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EMBEDDING OF WEIGHTED L?
SPACES AND THE 4-PROBLEM

Hone RAE CHO

ABSTRACT. Let D be a bounded domain in C* with C? bound-
ary. In this paper, we prove the following mequality

luflps,ar < oy a0 + 115’““?1&1\“?1 /2

where 1 < py < p2 < 00, @; > 0,(n +a1)/p1 = (n + a2)/p2,
and 1/p2 > 1/p1 — 1/2n

1. Introduction and statement of results

Let D be a bounded domain in C* with C? boundary. For z € D
let §(2) denote the distance from z to 9D. For o > 0, we define
a weighted measure dV, on D by dV, = C,d* 'dV where dV is
the volume element and C, is chosen so that dV, is a probability
measure. As o — 0% the measures dV,, converges as measures on
0D to the normalized surface measure on 8D which we denote dVj
{(or sometimes do). We will denote the L? space with respect to
dV, by L, and the associated norm by || - ||, o. We will denote
by AE(D) = LZ(D) N O(D) the subspace of LZ(D) consisting of
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functions which are holomorphic on D. In particular, AJ(D) is the
Hardy class usually denoted by H?( D), which we identify in the usual
way with a subspace of L(D) = L?(8D;do) (see {16]). Beatrous (6]
proved the following embedding theorem.

THEOREM 1.1 ([6]). Let D be a bounded domain in C" with
C? boundary and assume that 0 < p; < p2 < oo, a; > 0, and
(n+a1)/p1 = (n+a2)/p2. Then AR (D) C AR (D) and the inclusion
IS continuous.

In the case ¢; = 0 the embedding in Theorem 1.1 will be
HPY(D) C AR2(D), where n/p = (n+ a1)/p2.

This is a generalization of a well-known result of Hardy-Littlewood
in the unit disc (see [13, p.87]). Beatrous [7] proved that the case
c; = 0 holds if D is strictly pseudoconvex domains. Recently, the
author proved the case o3 = 0 in convex domains of finite type (see
[9]). Moreover, it is proved that the case @; = 0 holds in bounded
domains with C? boundary ({10}, [11]).

In this paper, we extend Theorem 1.1 for L% (D) functions u with
some growth condition of Ju, and give some consequences for the
J-problem.

THEOREM 1.2. Let D be a bounded domain in C* with C? bound-
ary and assume that 1 < p; < ps < 00, a; > 0,(n + oy)/p1 =
(n+ az)/p2, and 1/py > 1/py — 1/2n. Let u € LB (D). Then u be-
longs to L2 (D) under the extra condition that Ou € Lgll oy /Q(D).

2

_ In condition of Ou, one recognizes the gain for the solution of the
O-equation in strictly pseudoconvex domains. Let D be a strictly
pseudoconvex domain in C* with C? boundary. Let f € L? /2(D)

be a O-closed (0,1) form on D. In ([2], (12]) it was proved that there
is a solution u for du = f such that

lullp,e < Cpallfllpatpz for 1<p<oo,a>0.

Thus we get the following result.
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COROLLARY 1.3. Let D be a bounded strictly pseudoconvex do-
main in C® with C? boundary. Let 1 < p; < py < 00, a; >
0, (n + 051)/171 = (n—i— C!g)/pg, and l/pz > 1/p1 -~ 1/2n Let
fel? 4pi2(D) be a O-closed (0,1) form on D. Then there is

1

a solution u € L2 (D) for u = f.

2

REMARK 1.4. When 1 < py < 2, if we take p = p1, o3 = 1 —p/2,
and ay = 1, then Corollary 1.3 implies that for a O-closed (0,1)
form f € LP(D) there is a solution v € LY(D) for Ou = f, where
1/g =1/p ~ 1/(2n + 2). The result is the optimal LP-estimate for
O proved in [14] when 1 < p < 2. For more recent results about
estimates for & and J, by means of integral kernels we can refer ([1],

(3], (4], [5]}-

2. Proof of Theorem 1.2

We shall rely on Bonami-Sibony’s ideas [8] for the proof of Theo-
rem 1.2. Before proceeding with the proof, we give the key lemma.

LEmma 2.1 ([8]). Let B be the unit ball, B its homothetic of
radius Ry > 1, let 1 < p < r < oo. Then there exists a constant
C > 0 such that for any f € LP(B3) for which 8f belongs to L*(B)
witht>1and 1/r > 1/t — 1/2n:

(Lur dV)mSC(fBIfI” dv)l/p+c(/g1gf]t dv)”‘,

Proof of Theorem 1.2. 1t is enough to prove the inequality
/ 1u}P2502—1dV 5 f lu!pléal-ldv + [ igulpl 5al+p1/2_ldV.
D D D

For py € D sufficiently near 8D, we translate and rotate the coor-
dinate system so that z{pg) = 0 and the Im z; axis is perpendicular
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to 8D. Let B.(pg) denote the non-isotropic bali

[ lal s
B”m‘&ﬂmw+z¥mm<*'

2

Since @D is C?, it follows that there is an ey > 0 such that for pg
sufficiently near 8D and z € B,,(py) we have z € D and

(2.1) 2Bo) < 52) < 26(p0).

There is 2 compact subset K of D, a sequence {p,} in D\ K, and a
positive integer N such that

(2.2)
the family { B.,/2(p,) } covers D\ K, and

(2.3)
each point of D lies in at most N of the sets B, (p;).

For brevity we denote by B, the ball B, /»(p,) and by B, the ball

B €0 (p.? )
By homogeneity, it follows from Lemma 2.1 that

(2.4) ( / || dV) §(p,)~ntD
BJ
p2/p2
< (f [u[”‘) 5(1,3)-(*'»-*-1)102/?1
B

7
p2/m
'é.?

By (2.1), (2.2}, and (2.3), we have to give a bound to

[ lu|p25a2—1 dVNE/ |u|1’25°‘2_1 dv
D 7 I8,
~ Z (f |2}P2 dV) 5(p, )27,
7 B,
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where the summation is a finite sum.
Using (2.4), it is enough to show that

(2.5) Z (/~ !u"" d,V) 6(pJ)—("+1)(1-PL/P2)+(02—1)P1/P2 < 50
B,

and
(2.6)

=(/,

7

|(§u]”‘ dV) a(pj)m/z—-(n-i—l)(l—m/m)-i-(az—1)p1/pz < 00,

We note that —(n+1){1—p1/p2)+ (a2 —1)p1/p2 = 1 —1. Hence the
inequalities (2.5) and (2.6) follows from (2.3) and growth conditions
of u and Ju. 0

3. An example

In this section we give an example to show that the embedding in
Theorem 1.2 is the optimal result in some sense for strictly pseudo-
convex domains We restrict ourselves to the unit ball By 1n C?

LEMMA 3.1 ([15]). For z € By, c real, n > —1, define

1 — [¢]?)7
Je n(z) = /;n il "(C_ - Z|iiLz+n+pdV(C)

When ¢ < 0, then J,.,, is bounded in B,,. When ¢ > 0, then J. ,(2) =
(1 — |2|?)7¢. Finally, Jo, = —log(1l — |z]?).

THEOREM 3.2, Let 1 <p; <p2 < >0, a;, >0, and 2+ ;) /p1 =
(2 + a2)/p2. For any € > 0 there is up,a,,c € LB (B2) such that
Up, a1,¢ does not belong to LE2T¢(By) or L2 _ (Bs), while Oup, o, .

oy —E
belongs to LY} | /2(Ba2).
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Proof. Ifdp; —ay—p1/2 = 2—p then dp, —aa—pa /24 upa/p1 = 2.
So, we can choose d > 0 such that dp; —a; — p1/2 < 2, dps — a2 —
p2/2+€> 2, and dpy — a2 — pa/2 +€(d —1/2) > 2.

Let up, a;,e(21,22) = Z2/(1 — z1)%. For simplicity of notation, we

Wwrite @ = Up, a,,e and 7, = y/1 — |21|2. Then we have
3.1
|22t (1 — |21 ]2 ~ |za| )2~

»

g S [ ok av
dA(z -
S 22l (1~ [z1[? ~ f2a?)™ A ()
i<t 11— 21|% S cr,,

12

By the polar coordinate change |22|2 = re*®, we have

(3.2)
I(z1) = / 2P (1 — | ? = |22l )™~ dA(22)
|22|<Tzl
riy T’Z ay—1
— _ 2y —1 p1+1 o
2m(1 — |2 /0 i (1 l—lzl\z) dr

1
= 2m(1 — lzllz)aﬁ’"/z/ (1 - 32)01_18”‘+1d5,
0
where we set s = r/4/1 — |2;]2. Note that

1
- 1 P1
_ 2ya1—1  pr+1 J—— fa
fo(l 5%) sP1Tids 23(2+1,a1),

where B(-,-) is the beta function. By (3.1), (3.2) and Lemma 3.2, it
follows that

ull?: </ dA(z)
D101~ zl<1 Il — zlldpl—al—m/2

. dA(Z;}
= lm 5
r=1= Jip a1 = zyr|dPmear/

<1, since dp; —a; — % < 2.
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Similarly, we can prove that [|Qullp, a,4p /2 S 1.
Now we have

i

pzte
p2-te,o

dA(Z],) / pa+ 2 2 -1
= 22|P2 (1 — {21 ]" — |22*)** T dA(22)
[zxkl 11— 21|d(”2+6) fza|<ryy ! | !

_ 27r/- (1 . !zllz)a2+(1?z+e)/2 /1(1 ~ 82)a2-15p2+1+ed$
jz1]<1 V]

i
~ fz1]<1

o~
~

r—1=

- s A

1— 2Naa+{pa+e)/2
hm / 1 —la1f) y dA(z1)

. 1
lim = 00,

1 (1 - 7-2)dp2—ag—p2/2+e(d-—1/2)-—2

since d(pa +€) —aa — (pa +€)/2 =dps —ag — p2/2 +de —€/2 > 2.
Similarly, we can show that [{u}|,, o,—c is divergent since dpy —
ag ~ p2/2 + € > 2. Thus we get the result. O
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