A Design of PID Controller Using Loop Shaping Method of QFT

QFT의 루프형성법을 이용한 PID 제어기 설계

  • 김주식 (충북대 전기전자컴퓨터공학부) ;
  • 이상혁 (부산대 전자전기정보컴퓨터공학부)
  • Published : 2003.07.01

Abstract

QFT(Quantitative Feedback Theory) is a very practical design technique that emphasizes the use of feedback for achieving the desired system performance tolerances in despite of plant uncertainties and disturbances. The loop shaping procedure of the QFT method is employed to design the robust controller, until the desired bounds are satisfied. This paper presents a method to estimate the Pm parameters using the loop shaping of the QFT. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the QFT bounds. The feasibilities of the suggested algorithm are illustrated with an example.

Keywords

References

  1. K. J. Astrom and T. Hagglund, PID Controllers : Theory, Design, and Tuning, Instrument Society of America, 1995
  2. I. M. Horowitz, 'Survey of Quantitative Feedback Theory (QFT)', Int. J. Cont., vol. 53, no. 2, pp. 255-291, 1991 https://doi.org/10.1080/00207179108953619
  3. C. H. Houpis and S. J. Rasmussen, Quantitative Feedback Theory : Fundamentals and Applications, Marcel Dekker Inc., 1999
  4. 김주식, 이상혁, 유정웅, 'GA를 이용한 개선된 루프형성법을 갖는 QFT 설계방법, 대한전기학회논문지, 제48A 권, 제8호, pp. 972-979, 1999
  5. C. Borghesani, Y. Chait, and O. Yaniv, Quantitative Feedback Theory Toolbox User Manual, The MATH WORKS Inc., 1995
  6. W. H. Chen, D. J. Ballance, W. Feng, and Y. Li, 'Genetic Algorithm Enabled Computer-Automated Design of QFT Control Systems', Proc. of the 1999 IEEE ISCACSD, pp. 492-497, 1999 https://doi.org/10.1109/CACSD.1999.808697
  7. A. H. Whitfield, 'Transfer Function Synthesis using Frequency Response Data', Int. J. Control, vol. 43, pp. 1413-1426, 1986 https://doi.org/10.1080/00207178608933548
  8. A. C. Zolotas and G. D. Halikias, 'Optimal Design of PID Controllers using the QFT Method', IEE Proc. Control Theory Appl., vol. 146, no. 6, pp. 585-589, 1999 https://doi.org/10.1049/ip-cta:19990746
  9. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000
  10. S. Van Huffel and J. Vandewalle, The Total Least Squares Problem Computational Aspects and Analysis, SIAM, 1991 https://doi.org/10.1137/1035157