비정방 선형 시스템의 강인 제어기 설계 및 그 응용

Robust Controller Design of Non-Square Linear Systems and Its Applications

  • 손영익 (동아대 공대 전기전자컴퓨터공학부) ;
  • 심형보 (한양대 공대 전기전자컴퓨터공학부) ;
  • 조남훈 (숭실대 공대 전기제어시스템공학부)
  • 발행 : 2003.04.01

초록

The problem of designing a parallel feedforward compensator (PFC) is considered for a class of non-square linear systems such that the closed-loop system is strictly passive. If a given square system has (vector) relative degree one and is weakly minimum phase, the system can be rendered passive by a state feedback. However, when the system states are not always measurable and the given output is considered, passivation (i.e. rendering passive) of a non-minimum phase system or a system with high relative degree cannot be achieved by any other methodologies except by using a PFC. To passivate a non-square system we first determine a squaring gain matrix and design a PFC such that the composite system has relative degree one and is minimum phase. Then the system is rendered strictly passvie by a static output feedback law. Necessary and sufficient conditions for the existence of the PFC and the squaring gain matrix are given by the static output feedback formulation, which enables to utilize linear matrix inequality (LMI). As an application of the scheme, an alternative way of replacing the role of velocity measurements is provided for the PD-control law of a convey-crane system.

키워드

참고문헌

  1. C.I. Byrnes, A. Isidori, J.C. Willems, 'Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,' IEEE Trans. Automat. Contr., vol. 36, no. 11, pp. 1228-1240, 1991 https://doi.org/10.1109/9.100932
  2. H.K. Khalil, Nonlinear Systems, Prentice-Hall, 2nd Ed., 1996
  3. R. Sepulchre, M. Jankovic, P.V. Kokotovic, Constructive Nonlinear Control, Springer-Verlag, 1997
  4. R. Ortega, A. Loria, P.J. Nicklasson, H. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems, Springer-Verlag, 1998
  5. Hyungbo Shim and Jin H. Seo, 'Passivity framework for nonlinear state observer', In Proc. of ACC, pp. 699-705, 2000 https://doi.org/10.1109/ACC.2000.878991
  6. A.G. Kelker and S.M. Joshi, 'Robust control of non-passive systems via passification', In Proc. of ACC, 1997 https://doi.org/10.1109/ACC.1997.611938
  7. Young I. Son, Hyungbo Shim, Jin H. Seo, 'Passification of nonlinear systems via dynamic output feedback', Journal of KIEE, pp. 23-28, 2000
  8. A.L. Fradkov and D.J. Hill, 'Exponential feedback passivity and stabilizability of nonlinear systems,' Automatica, vol. 34, no. 6, pp. 697-703, 1998 https://doi.org/10.1016/S0005-1098(97)00230-6
  9. W. Sun, P.P. Khagonekar, and D. Shim, 'Solution to the positive real control problem for linear time-invariant systems,' IEEE Trans. Automat. Contr., vol. 39, pp. 2034-2046, 1994 https://doi.org/10.1109/9.328822
  10. C.-H. Huang, P.A. Ioannou, J. Maroulas, and M.G. Safonov, 'Design of strictly positive real systems using constant output feedback,' IEEE Trans. Automat. Contr., vol. 44, no. 3, pp. 569-573, 1999 https://doi.org/10.1109/9.751352
  11. I. Bar-Kana, 'Parallel feedforward and simplified adaptive control,' Int. J. Adaptive Control and Signal Processing, vol. 1, no. 2, 95-109, 1987 https://doi.org/10.1002/acs.4480010202
  12. H. Kaufman, I. Bar-Kana, and K. Sobel, Direct Adaptive Control Algorithms, Springer-Verlag, 2nd Ed., 1998
  13. Z. Iwai and I. Mizumoto, 'Realization of simple adaptive control by using parallel feedforward compensator,' Int. J. Control, vol. 59, no. 6, pp. 1543-1565, 1994 https://doi.org/10.1080/00207179408923145
  14. M. Deng, Z. Iwai, I. Mizumoto, 'Robust parallel compensator design for output feedback stabilization of plants with structured uncertainty, Systems & Control Letters, vol. 36, pp. 193-198, 1999 https://doi.org/10.1016/S0167-6911(98)00091-7
  15. A. Saberi and P. Sannuti, 'Squaring down by static and dynamic compensators', IEEE Trans. Automat. Contr., vol. 33, no. 4, pp. 358-365, 1988 https://doi.org/10.1109/9.192190
  16. Y. Kawasaki, I. Mizumoto, R. Wakamiya, and Z. Iwai, 'Adaptive control of an inverted pendulum system,' In Proc. of Asia-Pacific Vibration Conference'93, Japan, vol. 3, pp. 1114-1119, 1993
  17. F.C. Lee, H. Flashner, and M.G. Safonov, 'Positivity embedding for noncolocated and nonsquare flexible structures,' In Proc. of ACC, pp. 267-271, 1994 https://doi.org/10.1109/ACC.1994.751740
  18. P. Akella and J.T. Wen, 'Synthesized passive feedback control of sensor-rich structures,' In Proc. of ACC, pp. 2652-2656, 1997 https://doi.org/10.1109/ACC.1997.611937
  19. J. Collado, R. Lozano, and I. Fantoni, 'Control of convey-crane based on passivity,' In Proc. of ACC, pp. 1260-1264, 2000 https://doi.org/10.1109/ACC.2000.876702
  20. J.C. Geromel, P.L.D. Peres, S.R. Souza, 'Convex analysis of output feedback control problems: robust stability and performance,' IEEE Trans. Automat. Contr., vol. 41, no. 7, pp. 997-1003, 1996 https://doi.org/10.1109/9.508904
  21. Y.-Y. Cao, J. Lam, and Y.-X. Sun, 'Static output feedback stabilization: an ILMI approach,' Automatica, vol. 34, no. 12, pp. 1641-1645, 1998 https://doi.org/10.1016/S0005-1098(98)80021-6
  22. C.A.R. Crusius and A. Trofino, 'Sufficient LMI conditions for output feedback control problems,' IEEE Trans. Automat. Contr., vol. 44, no. 5, pp. 1053-1057, 1999 https://doi.org/10.1109/9.763227
  23. Z.P. Jiang and D.J. Hill, 'Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems,' IEEE Trans. Automat. Contr., vol. 43, no. 7, pp. 992-997, 1998 https://doi.org/10.1109/9.701109
  24. V. Kuvcera and C.de Souza, 'A necessary and sufficient condition for output feedback stabilizability,' Automatica, vol. 31, no. 9, pp. 1357-1359, 1995 https://doi.org/10.1016/0005-1098(95)00048-2