Park, Hwa-Sin (Department of Mathematics Chonbuk National University) ;
  • Kim, Dae-Yeoul (Department of Mathematics Chonbuk National University) ;
  • Lee, Eun-Hee (Department of Mathematics Chonbuk National University)
  • Published : 2003.01.01

Abstract

In this paper, we calculate the number of points on elliptic curves y$^2$ = x$^3$ + cx over F$_p$ mod 8.

Keywords

References

  1. Trans. Amer. Math. Soc v.99 On certain character sums B. M. Brewer https://doi.org/10.2307/1993392
  2. Proc. Amer. Math. Soc. v.31 The class number of Q($\sqrt{-p}$)for p≡1(mod 8), a prime E. Brown https://doi.org/10.2307/2037536
  3. J. Reine Angew. Math. v.172 Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen H. Davenport;H. Hasse
  4. A Classical Introduction to Mordern Number Theory K. Ireland;M. Rosen
  5. J. Reine Angew. Math. v.132 Uber die Darstellung der Primzahlen der Form 4n+1 als Summe zweier Quadrate E. Jacobstahl
  6. Proc. Cambridge Philos. Soc. v.67 A note on the number of solutions $N_p$ of the congruence y² ≡ x³ - Dx (mod p) A. R. Rajwade https://doi.org/10.1017/S0305004100045916
  7. J. London Math. Soc. v.8 no.2 Certain classical congruences via elliptic curves A. R. Rajwade https://doi.org/10.1112/jlms/s2-8.1.60
  8. The Arithmetic of Elliptic Curves J. Silverman
  9. Ann. Sci. Ecole Norm. Sup. v.2 Abelian varieties over finite fields E. Waterhouse https://doi.org/10.24033/asens.1183
  10. Duke Math. J. v.30 A theorem of Brewer on character sums A. L. Whiteman https://doi.org/10.1215/S0012-7094-63-03059-X

Cited by

  1. THE NUMBER OF POINTS ON ELLIPTIC CURVES E0a3:y2=x3+a3OVER FpMOD 24 vol.31, pp.3, 2009, https://doi.org/10.5831/HMJ.2009.31.3.437
  2. THE NUMBER OF POINTS ON ELLIPTIC CURVES EA0:y2=x3+Ax OVER $\mathbb{F}$pMOD 24 vol.34, pp.1, 2012, https://doi.org/10.5831/HMJ.2012.34.1.93
  3. THE NUMBER OF POINTS ON ELLIPTIC CURVES y2= x3+ Ax AND y2= x3+ B3MOD 24 vol.28, pp.3, 2013, https://doi.org/10.4134/CKMS.2013.28.3.433
  4. REMARK OF Pi,kON ELLIPTIC CURVES AND APPLICATION FOR MANCHESTER CODING vol.33, pp.2, 2011, https://doi.org/10.5831/HMJ.2011.33.2.153