
East Asian Math. J. 19 (2003), No. 1, pp 81-89

A PRIME FACTORIZATION
ALGORITHM IN ACTIONSCRIPT

Tai Sung Song

Abstract There are many algorithms for factoring integers 
The trial division algorithm is one of the most efficient algo­
rithms for factoring small integers (say less than 10,000,000,000) 
For a number n to be factored, the runtime of the trial divi­
sion algorithm depends mainly on the size of a nontrivial factor 
of n In this paper, we create a function named factors that 
can implement the trial division algorithm in ActionScnpt and 
using the factors function we construct an interactive Prime 
Factorization Movie and an interactive GCD Movie

1. Introduction

Each positive integer greater than 1 can be expressed as a unique 
product of prime numbers. There are many algorithms for finding a 
nontrivial factor of a composite integer. The most useful algorithms 
fall into one of two classes: general purpose algorithms and special 
purpose algorithms [1]. The general purpose algorithms (such as the 
quadratic sieve and the number field sieve) have an expected runtime 
that depends mainly on the size of the number n being factored. 
The special purpose algorithms (such as trial division, Pollard rho 
method, and the elliptic curve method) have an expected runtime 
that depends mainly on the size of a nontrivial factor of n.

Received May 12, 2003. Revised May 23, 2003
2000 Mathematics Subject Classification： 97U70.
Key words and phrases, standard form, trial division, ActionScript.
This work was supported by Pusan National University Research Grant



82 T. S. SONG

The most straightforward method of factoring integers is 机m di­
vision, where one simply tries to divide by each prime iq； 一 (hc 
square root of the number n to factor. The numbe호 of prim ^ss 
than or equal to an integer n is denoted by ?r(n), the prim < nt 
ing function. According to the prime number theorem [2； m wv 
7r(n) a 16胃袞・ Since a composite number n has at least one 丄 ctor 
less than o호 equal to、/為 factoring using trial divisio표 takes『냐 Froy ~ 
imately 诂首嘉 operations, in the worst case. For many coi^posite 
numbers trial division is therefore infeasible as factoring hod. 
For most numbers it is very effective, however, because mosj iunn 
bers have small factors. 88% of all positive integers have a fac： 
than 100, and almost 92% have a factor less than 1000 [3|.「fat 
the trial division algorithm is one of the most efficient algoi it 心 坞 f 项 
factoring small integers (say less than 10,000,000,000).

In this paper, we create a function named factors that 广v /de­
ment the trial division algorithm in ActionScript and using 니 日 ^ac- 
tors function we construct an interactive Prime Factorizatio ' ur ie 
and an interactive GCD Movie. ActionScript, 난le scrip””、bm- 
guage of Macromedia Flash MX, is an object-oriented scriptii^g lan­
guage. The ActionScript syntax and style closely resemble I :iai of 
JavaScript ([4], [5]).

2. A Prime Factorization Algorithm

If a number n is composite, it will have a factor less than or 
equal to y/n . Through an algorithm, like the Sieve of Eratosthenes, 
generate a list of the primes less than or equal to、国 The Sieve of 
Eratosthenes finds all prime numbers less than or equal to integer 
n: Make a list of all the integers less than or equal to n wE strike 
out the multiples of all primes less than or equal to、，瓦 普 ten the 
numbers that are left are primes. Then, try dividing n by each of 
these primes. Once one prime factor p is found, do trivial division 
on n/p. Repeat until all prime factors are found.

If we does not want to generate and store the list of prime num­



A PRIME FACTORIZATION ALGORITHM IN ACTIONSCRIPT 83

bers, we can first try dividing n by 2. Then, try dividing n by each 
of the odd integers less than or equal to、/亦. This algorithm saves 
the trouble of generating the primes without increasing the number 
of trial divisions considerably.

In this section, we establish a prime factorization algorithm in 
ActionScript using the latter trial division method.

Since the standard form of the integer 72 is 23 - 32, the array of 
prime factors of 72, counting multiplicities, is [2, 2, 2, 3, 3], and 
the array of distinct prime factors of 72 is [2, 3]. Using the trial 
division method decsribed above, we define the factors (n) function 
that returns the array of prime factors of n, counting multiplicities. 
The algorithm of the factors function can be written in ActionScript 
code as follows.

function factors (n) { 
var A = new Array();
var p = 2,
while (n > 1) (

if (n%p == 0) {A.push(p); n = n/p;}
else if (p == 2) {p = 3;}
else if (p > Math sqrt(n)) {p = n;}
else {p = p + 2;}

}
return A;
}

Using the factors (n) function, we define the primeFactors (n) 
function that returns the array of distinct prime factors of n. The 
algorithm of the primeFactors function can be written in Action- 
Script code as follows.

function primeFactors (n) (
A = factors (n);
var s = 1;
b = A. length;



84 T. S. SONG

C = new Array ();
C[0] = 시이;
for (var i = 1; i V b; i++) (

if(A[i] != A[i-1]) (C[s] = A[i]; s = s+1;
} else {continue;}

}
return C;
}

Let a and b be positive integers. If bk is a factor of a, then bk < a or 
k < 쓰車읍. Using this 호esult, we can define the power (a, b) function 
that returns a largest integer k such that bk is a factor of a. For 
example, powe호 (121176, 3) is 4, since 121176=23 • 34 • 11 • 17. The 
algorithm of the power function can be written in ActionScript code 
as follows.

function power (a, b) {
pow = Math.pow;
ceil = Math.ceil;
log 二二 Math.log;
limit — ceil(log(a)/log(b));
for (var k = 1； k <= limit; k++) (

if(a % pow(b, k) != 0) {break;}
}
return k-1;
}

For the standard form - - • of an integer n, we define 
the power Array (n) function that 호 eturns the array [ei, e2, , . •, 
using the primeFactors (n) and power (a, b) functions. For example, 
powerA히ay (121176) is the array [3, 4, 1, 1], since 121176—23 - 34 . 
11 - 17. The algorithm of the powerArray function can be written in 
ActionScript code as follows.

function powerArray (n) {



A PRIME FACTORIZATION ALGORITHM IN ACTIONSCRIPT 85

A = primeFactors (n);
b = A.length;
C = new Array ();
for (var i = 0; i < b; i++) {

C[i] = power (n, A[i]);
}
return C;
}

Using the primeFactors (n) and power Array (n) functions, we now 
define the standardForm (n) function that returns the standard form 
of an integer n. The algorithm of the standardForm function can be 
written in ActionScript code as follows.

function standardForm (n) {
A = primeFactors (n);
B = powerArray (n);
c = A.length;
s — “”；

for (var i = 0; i V c; i++) {
s = s + A[i] + 小” + B[i] + " ”；

}
return s;
}

Using five functions (factors, primeFactors, power, powerArray, 
and standardForm functions) defined above, we construct the prime- 
Factor.fla file that can generate an interactive Prime Factorization 
Movie. First, we insert ActionScript codes of five functions in the 
first frame of the movie. Next, we c호eate a graphical user interface 
of the movie that contains an Input Text field, a Dynamic Text field, 
a button instance, and other suitable objects. We declare the vari­
able name of the Input Text field as boxl and the variable name 
of the Dynamic text field as box2. Finally we assign the following 
ActionScript code to the button instance.



86 T. S. SONG

on (release) {
n = Number(boxl);
s = standardForm (n);
box2 = s;

}

If we publish the primeFactor.fla file, then primeFactor.swf and 
primeFactor.html files are generated. This completes the construc­
tion of an interactive Prime Factorization Movie. If we enter an 
integer n to be factored in the Input Text field of the interactive 
Prime Factorization Movie and click the button, then the standard 
form of the integer n is displayed in the Dynamic Text field.

3. A GCD Algorithm

In this section, we construct an interactive GCD Movie that com­
putes the greatest common divisors (factors) of two integers.

The sort(); method is the lexicographic order sort function. We 
define a compare function named order such that the sort (order); 
method sorts the elements of an array in numerical order. Note that 
30 comes before 5 in lexicographic order, but in numerical order 5 
comes before 30. The following code is an ActionScript code that 
defines the order function.

function order (x5 y) (return x - y;}

Using primeFactors (n) and order (x, y) functions, we define the 
concatFactors (m, n) function that returns the array which consists 
of all distinct prime factors of m or n. For example, concatFactors 
(39546, 47320) is the array [2, 3, 5, 7, 13], since 39546 = 2-32-133 and 
47320 = 23 . 5 • 7 ・ 132. The algorithm of 난le concatFactors function 
can be written in ActionScript code as follows.

function concatFacto호s (m, n) {



A PRIME FACTORIZATION ALGORITHM IN ACTIONSCRIPT 87

var A = primeFactors (m);
var B = primeFactors (n);
C = new Array ();
C = A.concat(B);
C = C. sort (order);
var k = C.length;
D = new Array ();
이이 = 이이;

for (var i — 1; i V k; i++) (
if(C[i]『 이i」]) (D.push(C[i]);
} else {continue;}

}
return D;
}

Let m = 39546 and n = 47320. To compute the gcd of m and n, 
we compare the prime factors of m and n Note that m — 2 • 32 • 133, 
n — 23 5 • 7 - 132, and concatFactors = [2, 3, 5, 7, 13]. Since 2 is a 
factor of both m and n, and the smallest exponent on. 2 is 1, so 21 is 
a factor of gcd (m, n). Since 3 is a factor of m but not n, 3°—1 is a 
factor of gcd (m? n) Similarly, 5°—1 and 7°=1 are factors of gcd (m, 
n). Also, 13 is a factor of both m and n, and the smallest exponent 
on 13 is 2, so that 132 is a factor of gcd (m, n). Consequently, we 
obtain the following result. ,

gcd(m, n) - 21 • 3° • 5° • 7° • 132 = 338.

Using concatFactors and power functions, and the method described 
above, we now define the gcd (m, n) function that returns the gcd 
of two integers. The algorithm of the gcd function can be written in 
ActionScript code as follows.

function gcd (m, n) (
var A = concatFactors (m, n);
var k = A.length,
B = new Array ();



88 T. S. SONG

for (var i = 0; i < k; i++){
B国 = power(m, A[i]);

}
C = new Array ();
for (var i = 0; i V k; i++) {

C[i]—power(n, A[i]);
}
D = new Array ();
for (var i = 0; i V k; i++) {

D[i] =Math.min(B[i], C[i]);
}
var s = 1;
for (var i = 0; i < k; i++) {

s = s* pow(A[i], D[i]);
}
return s;
}

Using the same method of constructing the interactive Prime Fac­
torization Movie, we can construct an interactive GCD Movie, the 
gcd.fia file. We insert ActionScript codes of six functions (factors, 
primeFactors, power, order, concatFactors, and gcd functions) de­
fined above in the first frame of the movie, and create a graphical 
user interface of the movie that contains two Input Text fields, a Dy­
namic Text field, a button instance, and other suitable objects. We 
assign the following ActionScript code to the button instance, where 
boxl and box2 are the variable names of the Input Text fields, and 
box3 is the variable name of the Dynamic text field.

on (release) (
m = Numbe 호 (boxl);
n = Number (box2);
s = gcd (m, n);
box3 = s;

}



A PRIME FACTORIZATION ALGORITHM IN ACTIONSCRIPT 89

If we publish the gcd.fla file, then gcd.swf and gcd.html files are 
generated. This completes the construction of an interactive GCD 
Movie. For example, if we enter two integers 1156377601, 1048012963 
in the Input Text fields of the interactive GCD Movie and click the 
button, then 488129, the gcd of two integers, is displayed in the 
Dynamic Text field.

REFERENCES

[1] R P Brent, Recent progress and prospects for integer factorisation algo­
rithms, Lecture Notes in Computer Science, Vol. 1858, Springer Verlag, 
Berlin, 2000

[2] G H Hardy and W M Wright, An Introduction to the Theory of Numbers, 
5th ed , Oxford University Press, Oxford, 1979

[3] A K. Lenstra, Integer Factoring^ Designs, Codes and Cryptography 19(2/3) 
(2000), 101-128

[4] Macromedia, Flash MX ActionScript Dictionary^ Macromedia, San Fran­
cisco, CA , 2002

[5] Netscape, Core Jq힝aScript Reference, Netscape, Mountain View, CA., 1998.

Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-maii. tssong@pusan.ac.kr

mailto:tssong@pusan.ac.kr

