DOI QR코드

DOI QR Code

하천고수부지 수질정화 여과습지의 초기운영단계 질소제거

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage

  • Yang, Hong-Mo (Dept. of Landscape Architecture, College of Agriculture and Life Science, Chonnam National University)
  • 발행 : 2003.12.31

Abstract

본 연구는 고수부지에 조성한 여과습지의 초기운영단계 질소제거율을 분석하였다. 조사기간 처리수의 평균수온은 $17.1^{\circ}C$이었고, 평균 pH는 7.1이었으며, 갈대의 평균 N흡수량은 $69.31\;N\;mg/m^2/day$였다. 유입수와 유출수의 평균 $NO_3-N$ 농도는 각각 3.46, 2.23 mg/L이었으며, 여과습지의 $NO_3-N$ 평균제거율은 $195.58\;mg/m^2/day$였다. 유입수와 유출수의 평균 $NH_3-N$ 농도는 각각 0.92, 0.58 mg/L이었으며, $NH_3-N$ 평균 제거율은 $53.65\;mg/m^2/day$를 보였다. 유입수와 유출수의 평균 T-N 농도는 각각 10.24, 6.32 mg/L 였으며, T-N 평균제거율은 $628.44\;mg/m^2/day$를 보였으며, 제거량 기준으로 T-N 평균제거율은 약 39%를 나타냈다. 시스템이 초기 운영단계인 점을 고려하면 T-N제거 수준은 비교적 양호한 편이다. 여과습지의 $7{\sim}10$월의 수온이 암모니아화, 질산화, 탈질화에 비교적 적합한 온도를 유지하였고, 매질사이의 공극에 입자성 유기태 질소가 고정되고, 매질표면에 형성된 미생물막에 유기태 질소가 흡착되어 분해되고, 유입수가 원활히 시스템을 흐른 것이 질소제거의 주요 원인으로 사료된다. $2{\sim}3$년 후 갈대가 정상적으로 성장하여 뿌리와 근권이 발달하고, 갈대의 잔재물로부터 유기쇄설물이 형성되어 탈질화에 필요한 탄소공급원이 제공되면, 시스템의 질소 처리율이 높아질 것으로 생각된다. 실험결과 고수부지를 활용한 수질정화 여과습지는 오염하천수에 함유된 질소를 줄일 수 있는 방안이 될 수 있을 것으로 사료된다.PL특성은 상온에서도 눈으로 보일 만큼 우수한 발광 특성을 보였으며, 기판 bias전압이 증 가함에 따라 PL peak 위치가 청색으로 편이하는 경향을 보였다. 이러한 발광 세기의 변화 는 $V_s$=0V부터 $V_s$=200V까지는 기판의 bias전압이 증가함에 따라 상대적으로 박막의 표면에 충돌하는 이온에너지의 감소로 인해 a-C:H박막내에 비발광 중심으로 작용하는 dangling bond가 감소하여 발광의 세기가 증가하였으며 $V_s$=300V이상에서는 박막내의 수소 함유량이 증가함에 따라 dangling bond수는 감소하나 발광 중심으로 작용하는 탄소간의 $\pi$결합을 포 함하는 cluster가 줄어들어 PL세기가 감소한 것으로 생각된다.1례, 폐동 맥: 1례)이 4례, 2주 이상의 지속적 흉관배액이 4례, 유미흉이 3례, 출혈에 의한 재수술이 3례, 기타 급성 신 부전, 종격동염, 횡경막신경 마비가 각각 2례씩 있었으며, 중복치환술을 받은 환자들과 전통적 술식으로 수 술받은 환자에서 술후 합병증의 차이는 없었다. 65명의 환자를 평균 54$\pm$49개월(0~177개월)간 추적관찰하였 으며, 수술 초기에 사망한 환자는 13명으로 20.0%(13/65)의 수술사망율을 보였으며 3명의 환자가 추적기간중 사망하여 24.6%(16/65)의 전체사망율을 보였다. 중복치환술을 받은 환자의 수술사망율은 33.3%(4/12)였다. 술 후 1년, 5년, 10년 누적생존율은 각각 75.0$\pm$5.6%, 75.0$\pm$5.6%, 69.2$\pm$7.6%였다. 가장 흔한 사망원인으로는 술 후 저심박출증후군으로 8례였으며 삼첨판막 폐쇄부전이 심해져 심부전으로 사망한 경우도 5례로 사망의 중 요 원인이었다. 결론 저자들은 본 연구를

This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Keywords

References

  1. Corbitt, R. A. and Bowen, P. T. (1994) Constructed wetlands for wastewater treatment, in Kent, D. M. (ed.) Applied wetlands science and technology, Publishers Lewis, p.221-241
  2. Yang, H. M. (1999) Constructed wetlands and pondwetland systems of ecological treatment of point and non-point source pollutants for water quality improvement of lakes and rivers, Kor. J. Wat. Res. 32(5), 111-113
  3. Yang, H. M. (2002) Nitrate removal rate in cattail wetland cells of a pond-wetland system for stream water treatment, J. Korean Env. Res. & Reveg. Tech. 5(6), 24-29
  4. Yang, H. M. (2002) Preliminary nitrogen removal rates in close-to-nature constructed stream water treatment wetland, Kor. J. Environ. Agric. 21(4), 269-273 https://doi.org/10.5338/KJEA.2002.21.4.269
  5. Luederitz, V., Eckert, E., Martina, L. W., Lange, A., and Gersberg, R. M. (2001) Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands, Ecol. Eng. 18, 157-171 https://doi.org/10.1016/S0925-8574(01)00075-1
  6. Reed, S. C., Middlebrooks, E. J. and Crites, R. W. (1988) Natural Systems for Waste Management and Treatment, McGraw-Hill, New York
  7. Vrhovsek, D., Kukanja, V., Bulc, T. (1996) Constructed wetland for industrial waste water treatment, Wat. Res. 30, 2287-2292 https://doi.org/10.1016/0043-1354(96)00114-5
  8. Green, M. B. and Martin, J. R. (1996) Constructed reed beds clean up storm overflows on small wastewater treatment works, Wat. Environ. Res. 68, 1054-1060 https://doi.org/10.2175/106143096X128054
  9. Higgins, M. J., Rock, C. A., Bouchard, R. and Wengrezynek, B. (1993) Controlling agricultural runoff by use of constructed wetlands, In: Moshiri, G. A. (Ed.), Constructed Wetlands for Water Quality Improvement, Lewis Publishers, Boca Raton, FL, p.359-367
  10. Korean Ministry of Environment (2000) Standard method for water and wastewater analysis
  11. Spiels, D. J. and Mitsch, W. J. (2000) The effects of seasons and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low -and high-nutrient riverine systems, Ecol. Eng. 14, 77-91
  12. EPA. (2000) Manual: Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Cincinnati, Ohio, p.30-48
  13. Bachand, P. A. M. and Home, A. J. (2000) Denitrification in constructed free-water surface wetlands I: very high nitrate removal rates in a macrocosm study, Ecol. Eng. 14, 9-15
  14. Failker, S. P. and Richardson, C. J. (1989) Physical and chemical characteristics of freshwater wetland soils in Hammer, D. A. (ed.). Constructed wetlands for wastewater treatment: municipal, industrial and agricultural, Lewis Publishers, Inc., Chelsea, Michigan, p.41-72
  15. Bachand, P. A. M. and Horne, A. J. (2000) Denitrification in constructed free-water surface wetlands I: very high nitrate removal rates in a macrocosm study, Ecol. Eng. 14, 9-15
  16. Brodrick, S. L Cullen, P. and Maher, W. (1988) Denitrification in a natural wetland receiving secondary treated effluent, Water Res. 22, 431-439 https://doi.org/10.1016/0043-1354(88)90037-1
  17. EPA. (2000) Manual: Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Cincinnati, Ohio, p.30-48
  18. Horne, A. J. and Goldman, C. R. (1994) Limnology, McGraw-Hill, Inc., New York, p.133-140