DOI QR코드

DOI QR Code

AR계수를 이용한 Hidden Markov Model의 기계상태진단 적용

Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis

  • 이종민 (한국과학기술연구원 Tribology 연구센터) ;
  • 황요하 (한국과학기술연구원 Tribology 연구센터) ;
  • 김승종 (한국과학기술연구원 Tribology 연구센터) ;
  • 송창섭 (한양대학교 기계공학부)
  • 발행 : 2003.01.01

초록

Hidden Markov Model(HMM) has a doubly embedded stochastic process with an underlying stochastic process that can be observed through another set of stochastic processes. This structure of HMM is useful for modeling vector sequence that doesn't look like a stochastic process but has a hidden stochastic process. So, HMM approach has become popular in various areas in last decade. The increasing popularity of HMM is based on two facts : rich mathematical structure and proven accuracy on critical application. In this paper, we applied continuous HMM (CHMM) approach with AR coefficient to detect and predict the chatter of lathe bite and to diagnose the wear of oil Journal bearing using rotor shaft displacement. Our examples show that CHMM approach is very efficient method for machine health monitoring and prediction.

키워드

참고문헌

  1. Lawrence, R R., 1989, 'A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition,' Proceedings of the IEEE, Vol. 77. No.2, pp. 257 -286. https://doi.org/10.1109/5.18626
  2. Padhraic, S., 1994, 'Hidden Markov Models for Fault Detection in Dynamic Systems,' Pattern Recognition, Vol. 27, No. 1. pp. 149-164. https://doi.org/10.1016/0031-3203(94)90024-8
  3. Ying, J., Kirubarajan, T., Pattipati. K. R. and Patterson-Hine, A., 2000, 'A Hidden Markov Model-based Algorithm for Fault Diagnosis with Patial and Imperfect Tests,' IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, Vol. 30, No.4, pp. 463-473. https://doi.org/10.1109/5326.897073
  4. 이종민, 황요하. 2000. 'Hidden Markov Model을 이용한 기계 신호의 이상 예측 및 감지', 대한기계학회, 춘계학술대회논문집, pp.230-236.
  5. 공호성 등, 1999. '지능형 시스템 모니터링 기술 개발, 1차년도 연구보고서,' 한국과학기술연구원, KIST-2000연구사업단, 제2장, pp.11-64.
  6. Rabiner, L. and Juang, B. H., 1993. FUNDAMENT ALS OF SPEECH RECOGNITION, Prentice Hall Inc., Chapter 6, pp. 321-389.
  7. Hannaford, B. and Lee, P., 1991. 'Hidden Markov Model Analysis of Force/Torque Information in Telemanipulation.' The International Journal of Robotics Research. Vol. 10. No.5. pp. 528-539. https://doi.org/10.1177/027836499101000508
  8. Pandit, S. M. and Wu, S. M., 1983. TIME SERIES AND SYSTEM ANALYSIS WITH APPLICATIONS. John Wiley & Sons. Inc., Chapter 4. pp.142-176.
  9. 최영철, 김양한. 2000. '최소 분산 켑스트럼을 이용한 노이즈 속에 묻힌 임펄스 검출 방법 - 베어링 결함 검출에의 적용', 한국소음진동공학회논문집, 제10권, 제6호, pp.958-990.
  10. 공호성 등. 2000. '지능형 시스템 모니터링 기술 개발, 2차년도 연구보고서', 한국과학기술연구원, KIST-2000연구사업단, 제2장, pp.17-194.
  11. 조성용 등, 2001. '윤활유 오염에 따른 광투과율 변화에 관한 실험적 연구', 한국윤활학회지, 제17권, 제16호, pp.482-489.