EMBEDDING OF WEIGHTED L^{p} SPACES AND THE $\tilde{\partial}$-PROBLEM

Hong Rae Cho

Abstract. Let D be a bounded domain in \mathbb{C}^{n} with C^{2} boundary. In this paper, we prove the following mequality

$$
\|u\|_{p_{2}, \alpha_{2}} \lesssim\|u\|_{p_{1}, \alpha_{1}}+\|\bar{\partial} u\|_{p_{1}, \alpha_{1}+p_{1} / 2}
$$

where $1 \leq p_{1} \leq p_{2}<\infty, \alpha_{3}>0,\left(n+\alpha_{1}\right) / p_{1}=\left(n+\alpha_{2}\right) / p_{2}$, and $1 / p_{2} \geq 1 / p_{1}-1 / 2 n$

1. Introduction and statement of results

Let D be a bounded domain in \mathbb{C}^{n} with C^{2} boundary. For $z \in D$ let $\delta(z)$ denote the distance from z to ∂D. For $\alpha>0$, we define a weighted measure $d V_{\alpha}$ on D by $d V_{\alpha}=C_{\alpha} \delta^{\alpha-1} d V$ where $d V$ is the volume element and C_{α} is chosen so that $d V_{\alpha}$ is a probability measure. As $\alpha \rightarrow 0^{+}$the measures $d V_{\alpha}$ converges as measures on ∂D to the normalized surface measure on ∂D which we denote $d V_{0}$ (or sometimes $d \sigma$). We will denote the L^{p} space with respect to $d V_{\alpha}$ by L_{α}^{p}, and the associated norm by $\|\cdot\|_{p, \alpha}$. We will denote by $A_{\alpha}^{p}(D)=L_{\alpha}^{p}(D) \cap \mathcal{O}(D)$ the subspace of $L_{\alpha}^{p}(D)$ consisting of

Recerved April 23, 2003.
2000 Mathematics Subject Classification: 32A36, 32W05; 32T15
Key words and phrases. Embedding of weighted L^{p} spaces, $\bar{\partial}$-problem, strictly pseudoconvex domain

Ths work was supported by Research Institute for Basic Scrences, Pusan National Unversity(2003)
functions which are holomorphic on D. In particular, $A_{0}^{p}(D)$ is the Hardy class usually denoted by $H^{p}(D)$, which we identify in the usual way with a subspace of $L_{0}^{p}(D)=L^{p}(\partial D ; d \sigma)$ (see [16]). Beatrous [6] proved the following embedding theorem.

Theorem $1.1([6])$. Let D be a bounded domain in \mathbb{C}^{n} with C^{2} boundary and assume that $0<p_{1} \leq p_{2}<\infty, \alpha_{j}>0$, and $\left(n+\alpha_{1}\right) / p_{1}=\left(n+\alpha_{2}\right) / p_{2}$. Then $A_{\alpha_{1}}^{p_{1}}(D) \subset A_{\alpha_{2}}^{p_{2}}(D)$ and the inclusion is continuous.

In the case $\alpha_{1}=0$ the embedding in Theorem 1.1 will be

$$
H^{p_{1}}(D) \subset A_{\alpha_{2}}^{p_{2}}(D), \quad \text { where } \quad n / p_{1}=\left(n+\alpha_{1}\right) / p_{2}
$$

This is a generalization of a well-known result of Hardy-Littlewood in the unit disc (see [13, p.87]). Beatrous [7] proved that the case $\alpha_{1}=0$ holds if D is strictly pseudoconvex domains. Recently, the author proved the case $\alpha_{1}=0$ in convex domains of finite type (see [9]). Moreover, it is proved that the case $\alpha_{1}=0$ holds in bounded domains with C^{2} boundary ($[10],[11]$).

In this paper, we extend Theorem 1.1 for $L_{\alpha}^{p}(D)$ functions u with some growth condition of $\bar{\partial} u$, and give some consequences for the $\bar{\partial}$-problem.

Theorem 1.2. Let D be a bounded domain in \mathbb{C}^{n} with C^{2} boundary and assume that $1 \leq p_{1} \leq p_{2}<\infty, \alpha_{3}>0,\left(n+\alpha_{1}\right) / p_{1}=$ $\left(n+\alpha_{2}\right) / p_{2}$, and $1 / p_{2} \geq 1 / p_{1}-1 / 2 n$. Let $u \in L_{\alpha_{1}}^{p_{1}}(D)$. Then u belongs to $L_{\alpha_{2}}^{p_{2}}(D)$ under the extra condition that $\bar{\partial} u \in L_{\alpha_{1}+p_{1} / 2}^{p_{1}}(D)$.

In condition of $\bar{\partial} u$, one recognizes the gain for the solution of the $\bar{\partial}$-equation in strictly pseudoconvex domains. Let D be a strictly pseudoconvex domain in \mathbb{C}^{n} with C^{2} boundary. Let $f \in L_{\alpha+p / 2}^{p}(D)$ be a $\bar{\partial}$-closed $(0,1)$ form on D. In ([2], [12]) it was proved that there is a solution u for $\bar{\partial} u=f$ such that

$$
\|u\|_{p, \alpha} \leq C_{p, \alpha}\|f\|_{p, \alpha+p / 2} \quad \text { for } \quad 1 \leq p<\infty, \alpha>0 .
$$

Thus we get the following result.

Corollary 1.3. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^{n} with C^{2} boundary. Let $1 \leq p_{1} \leq p_{2}<\infty, \alpha_{j}>$ $0,\left(n+\alpha_{1}\right) / p_{1}=\left(n+\alpha_{2}\right) / p_{2}$, and $1 / p_{2} \geq 1 / p_{1}-1 / 2 n$. Let $f \in L_{\alpha_{1}+p_{1} / 2}^{p_{1}}(D)$ be a $\bar{\partial}$-closed $(0,1)$ form on D. Then there is a solution $u \in L_{\alpha_{2}}^{p_{2}}(D)$ for $\bar{\partial} u=f$.

REMARK 1.4. When $1 \leq p_{1}<2$, if we take $p=p_{1}, \alpha_{1}=1-p / 2$, and $\alpha_{2}=1$, then Corollary 1.3 implies that for a $\bar{\partial}$-closed $(0,1)$ form $f \in L^{p}(D)$ there is a solution $u \in L^{q}(D)$ for $\bar{\partial} u=f$, where $1 / q=1 / p-1 /(2 n+2)$. The result is the optimal L^{p}-estimate for $\bar{\partial}$ proved in [14] when $1 \leq p<2$. For more recent results about estimates for $\bar{\partial}$ and $\bar{\partial}_{b}$ by means of integral kernels we can refer ([1], [3], [4], [5]).

2. Proof of Theorem 1.2

We shall rely on Bonami-Sibony's ideas [8] for the proof of Theorem 1.2. Before proceeding with the proof, we give the key lemma.

LEMMA 2.1 ([8]). Let B be the unit ball, \tilde{B} its homothetic of radius $R_{0}>1$, let $1 \leq p \leq r<\infty$. Then there exists a constant $C>0$ such that for any $f \in L^{p}(\tilde{B})$ for which $\bar{\partial} f$ belongs to $L^{t}(\tilde{B})$ with $t \geq 1$ and $1 / r \geq 1 / t-1 / 2 n$:

$$
\left(\int_{B}|f|^{r} d V\right)^{1 / \tau} \leq C\left(\int_{\bar{B}}|f|^{p} d V\right)^{1 / p}+C\left(\int_{\bar{B}}|\bar{\partial} f|^{t} d V\right)^{1 / t}
$$

Proof of Theorem 1.2. It is enough to prove the inequality

$$
\int_{D}|u|^{p_{2}} \delta^{\alpha_{2}-1} d V \lesssim \int_{D}|u|^{p_{1}} \delta^{\alpha_{1}-1} d V+\int_{D}|\bar{\partial} u|^{p_{1}} \delta^{\alpha_{1}+p_{1} / 2-1} d V
$$

For $p_{0} \in D$ sufficiently near ∂D, we translate and rotate the coordinate system so that $z\left(p_{0}\right)=0$ and the $\operatorname{Im} z_{1}$ axis is perpendicular
to ∂D. Let $\mathcal{B}_{\epsilon}\left(p_{0}\right)$ denote the non-isotropic ball

$$
\mathcal{B}_{\epsilon}\left(p_{0}\right)=\left\{\frac{\left|z_{1}\right|^{2}}{\left(\epsilon \delta\left(p_{0}\right)\right)^{2}}+\sum_{2}^{n} \frac{\left|z_{3}\right|^{2}}{\epsilon \delta\left(p_{0}\right)}<1\right\} .
$$

Since ∂D is C^{2}, it follows that there is an $\epsilon_{0}>0$ such that for p_{0} sufficiently near ∂D and $z \in \mathcal{B}_{\epsilon_{0}}\left(p_{0}\right)$ we have $z \in D$ and

$$
\begin{equation*}
\frac{\delta\left(p_{0}\right)}{2} \leq \delta(z) \leq 2 \delta\left(p_{0}\right) \tag{2.1}
\end{equation*}
$$

There is a compact subset K of D, a sequence $\left\{p_{j}\right\}$ in $D \backslash K$, and a positive integer N such that

$$
\begin{equation*}
\text { the family }\left\{\mathcal{B}_{\epsilon_{0} / 2}\left(p_{3}\right)\right\} \text { covers } D \backslash K \text {, and } \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\text { each point of } D \text { lies in at most } N \text { of the sets } \mathcal{B}_{\epsilon_{0}}\left(p_{g}\right) . \tag{2.3}
\end{equation*}
$$

For brevity we denote by \mathcal{B}_{3} the ball $\mathcal{B}_{\epsilon_{0} / 2}\left(p_{3}\right)$ and by $\tilde{\mathcal{B}}_{j}$ the ball $\mathcal{B}_{\epsilon_{0}}\left(p_{j}\right)$.

By homogeneity, it follows from Lemma 2.1 that

$$
\begin{align*}
& \left(\int_{\mathcal{B}_{3}}|u|^{\mid p_{2}} d V\right) \delta\left(p_{3}\right)^{-(n+1)} \tag{2.4}\\
\lesssim & \left(\int_{\overline{\mathcal{B}}_{J}}|u|^{p_{1}}\right)^{p_{2} / p_{3}} \delta\left(p_{j}\right)^{-(n+1) p_{2} / p_{1}} \\
& +\left(\int_{\overline{\mathcal{B}}_{3}}|\bar{\partial} u|^{p_{1}} d V\right)^{p_{2} / p_{1}} \delta\left(p_{j}\right)^{p_{2} / 2-(n+1) p_{2} / p_{1}} .
\end{align*}
$$

By (2.1), (2.2), and (2.3), we have to give a bound to

$$
\begin{aligned}
\int_{D}|u|^{p_{2}} \delta^{\alpha_{2}-1} d V & \sim \sum_{j} \int_{\mathcal{B}_{3}}|u|^{p_{2}} \delta^{\alpha_{2}-1} d V \\
& \sim \sum_{j}\left(\int_{\mathcal{B}_{J}}|u|^{p_{2}} d V\right) \delta\left(p_{j}\right)^{\alpha_{2}-1}
\end{aligned}
$$

where the summation is a finite sum.
Using (2.4), it is enough to show that

$$
\begin{equation*}
\sum\left(\int_{\tilde{\mathcal{B}}_{3}}|u|^{p_{1}} d V\right) \delta\left(p_{j}\right)^{-(n+1)\left(1-p_{1} / p_{2}\right)+\left(\alpha_{2}-1\right) p_{1} / p_{2}}<\infty \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum\left(\int_{\tilde{\mathcal{B}}_{3}}|\bar{\partial} u|^{p_{1}} d V\right) \delta\left(p_{j}\right)^{p_{1} / 2-(n+1)\left(1-p_{1} / p_{2}\right)+\left(\alpha_{2}-1\right) p_{1} / p_{2}}<\infty . \tag{2.6}
\end{equation*}
$$

We note that $-(n+1)\left(1-p_{1} / p_{2}\right)+\left(\alpha_{2}-1\right) p_{1} / p_{2}=\alpha_{1}-1$. Hence the inequalities (2.5) and (2.6) follows from (2.3) and growth conditions of u and $\bar{\partial} u$.

3. An example

In this section we give an example to show that the embedding in Theorem 1.2 is the optimal result in some sense for strictly pseudoconvex domains We restrict ourselves to the unit ball B_{2} in \mathbb{C}^{2}

Lemma 3.1 ([15]). For $z \in B_{n}$, c real, $\eta>-1$, define

$$
J_{c \eta}(z)=\int_{B_{n}} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} \cdot z|^{n+1+\eta+c}} d V(\zeta) .
$$

When $c<0$, then $J_{c, \eta}$ is bounded in B_{n}. When $c>0$, then $J_{c, \eta}(z) \approx$ $\left(1-|z|^{2}\right)^{-c}$. Finally, $J_{0, \eta} \approx-\log \left(1-|z|^{2}\right)$.

Theorem 3.2. Let $1 \leq p_{1} \leq p_{2}<\infty, \alpha_{3}>0$, and $\left(2+\alpha_{1}\right) / p_{1}=$ $\left(2+\alpha_{2}\right) / p_{2}$. For any $\epsilon>0$ there is $u_{p_{1}, \alpha_{1}, \epsilon} \in L_{\alpha_{1}}^{p_{1}}\left(B_{2}\right)$ such that $u_{p_{1}, \alpha_{1}, \epsilon}$ does not belong to $L_{\alpha_{2}}^{p_{2}+\epsilon}\left(B_{2}\right)$ or $L_{\alpha_{2}-\epsilon}^{p_{2}}\left(B_{2}\right)$, while $\bar{\partial} u_{p_{1}, \alpha_{1}, \epsilon}$ belongs to $L_{\alpha_{1}+p_{1} / 2}^{p_{1}}\left(B_{2}\right)$.

Proof. If $d p_{1}-\alpha_{1}-p_{1} / 2=2-\mu$ then $d p_{2}-\alpha_{2}-p_{2} / 2+\mu p_{2} / p_{1}=2$. So, we can choose $d>0$ such that $d p_{1}-\alpha_{1}-p_{1} / 2<2, d p_{2}-\alpha_{2}-$ $p_{2} / 2+\epsilon>2$, and $d p_{2}-\alpha_{2}-p_{2} / 2+\epsilon(d-1 / 2)>2$.

Let $u_{p_{1}, \alpha_{1}, \epsilon}\left(z_{1}, z_{2}\right)=\bar{z}_{2} /\left(1-z_{1}\right)^{d}$. For simplicity of notation, we write $u=u_{p_{1}, \alpha_{1}, \epsilon}$ and $r_{z_{1}}=\sqrt{1-\left|z_{1}\right|^{2}}$. Then we have

$$
\begin{align*}
\|u\|_{p_{1}, \alpha_{1}}^{p_{1}} & \lesssim \int_{B_{2}} \frac{\left|z_{2}\right|^{p_{1}}\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{\alpha_{1}-1}}{\left|1-z_{1}\right|^{d p_{1}}} d V \tag{3.1}\\
& \lesssim \int_{\left|z_{1}\right|<1} \frac{d A\left(z_{1}\right)}{\left|1-z_{1}\right|^{d p_{1}}} \int_{\left|z_{2}\right|<r_{x_{1}}}\left|z_{2}\right|^{p_{1}}\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{\alpha_{1}-1} d A\left(z_{2}\right) .
\end{align*}
$$

By the polar coordinate change $\left|z_{2}\right|^{2}=r e^{\imath \theta}$, we have

$$
\begin{align*}
I\left(z_{1}\right) & =\int_{\left|z_{2}\right|<r_{z_{1}}}\left|z_{2}\right|^{p_{1}}\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{\alpha_{1}-1} d A\left(z_{2}\right) \tag{3.2}\\
& =2 \pi\left(1-\left|z_{1}\right|^{2}\right)^{\alpha_{1}-1} \int_{0}^{r_{z_{1}}} r^{p_{1}+1}\left(1-\frac{r^{2}}{1-\left|z_{1}\right|^{2}}\right)^{\alpha_{1}-1} d r \\
& =2 \pi\left(1-\left|z_{1}\right|^{2}\right)^{\alpha_{1}+p_{1} / 2} \int_{0}^{1}\left(1-s^{2}\right)^{\alpha_{1}-1} s^{p_{1}+1} d s
\end{align*}
$$

where we set $s=r / \sqrt{1-\left|z_{1}\right|^{2}}$. Note that

$$
\int_{0}^{1}\left(1-s^{2}\right)^{\alpha_{1}-1} s^{p_{1}+1} d s=\frac{1}{2} B\left(\frac{p_{1}}{2}+1, \alpha_{1}\right),
$$

where $B(,, \cdot)$ is the beta function. By (3.1), (3.2) and Lemma 3.2, it follows that

$$
\begin{aligned}
\|u\|_{p_{1}, \alpha_{1}}^{p_{1}} & \lesssim \int_{\left|z_{1}\right|<1} \frac{d A\left(z_{1}\right)}{\left|1-z_{1}\right|^{d p_{1}-\alpha_{1}-p_{1} / 2}} \\
& =\lim _{r \rightarrow 1^{-}} \int_{\left|z_{1}\right|<1} \frac{d A\left(z_{1}\right)}{\left|1-z_{1} r\right|^{d p_{1}-\alpha_{1}-p_{1} / 2}} \\
& \lesssim 1, \quad \text { since } d p_{1}-\alpha_{1}-\frac{p_{1}}{2}<2 .
\end{aligned}
$$

Similarly, we can prove that $\|\bar{\partial} u\|_{p_{1}, \alpha_{1}+p_{1} / 2} \lesssim 1$.
Now we have

$$
\begin{aligned}
& \|u\|_{p_{2}+\epsilon, \alpha_{2}}^{p_{2}+\epsilon} \\
& =\int_{\left|z_{1}\right|<1} \frac{d A\left(z_{1}\right)}{\left|1-z_{1}\right|^{d\left(p_{2}+\epsilon\right)}} \int_{\left|z_{2}\right|<r_{z_{1}}}\left|z_{2}\right|^{p_{2}+\epsilon}\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{\alpha_{2}-1} d A\left(z_{2}\right) \\
& =2 \pi \int_{\left|z_{1}\right|<1} \frac{\left(1-\left|z_{1}\right|^{2}\right)^{\alpha_{2}+\left(p_{2}+\epsilon\right) / 2}}{\left|1-z_{1}\right|^{d\left(p_{2}+\epsilon\right)}} \int_{0}^{1}\left(1-s^{2}\right)^{\alpha_{2}-1} s^{p_{2}+1+\epsilon} d s \\
& \gtrsim \int_{\left|z_{1}\right|<1} \frac{\left(1-\left|z_{1}\right|^{2}\right)^{\alpha_{2}+\left(p_{2}+\epsilon\right) / 2}}{\left|1-z_{1}\right|^{d\left(p_{2}+\epsilon\right)}} d A\left(z_{1}\right) \\
& =\lim _{r \rightarrow 1^{-}} \int_{\left|z_{1}\right|<1} \frac{\left(1-\left|z_{1}\right|^{2}\right)^{\alpha_{2}+\left(p_{2}+\epsilon\right) / 2}}{\left|1-z_{1} r\right|^{d\left(p_{2}+\epsilon\right)}} d A\left(z_{1}\right) \\
& \approx \lim _{r \rightarrow 1^{-}} \frac{1}{\left(1-r^{2}\right)^{d p_{2}-\alpha_{2}-p_{2} / 2+\epsilon(d-1 / 2)-2}}=\infty,
\end{aligned}
$$

since $d\left(p_{2}+\epsilon\right)-\alpha_{2}-\left(p_{2}+\epsilon\right) / 2=d p_{2}-\alpha_{2}-p_{2} / 2+d \epsilon-\epsilon / 2>2$.
Simlarly, we can show that $\|u\|_{p_{2}, \alpha_{2}-\varepsilon}$ is divergent since $d p_{2}-$ $\alpha_{2}-p_{2} / 2+\epsilon>2$. Thus we get the result.

REFERENCES

[1] K. Adachi and H R. Cho, $L^{p}(1 \leq p \leq \infty)$ estımates for $\bar{\partial}$ on a certain pseudoconvex domain in \mathbb{C}^{n}, Nagoya Math J. 148 (1997), 127-136
[2] H Ahn and H R Cho, Optimal non-zsotropic L^{p} estimates with weights for $\bar{\partial}$ un structly pseudoconvex domarns, Kyushu J Math 56 (2002), 447-457
[3] H Ahn and H R Cho, Zero sets of holomorphyc functions in the Nevanlinna type class on convex domains on \mathbb{C}^{2}, Japanese J Math 28 (2002), 245-260
[4] H Ahn and H R Cho, Optimal Sobolev estimates for $\bar{\partial}$ on convex domanns of finite type, Math Z (to appear)
[5] H Ahn and H R. Cho, Optrmal Holder and L^{p} estimates for $\bar{\partial}_{b}$ on the boundarves of convex domains of finvte type, submitted
[6] F Beatrous, L^{p} estimates for extensions of holomorphic functions, Michıgan Math J 32 (1985), 361-380
[7] ___ Estimates for derivatives of holomorphic functions in pseudoconvex domanns, Math Z 191 (1986), 91-116
[8] A. Bonam and N. Sibony, Sobolev embedding in \mathbb{C}^{n} and the 0 -equation, The Journal of Geometric Analysis 1-4 (1991), 307-327.
[9] H. R. Cho, Estzmates on the mean growth of H^{p} functions on convex domains of finte type, Proc Amer Math Soc. (to appear).
[10] H. R Cho and E. G Kwon, Embedding of Hardy spaces into wetghted Bergman spaces in bounded domains with C^{2} boundary, Illinois J. Math (to appear)
[11] H. R. Cho and E. G. Kwon, Growth rate of the functzons in Bergman type spaces, Journal Math. Anal. Appl. (to appear).
[12] A. Dautov and G. M Henkin, Zeros of Holomorphic functıons of finite order and weighted estzmates for solutions of the $\overline{\bar{\partial}}$-equation, Math. USSR Sb. 35 (1979), 449-459.
[13] P. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
[14] S. G Krantz, Optimal Lipschitz and L^{p} regularity for the equation $\bar{\partial} u=f$ on strongly pseudoconvex domarns, Math Ann 219 (1976), 233-260
[15] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Spinger-Verlag, New York, 1980
[16] E M. Stem, Boundary behavior of holomorphic functions of Several Complex Varaables, Princeton Univ Press, Princeton, N J, 1972

Department of Mathematics
Pusan National University, Pusan 609-735
South Korea
E-mail: chohr@pusan.ac.kr

