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THE BERGMAN KERNEL FUNCTION AND
ASSOCIATED INVARIANTS NEAR STRONGLY
PSEUDOCONVEX BOUNDARY POINTS

SUNHONG LEE

ABsTRACT We study the asymptotic boundary behavior of the
Bergman kernel function on the diagonal, the Bergman metric
and the holomorphic sectional curvatures of the Bergman metric
m bounded strongly pseudoconvex domains

1. Introduction

The asymptotic boundary behavior of the Bergman kernel function
on the diagonal, the Bergman metric and the holomorphic sectional
curvatures of the Bergman metric have been studied by many ex-
perts. In this paper, we obtain those asymptotic boundary behavior
for bounded strongly psendoconvex domains by the scaling method.
Ornigmally, those results were found by Hormander [9], Diederich [4, 5],
Kim and Yu [10]

Let G be a bounded domain in C* and let du the standard volume
form of C*. Consider the space

W(G) = {f G—C

f s holomorphic,/ |£12dp < oo}
G

which is usually called the Bergman space Since it 1s a separable
Hilbert space with respect to the L? norm, we may choose an orthonor-
mal basis {,}52, Then the Bergman kernel function Kg- GG — C
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can be represented by

Ka(2,0) =Y @,(2) ,(0).

=1

Then the Bergman metric of G is given by

n
dsi(zi,) = Y Gop(2)dz* @ d7°
o,f=1
where
?log K(2,7)
9B = e
One of the important features of this metric is that it 15 one of the
invariant metrics, in the sense that every biholomorphic mapping be-
comes an isometry. It 1s also obvious that this metric 1s Kahlerian,
The holomorphie (sectional) curvature R at z in the direction £ is
given by

Ry u(z) - E €6 E
l9,7(2) - €2

Rg(z;€6) =

where
Ren— — P9;x 4 gvﬁ@ﬁ%.
MELT 9ok oE 9% 7!

Here, we have employed the so-called summation convention. More-
over, g"” represents the jv-th entry of the inverse matrix of (g,3)

The asymptotic boundary behavior of these quantities was first an-
alyzed by Bergman [2, 3]. There, he investigated the kernel and the
metric for rather special domains. The celebrated asymptotic expan-
sion formula of Bergman kernel function for strongly pseudoconvex
domains was obtained by Fefferman [6]. For the results on strongly
pseuadoconvex domains, see Hérmander (9}, Diederich [4, 5], Klembeck
[11], and others

2. Main results

In this section, we present the main results.
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Let a domain G m C® have C? boundary and let p be a C? defining
function. Let p € 8G. An n-tuple w = (wy,...,wy,) of complex
numbers is called a complea: t(mgent vector to 0G at p if

Z (p)wj =0

The collection of all complex vector to 0G at p is called the complex
tangent space to 3G at p and is denoted by Ty (8G). The quadratic
expression

Ly p(w, @) = Z 6% (p)wjﬁk, we Ct
Jhk=1
of p at p is called the compler Hessian or the Lews formof p at p Let
U be a neighborhood of G. We say that G is strongly pseudoconvex
at paf

n 62,0 _ .
Z a—zj'gk(p)’ijk > 0, YVu # 0c Tp (BG).

A domamn is called strongly (Lew) pseudoconver if all its boundary
points are strongly pseudoconvex.

LeMMA 1 (Lee [12]). Let G C C" be a domain with C* boundary
Let p € 8G Let ¢ and p be C? defining functions for G. Suppose
that ||[Vé(p)|| = ||Va(p)ll Then, for every & € T-(8G), we have that

Lc&,p(faz) = Lﬂ.P(é-)g)‘

Lemma 1 mmplies that the positive definite hermitian form Lag, on
the complex tangent space Ty (8G), defined by Lac, = |Vp(p)| 7' Ly,
is independent of any defining function p at p € 8G; Lag, is called
the Lews form of 8G at p € G Some authors ([1], {8], [13]) use the
pormualization condition ”Vzp(p)u = 1. In such a case, we have that

Loc,p(£:€) = pp(é £), €£eT,;(96),

since

Vplo) = 5 (22 0)~ VTG B pl) = VIS0 )
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DEFINITION 1. By a stream approaching p in G' we mean a C?
curve ¢: (0, €) — G satisfying limyo g(¢) = p.

Now we have the following results:

THEOREM 1. Let G be a bounded strongly pseudoconvex domain
in C* with C? boundary. Let K¢, ds% and Rg be the Bergman kernel
function, the Bergman metric and the holomorphic curvature of the
Bergman metric for G, respectively. Let p € 8G and ¢(t) an stream
in G, approaching p. For £ € C", let £y and &r ) be the normal
and tangential components of £ with respect to T;fft) (0G), respectively.
Then we have that

n+1
Ko(a(0,0(0) ~ 72z (d(;(t))) "detlLoasty)

PR évomll \° | Locaw Erpy Erpm)
dsa(q<t>,s,f)~(n+1>[(2,—d(';@—)) » Locsifrstape) |

4

Rg(g{t); ) ~ AT

Here A(t) ~ B(t) means that lim;_, g% =1

The others of this paper is devoted to the proof of the theorem.

3. Minimum Integrals

In this section, we summarize the minimum integrals Let G be a
bounded domam in C". Let z € G, and let £ = (£1,...,6,) € T.G =
C” be a nonzero vector. We consider the minimum integrals:
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1) it { [ 11Pan s 1 1G) 1) =1},

15(5,6) = {f fPde feHAC), f(z) =0, ng 1},
19(:6) = { [ lfidu . £ e 126, 1) =0,
_ . 0 f _
52(2) ... 0 J; gjfkagjaz 1},

We write down some basic properties of the minimum integrals:

{a) Let 2 be a bounded domain 1n C* with 2 € @ C G. Then by
the definitions of the minimum integrals we can see that

I§H2) < I§ (=), and Iz 6) < I%(z;€), 1=1,2.
Then we have the following mild modification from [14], [10]:

PrRopPOsITION 1. Let {G,}$2, be a sequence of bounded domains
in C* thatl converges to a convex bounded domain G C C" in such a
way that there exists a common interior point ¢ of G and G, for all §
and such that for every € > 0 there exists 3, satisfying

(l—e(G-¢CG—qC(1+6(G—-g),

where G — g denotes the affine translation by —q of the set G in C*,
Then for every nonzcro vector £ € T,(G) =

hm Ig7(g) > IE(q),  lim I (g,€) = If(g. &), k=1,2.
3—00 7300

{b) We can study the Bergman kernel, Bergman metric, and its
curvature with the minimum integrals-
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PROPOSITION 2 (Bergman [2], Fuchs {7]). Let 2,£,G be as above.
Then

I5(2)

1 20, ¢ F) —
K(;'(Z, Z) dsG(Z; §1 f) IlG(z,f) s

I

(I (2,6)
Re(z€) = 2 — ——~—.
S (PVET)
(c) We may localize the minimum integrals:

ProPOSITION 3 (Kim-Yu [10]). Let G be a bounded strongly pseu-
doconvex domain in C". Let p € 3G. Let U be a neighborhood of p.
Then, we have

- IP(%8)
ll_lgm—l, 2—0,1,2.

4. The Scaling Method

Let G be a bounded strongly pseudoconvex domain in C* with C?
boundary. Let p be a boundary point of G. Let ¢(t) be an approaching
stream to p in G. In this section, we demonstrate a construction of
a biholomorphic mapping of a local domain @ = G N B{p;r) onto a
perturbation of the umt ball in C*, where B(p; r) is the ball of radius
r centered at p for some positive constant 7.

DEFINITION 2. We call an approaching stream ¢(%) to p 1s radial
if g(t) lies 1n the inward normal real Line to the real complex tangent
space T,(0G) at p.

PROPOSITION 4. There are some positive constants C,r and ¢, and
a biholomorphic mapping ¥ of 2 = G N B(p;r) such that for 0 <

d{g(t)) < ¢
(gl = O(d(q(t)))

and

(2) B (0; V1- C\/d(q(t))) C¥(@Q)C B (o; Ji+ C\/d(q(t))) ,

where d(g(t)) = dist(g{t), dG). We may choose the constants C,r and
¢ uniformly for every p € 8G.
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Proof. Let p be a C? defining function of G with ||[Vp(z)}| = 1 for
z € 0G. Without loss of generality, we may assume that the stream
g{t) 1s radial.

Using a rotation and a unitary transformation, we may assume that
p=0(0=(0,...,0) the origin), Vp(0) = (1,0,...,0), and

n 82
p(z) = 2Re (Z 5, (0)z, + ;V;zk(o)z,zk)
3, =

=1

L 3 5r 55 27 + o{ell)

nk=1

= Re (zl + Z Oz (O)zjzk)

P - 02
+ Z SO0y, + ol + 1)

where z' = (0,22, . ,2,) and where
(0,1,0,. .,0),...,(0,. .,0,1)
are the eigenvectors for (3;":%’%:(0) Tk—s And we may assume that

Q(t) = (_t) 0: SRR 0)1

0 <t < € for some positive constant e.
Define V: C"* — C” by

n 32
V(z) = (zl + z Eﬁz;(ﬂ)zjzk,z% Z3,.. zn) )
3

The inverse function theorem says that V is biholomorphic on a neigh-
borhood of B(0;r) for some r > 0. Then V maps ¢(t) to V(¢(t)) =
(—t+bt2,0,. ,0) where b = & az (0). The defining function becomes

p
po V7 Hw) = Rew, +Z

Gy, O + ol + 1),
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Define £: C* — C* by
L(w) = (w, Gawy, - -+ , GpWy)

where a, = \/%3”.'5—](0). The map £ fixes V(g(t)), and the defining

function becomes
poV oL (u) = Reuy + [usf* + -+ + [unf’ + o Jua | + {[w'|[?).
Let S be a linear map from C" onto C™", defined by

1 1 1
8 = _ y = yeery T ~Un -
0= (g Gy ) .
Then & maps (£ o V)(q(t)) to (-1 + 6,0, ..,0), and the defining
function becomes

(poV7 oL 08T (v) = t{Rewy+|val* +- - -+ [val”) + o{t(|v] +[|]|)).

We apply the Cayley transformation 7 on (S o £ o V)(Q), (2 =
G N B(0;7}) defined by

T(v) = (

Then the reference point becomes (7 oS0 LoV)(q(t)) = (5%;,...,0),
and the defining function becomes

(poV oL oS o T ()

2 _ a 5
= (l!g-% 1[12 + |§1|C.i]1]2 Tt ]§jg~:|1]2) +o(t(Jw] + [10]1*))-

For z € Q, we have that

149 2v, 2v,,
].—'01)1—1)1’-“’1—2)1 )

2

2 o
2 t

v

1+
-

(T oS0 LoV@IF = |;

u
t
ul
t
b w|® + 4|
- It — uif?

4t(Reu; + {[u']|?)
- Qt(Re ul) + |’U.1I2’
where v = Lo V(z) and v’ = (0, ug,...,up).

=1+
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Let 8Q = V; U V, where V; = 8GN B(0;7) and V;, = 8B{0;7)NG.
For z € V|, we have that

4t(Reu; + ||u'l}?)
12 — 2t(Rewuy) + w1 f?
< 8(Cluy* + Clu| - fluf| + Ciluf’)

(T eSe LoV’ -1} =

_— t2 + ,ul [2
4tO|u1|3/2
(3) T | ?
—4CVE (| /1)
1+ (Jual/t)?
3/4
< 40\/5571—
< CVi.

Here, for convenience we use the same symbol C to stand for different
constants. For z € V5, we have that

. 1|2
4t(Reuy + |u'|°) < 4150 <ct
2 —2t(Reuq) + w2 — 62
where ¢ is the minimum of %;. By (3) and (4), we have that
(T o8cLoV)(@)|P -1 <COVE, z€09,

for some constant C'. It implies that for some positive constant ¢ r
and e, -

B (0, \/1—0\/2) C(To8oLoV)Q)C B(O;VHC\/Z),

where 0 < { < ¢ Since 0G 18 compact, we can choose the constants
C,r and ¢ umformly for every p € 9G O

(@) (T eSoLoV)@IF -1 =5

5. Proof of the main theorem

Let p be a C? defining function of G with {|[Vp(2)}| = 1 for z € 0G.
Using a rotation and a unitary transformation, we may assume that
p=0(0=(0, ..,0) the ongin), Vp(0) = (1,0,.. ,0).
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Choose the positive constants C,7 and € so that (2) is satisfied for
every boundary point Proposition 2 and Proposition 3 implies that

(5) Kela(t),q(t)) ~ Kala(t),q(t), dsi{q(t);€,&) ~ dsh(a(t);€,8),
and
Re(q(t); ) ~ Ra(g(t); €)-

We note that

n! 1
Koon(aw) = o o Gy
J‘-:

- 1— 2|8 + 2,2k, =
dszB(O,l)(Z;£7£) = Z (n + 1)( (Ifl_)i;!i:z-){; zjzkgjgk)

2,k=1

and

4

Rp1(z:€) = AT

The Radral Stream Case. Let ¢(t) be the radial stream in the proof of
Proposition 4. Consider the map ¥ =7 oS o LoV in Proposition 4.

First we consider the Bergman kernel function. Since ¥ is a biholo-
morphism on 2, we have that

(6)  Kalg(t),q(t)) = Kun)(¥{g(t), ¥(q(2))) - | det Jelgr (D).

By (2), we have that

(1) K po/ian (L), Tla(t) < Koy (L(a(), ¥(a(t)))
< K a7 (a), ¥(a(e)).
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Note that
(8)
so/ircvn L e®), ¥g(t)

1

:KB (\/—T\/_ (q(t)) W@(q ))) (m)

! 1 1 "
(AN CPEE L "UAVLI+COVE
1+CV1t [ 1-bt
n!
~ ﬁ’

where b = ?335-(0). Similarly, we have that

©) Ko Jmvn (e, ¥a(®) ~ 2
y (5), {6), (7), (8), and (9), we have

n+1
Kola(t), ) ~ 7= (d(ql(t») det{Locy)

We now consider the Bergman metric. Since ¥ is a biholomorphic
on {2, we have that

(10)  dsa(g(t);€,€) = dsiyny(T(a(t)), d¥lyn(€), d¥ g (),
By (2) and Proposition 1, we have that

dsyay (U {g(t)); d¥ o) (£), d¥ey (€))

~ dsz(¥(g(t)); AUy (€), ¥4 (€)),

From Proposition 4, we know that

(12)  dsh(W(q(2)); ¥y (£), A% (6)),

(1) l ( €m0l ) . Locow(Erp:raw)

(11)

2-d(g(t)) d{q(t))
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By (5), (10), {11), and (12), we have

€m0l )2 Lo o) Er.0(8)> Er0())
2 - d(q(t)) d{q(t))

For the holomorphic curvature of the Bergman metric, by the same
reason to the metric, we have

dsg(q(t);6,8) ~ (n+1) [ (

4

Re{q(t); €) ~ Ren (2 (g(t); (d¥)(€)) = —~—7-

General Stream Case. Let ¢(t) be an arbitrary stream approaching p.
Let p{t} be the closest boundary point to g{t). We may assume that
t = d(g(t), 0G). Let A be the unitary map such that

A(p(t)) =0 and  Alg(t)) = (=t,0, ..,0).

Since we may choose the constants C, 7, ¢ uniformly in (2), the identity
(1) follows m this case by the same method as above. Therefore, we
have the desired results. This completes the proof.
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