THE BERGMAN KERNEL FUNCTION AND ASSOCIATED INVARIANTS NEAR STRONGLY PSEUDOCONVEX BOUNDARY POINTS

Sunhong Lee

Abstract

We study the asymptotic boundary behavior of the Bergman kernel function on the diagonal, the Bergman metric and the holomorphic sectional curvatures of the Bergman metric in bounded strongly pseudoconvex domains

1. Introduction

The asymptotic boundary behavior of the Bergman kernel function on the diagonal, the Bergman metric and the holomorphic sectional curvatures of the Bergman metric have been studied by many experts. In this paper, we obtain those asymptotic boundary behavior for bounded strongly pseudoconvex domans by the scaling method. Orıgnally, those results were found by Hörmander [9], Dıederich [4, 5], Kim and Yu [10]

Let G be a bounded domain in \mathbb{C}^{n} and let $d \mu$ the standard volume form of \mathbb{C}^{n}. Consider the space

$$
\mathcal{H}^{2}(G):=\left\{f G \rightarrow \mathbb{C} \mid f \text { is holomorphic, } \int_{G}|f|^{2} d \mu<\infty\right\}
$$

which is usually called the Bergman space Since it is a separable Hilbert space with respect to the L^{2} norm, we may choose an orthonormal basss $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ Then the Bergman kernel functron $K_{G} \cdot G \times G \rightarrow \mathbb{C}$

[^0]can be represented by
$$
K_{G}(z, \zeta):=\sum_{\jmath=1}^{\infty} \varphi_{\jmath}(z) \overline{\varphi_{\jmath}(\zeta)}
$$

Then the Bergman metric of G is given by

$$
d s_{G}^{2}(z ; \cdot, \cdot)=\sum_{\alpha, \beta=1}^{n} g_{\alpha \bar{\beta}}(z) d z^{\alpha} \otimes d \bar{z}^{\beta}
$$

where

$$
g_{\alpha \bar{\beta}}(z):=\frac{\partial^{2} \log K(z, \bar{z})}{\partial z^{\alpha} \partial \bar{z}^{\beta}}
$$

One of the important features of this metric is that it is one of the invariant metrics, in the sense that every biholomorphic mapping becomes an isometry. It is also obvious that this metric is Kählerian.

The holomorphe (sectional) curvature R at z in the direction ξ is given by

$$
R_{G}(z ; \xi)=\frac{R_{\bar{h}_{3} k \bar{l}}(z) \cdot \bar{\xi}^{h} \xi^{3} \xi^{k} \bar{\xi}^{l}}{\left[g_{\jmath \bar{k}}(z) \cdot \xi^{\jmath} \bar{\xi}^{k}\right]^{2}}
$$

where

$$
R_{\bar{h} \jmath k \bar{l}}=-\frac{\partial^{2} g_{\jmath \bar{h}}}{\partial z^{k} \partial \bar{z}^{l}}+g^{\nu \bar{\mu}} \frac{\partial g_{\jmath \bar{\mu}}}{\partial z^{k}} \frac{\partial g_{\nu \bar{h}}}{\partial \bar{z}^{l}}
$$

Here, we have employed the so-called summation convention. Moreover, $g^{\overline{\mu \nu}}$ represents the $\mu \nu$-th entry of the inverse matrix of $\left(g_{\alpha \bar{\beta}}\right)$

The asymptotic boundary behavior of these quantities was first analyzed by Bergman $[2,3]$. There, he investigated the kernel and the metric for rather special domains. The celebrated asymptotic expansion formula of Bergman kernel function for strongly pseudoconvex domains was obtained by Fefferman [6]. For the results on strongly pseudoconvex domains, see Hörmander [9], Diederich [4, 5], Klembeck [11], and others

2. Main results

In this section, we present the main results.

Let a domain G in \mathbb{C}^{n} have C^{2} boundary and let ρ be a C^{2} defining function. Let $p \in \partial G$. An n-tuple $w=\left(w_{1}, \ldots, w_{n}\right)$ of complex numbers is called a complex tangent vector to ∂G at p if

$$
\sum_{j=1}^{n} \frac{\partial \rho}{\partial z_{j}}(p) w_{\jmath}=0
$$

The collection of all complex vector to ∂G at p is called the complex tangent space to ∂G at p and is denoted by $T_{p}^{\mathbb{C}}(\partial G)$. The quadratic expression

$$
L_{\rho, p}(w, \bar{w})=\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{k}}(p) w_{3} \bar{w}_{k}, \quad w \in \mathbb{C}^{n}
$$

of ρ at p is called the complex Hessian or the Lev form of ρ at p Let U be a neighborhood of \bar{G}. We say that ∂G is strongly pseudoconvex at p if

$$
\sum_{\jmath, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{\jmath} \partial \bar{z}_{k}}(p) w_{\jmath} \bar{w}_{k}>0, \quad \forall w \neq 0 \in T_{p}^{\mathbb{C}}(\partial G)
$$

A domain is called strongly (Levz) pseudoconvex if all its boundary points are strongly pseudoconvex.

Lemma 1 (Lee [12]). Let $G \subseteq \mathbb{C}^{n}$ be a domain with C^{2} boundary Let $p \in \partial G$ Let ϕ and ρ be C^{2} defining functions for G. Suppose that $\|\nabla \phi(p)\|=\|\nabla \rho(p)\|$ Then, for every $\xi \in T_{p}^{C}(\partial G)$, we have that

$$
L_{\phi, p}(\xi, \bar{\xi})=L_{\rho, p}(\xi, \bar{\xi})
$$

Lemma 1 mplies that the positive definite hermitian form $L_{\partial G, p}$ on the complex tangent space $T_{p}^{\mathbb{C}}(\partial G)$, defined by $L_{\partial G, p}=\|\nabla \rho(p)\|^{-1} L_{\rho, p}$, is independent of any defining function ρ at $p \in \partial G ; L_{\partial G, p}$ is called the Levi form of ∂G at $p \in \partial G$ Some authors ($[1],[8],[13])$ use the normalization condition $\left\|\nabla_{z} \rho(p)\right\|=1$. In such a case, we have that

$$
L_{\partial G, p}(\xi, \xi)=\frac{1}{2} L_{\rho, p}(\xi, \xi), \quad \xi \in T_{p}^{\mathbb{C}}(\partial G)
$$

since

$$
\nabla_{z} \rho(p)=\frac{1}{2}\left(\frac{\partial \rho}{\partial x_{1}}(p)-\sqrt{-1} \frac{\partial \rho}{\partial y_{1}}(p), \ldots, \frac{\partial \rho}{\partial x_{n}}(p)-\sqrt{-1} \frac{\partial \rho}{\partial y_{n}}(p)\right)
$$

Definition 1. By a stream approaching p in G we mean a C^{2} curve $q:(0, \epsilon) \rightarrow G$ satisfying $\lim _{t \downarrow 0} q(t)=p$.

Now we have the following results:
Theorem 1. Let G be a bounded strongly pseudoconvex domain in \mathbb{C}^{n} with C^{2} boundary. Let $K_{G}, d s_{G}^{2}$ and R_{G} be the Bergman kernel function, the Bergman metric and the holomorphic curvature of the Bergman metric for G, respectıvely. Let $p \in \partial G$ and $q(t)$ an stream in G, approaching p. For $\xi \in \mathbb{C}^{n}$, let $\xi_{N, p(t)}$ and $\xi_{T, p(t)}$ be the normal and tangential components of ξ with respect to $T_{p(t)}^{\mathrm{C}}(\partial G)$, respectively. Then we have that

$$
\begin{align*}
K_{G}(q(t), q(t)) & \sim \frac{n^{\prime}}{4 \pi^{n}} \cdot\left(\frac{1}{d(q(t))}\right)^{n+1} \cdot \operatorname{det}\left(L_{\partial G, p(t)}\right) \tag{1}\\
d s_{G}^{2}(q(t) ; \xi, \bar{\xi}) & \sim(n+1)\left[\left(\frac{\left\|\xi_{N, p(t)}\right\|}{2 \cdot d(q(t))}\right)^{2}+\frac{L_{\partial G, p(t)}\left(\xi_{T, p(t)}, \xi_{T, p(t)}\right)}{d(q(t))}\right] \\
R_{G}(q(t) ; \xi) & \sim-\frac{4}{n+1}
\end{align*}
$$

Here $A(t) \sim B(t)$ means that $\lim _{t \rightarrow 0} \frac{B(t)}{A(t)}=1$
The others of this paper is devoted to the proof of the theorem.

3. Minimum Integrals

In this section, we summarize the minimum integrals Let G be a bounded doman in \mathbb{C}^{n}. Let $z \in G$, and let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in T_{z} G=$ \mathbb{C}^{n} be a nonzero vector. We consider the minimum integrals:

$$
\begin{aligned}
& I_{0}^{G}(z)= \inf \left\{\int_{G}|f|^{2} d \mu: f \in \mathcal{H}^{2}(G), f(z)=1\right\} \\
& I_{1}^{G}(z ; \xi)= \inf \left\{\int_{G}|f|^{2} d \mu \quad f \in \mathcal{H}^{2}(G), f(z)=0, \sum_{j=1}^{n} \xi_{3} \frac{\partial f}{\partial z_{j}}(z)=1\right\} \\
& I_{2}^{G}(z ; \xi)=\inf \left\{\int_{G}|f|^{2} d \mu . f \in \mathcal{H}^{2}(G), f(z)=0\right. \\
&\left.\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n}}(z)=0, \sum_{j, k=1}^{n} \xi_{\jmath} \xi_{k} \frac{\partial^{2} f}{\partial z_{j} \partial z_{k}}(z)=1\right\}
\end{aligned}
$$

We write down some basic properties of the minimum integrals:
(a) Let Ω be a bounded domain in \mathbb{C}^{n} with $z \in \Omega \subset G$. Then by the defintions of the minimum integrals we can see that

$$
I_{0}^{\Omega}(z) \leq I_{0}^{G}(z), \quad \text { and } \quad I_{\imath}^{\Omega}(z ; \xi) \leq I_{\imath}^{G}(z ; \xi), \quad \imath=1,2
$$

Then we have the following mild modification from [14], [10]:
Proposition 1. Let $\left\{G_{j}\right\}_{j=1}^{\infty}$ be a sequence of bounded domans in \mathbb{C}^{n} that converges to a convex bounded domain $G \subset \mathbb{C}^{n}$ in such a way that there exists a common interior point q of G and G_{3} for all g and such that for every $\epsilon>0$ there exists \jmath_{0} satisfying

$$
(1-\epsilon)(G-q) \subset G_{\jmath}-q \subset(1+\epsilon)(G-q)
$$

where $G-q$ denotes the affine translation by $-q$ of the set G in \mathbb{C}^{n}. Then for every nonzcro vector $\xi \in T_{q}(G)=\mathbb{C}^{n}$,

$$
\lim _{\jmath \rightarrow \infty} I_{0}^{G_{3}}(q) \rightarrow I_{0}^{G}(q), \quad \lim _{\jmath \rightarrow \infty} I_{k}^{G_{3}}(q, \xi) \rightarrow I_{k}^{G}(q, \xi), \quad k=1,2
$$

(b) We can study the Bergman kernel, Bergman metric, and its curvature with the minımum integrals.

Proposition 2 (Bergman [2], Fuchs [7]). Let z, ξ, G be as above. Then

$$
\begin{aligned}
& K_{G}(z, z)=\frac{1}{I_{0}^{G}(z)}, \quad d s_{G}^{2}(z ; \xi, \bar{\xi})=\frac{I_{0}^{G}(z)}{I_{1}^{G}(z ; \xi)}, \\
& R_{G}(z ; \xi)=2-\frac{\left(I_{1}^{G}(z, \xi)\right)^{2}}{I_{0}^{G}(z) I_{2}^{G}(z ; \xi)} .
\end{aligned}
$$

(c) We may localize the minimum integrals:

Proposition 3 (Kim-Yu [10]). Let G be a bounded strongly pseudoconvex domain in \mathbb{C}^{n}. Let $p \in \partial G$. Let U be a neighborhood of p. Then, we have

$$
\lim _{z \rightarrow p} \frac{I_{2}^{G}(z ; \xi)}{I_{\imath}^{G \cap U}(z ; \xi)}=1, \quad \imath=0,1,2 .
$$

4. The Scaling Method

Let G be a bounded strongly pseudoconvex domain in \mathbb{C}^{n} with C^{2} boundary. Let p be a boundary point of G. Let $q(t)$ be an approaching stream to p in G. In this section, we demonstrate a construction of a biholomorphic mapping of a local domain $\Omega=G \cap B(p ; r)$ onto a perturbation of the unt ball in \mathbb{C}^{n}, where $B(p ; r)$ is the ball of radius r centered at p for some positive constant r.

Definition 2. We call an approaching stream $q(t)$ to p is radial if $q(t)$ lies in the inward normal real line to the real complex tangent space $T_{p}(\partial G)$ at p.

Proposition 4. There are some positive constants C, r and ϵ, and a biholomorphic mapping Ψ of $\Omega=G \cap B(p ; r)$ such that for $0<$ $d(q(t))<\epsilon$

$$
\|\Psi(q(t))\|=O(d(q(t)))
$$

and
(2) $B(0 ; \sqrt{1-C \sqrt{d(q(t))}}) \subset \Psi(\Omega) \subset B(0 ; \sqrt{1+C \sqrt{d(q(t))}})$,
where $d(q(t))=\operatorname{dist}(q(t), \partial G)$. We may choose the constants C, r and ϵ uniformly for every $p \in \partial G$.

Proof. Let ρ be a C^{2} defining function of G with $\|\nabla \rho(z)\|=1$ for $z \in \partial G$. Without loss of generality, we may assume that the stream $q(t)$ is radial.

Using a rotation and a unitary transformation, we may assume that $p=0(0=(0, \ldots, 0)$ the origin $), \nabla \rho(0)=(1,0, \ldots, 0)$, and

$$
\begin{aligned}
\rho(z) & =2 \operatorname{Re}\left(\sum_{j=1}^{n} \frac{\partial \rho}{\partial z_{j}}(0) z_{j}+\frac{1}{2} \sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial z_{k}}(\mathbf{0}) z_{j} z_{k}\right) \\
& +\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{k}}(\mathbf{0}) z_{j} \bar{z}_{k}+o\left(\|z\|^{2}\right) \\
& =\operatorname{Re}\left(z_{1}+\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial z_{k}}(0) z_{\jmath} z_{k}\right) \\
& +\sum_{\jmath=2}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{j}}(\mathbf{0}) z_{\jmath} \bar{z}_{3}+o\left(\left|z_{1}\right|+\left\|z^{\prime}\right\|^{2}\right)
\end{aligned}
$$

where $z^{\prime}=\left(0, z_{2}, ., z_{n}\right)$ and where

$$
(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)
$$

are the eigenvectors for $\left(\frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{\bar{k}}}(0)\right)_{j, k=2}^{n}$ And we may assume that

$$
q(t)=(-t, 0, \ldots, 0)
$$

$0<t<\epsilon$ for some positive constant ϵ.
Define $\mathcal{V}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\mathcal{V}(z)=\left(z_{1}+\sum_{\jmath, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial z_{k}}(0) z_{3} z_{k}, z_{2}, z_{3}, . ., z_{n}\right) .
$$

The inverse function theorem says that \mathcal{V} is biholomorphic on a neighborhood of $\widetilde{B(0 ; r)}$ for some $r>0$. Then \mathcal{V} maps $q(t)$ to $\mathcal{V}(q(t))=$ $\left(-t+b t^{2}, 0, \quad, 0\right)$ where $b=\frac{\partial^{2} \rho}{\partial z_{2} \partial z_{1}}(0)$. The defining function becomes

$$
\rho \circ \mathcal{V}^{-1}(w)=\operatorname{Re} w_{1}+\sum_{j=2}^{n} \frac{\partial^{2} \rho}{\partial w_{j} \partial \bar{w}_{j}}(0) w_{j} \bar{w}_{j}+o\left(\left\|w_{1}\right\|+\left\|w^{\prime}\right\|^{2}\right) .
$$

Define $\mathcal{L}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\mathcal{L}(w)=\left(w_{1}, a_{2} w_{2}, \cdots, a_{n} w_{n}\right)
$$

where $a_{3}=\sqrt{\frac{\partial^{2} \rho}{\partial w_{3} \partial \bar{w}_{j}}(\mathbf{0})}$. The map \mathcal{L} fixes $\mathcal{V}(q(t))$, and the defining function becomes

$$
\rho \circ \mathcal{V}^{-1} \circ \mathcal{L}^{-1}(u)=\operatorname{Re} u_{1}+\left|u_{2}\right|^{2}+\cdots+\left|u_{n}\right|^{2}+o\left(\left|u_{1}\right|+\left\|u^{r}\right\|^{2}\right) .
$$

Let \mathcal{S} be a linear map from \mathbb{C}^{n} onto \mathbb{C}^{n}, defined by

$$
\mathcal{S}(u)=\left(\frac{1}{t} u_{1}, \frac{1}{\sqrt{t}} u_{2}, \ldots, \frac{1}{\sqrt{t}} u_{n}\right)
$$

Then \mathcal{S} maps $(\mathcal{L} \circ \mathcal{V})(q(t))$ to $(-1+b t, 0, \ldots, 0)$, and the defining function becomes
$\left(\rho \circ \mathcal{V}^{-1} \circ \mathcal{L}^{-1} \circ \mathcal{S}^{-1}\right)(v)=t\left(\operatorname{Re} v_{1}+\left|v_{2}\right|^{2}+\cdots+\left|v_{n}\right|^{2}\right)+o\left(t\left(|v|+\left\|v^{\prime}\right\|^{2}\right)\right)$.
We apply the Cayley transformation \mathcal{T} on $(\mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(\Omega),(\Omega=$ $G \cap B(0 ; r))$ defined by

$$
\mathcal{T}(v)=\left(\frac{1+v_{1}}{1-v_{1}}, \frac{2 v_{2}}{1-v_{1}}, \ldots, \frac{2 v_{n}}{1-v_{1}}\right) .
$$

Then the reference point becomes $(\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(q(t))=\left(\frac{b t}{2-b t}, \ldots, 0\right)$, and the defining function becomes

$$
\begin{aligned}
& \left(\rho \circ \mathcal{V}^{-1} \circ \mathcal{L}^{-1} \circ \mathcal{S}^{-1} \circ \mathcal{T}^{-1}\right)(\zeta) \\
& =t\left(\frac{|\zeta|^{2}-1}{\left|\zeta_{1}+1\right|^{2}}+\frac{\left|\zeta_{2}\right|^{2}}{\left|\zeta_{1}+1\right|^{2}}+\cdots+\frac{\left|\zeta_{n}\right|^{2}}{\left|\zeta_{1}+1\right|^{2}}\right)+o\left(t\left(\left|v_{1}\right|+\left\|v^{\prime}\right\|^{2}\right)\right)
\end{aligned}
$$

For $z \in \bar{\Omega}$, we have that

$$
\begin{aligned}
\|(\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(z)\|^{2} & =\left|\frac{1+\frac{u_{1}}{t}}{1-\frac{u_{1}}{t}}\right|^{2}+\left\|\frac{2 \frac{u^{\prime}}{\sqrt{t}}}{1-\frac{u_{1}}{t}}\right\|^{2} \\
& =\frac{\left|t+u_{1}\right|^{2}+4 t\left\|u^{\prime}\right\|^{2}}{\left|t-u_{1}\right|^{2}} \\
& =1+\frac{4 t\left(\operatorname{Re} u_{1}+\left\|u^{\prime}\right\|^{2}\right)}{t^{2}-2 t\left(\operatorname{Re} u_{1}\right)+\left|u_{1}\right|^{2}}
\end{aligned}
$$

where $u=\mathcal{L} \circ \mathcal{V}(z)$ and $u^{\prime}=\left(0, u_{2}, \ldots, u_{n}\right)$.

Let $\partial \Omega=V_{1} \cup V_{2}$ where $V_{1}=\partial G \cap \bar{B}(\mathbf{0} ; r)$ and $V_{2}=\partial B(\mathbf{0} ; r) \cap \bar{G}$. For $z \in V_{1}$, we have that
(3)

$$
\begin{aligned}
\left.\mid\|(\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(z)\|^{2}-1\right\} & =\frac{4 t\left(\operatorname{Re} u_{1}+\left\|u^{\prime}\right\|^{2}\right)}{t^{2}-2 t\left(\operatorname{Re} u_{1}\right)+\left|u_{1}\right|^{2}} \\
& \leq \frac{4 t\left(C\left|u_{1}\right|^{2}+C\left|u_{1}\right| \cdot\|u| |+C\| u \|^{3}\right)}{t^{2}+\left|u_{1}\right|^{2}} \\
& \leq \frac{4 t C\left|u_{1}\right|^{3 / 2}}{t^{2}+\left|u_{1}\right|^{2}} \\
& =4 C \sqrt{t} \frac{\left(\left|u_{1}\right| / t\right)^{3 / 2}}{1+\left(\left|u_{1}\right| / t\right)^{2}} \\
& \leq 4 C \sqrt{t} \frac{3^{3 / 4}}{4} \\
& \leq C \sqrt{t} .
\end{aligned}
$$

Here, for convenience we use the same symbol C to stand for different constants. For $z \in V_{2}$, we have that
(4) $\left\|\|(\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(z)\|^{2}-1 \left\lvert\,=\frac{4 t\left(\operatorname{Re} u_{1}+\left|u^{\prime}\right|^{2}\right)}{t^{2}-2 t\left(\operatorname{Re} u_{1}\right)+\left|u_{1}\right|^{2}} \leq \frac{4 t C}{\delta^{2}} \leq C t\right.\right.$,
where δ is the minimum of u_{1}. By (3) and (4), we have that

$$
\left\|\|(\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(z)\|^{2}-1 \mid \leq C \sqrt{t}, \quad z \in \partial \Omega,\right.
$$

for some constant C. It implies that for some positive constant C, r and ϵ,

$$
B(0, \sqrt{1-C \sqrt{t}}) \subset(\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V})(\Omega) \subset B(0 ; \sqrt{1+C \sqrt{t}})
$$

where $0<t<\epsilon$ Since ∂G is compact, we can choose the constants C, r and ϵ unformly for every $p \in \partial G$

5. Proof of the main theorem

Let ρ be a C^{2} defining function of G with $\|\nabla \rho(z)\|=1$ for $z \in \partial G$. Using a rotation and a unitary transformation, we may assume that $p=\mathbf{0}(0=(0, \ldots, 0)$ the origin $), \nabla \rho(0)=(1,0, \ldots, 0)$.

Choose the positive constants C, r and ϵ so that (2) is satisfied for every boundary point Proposition 2 and Proposition 3 implies that
(5) $K_{G}(q(t), q(t)) \sim K_{\Omega}\left(q(t), q(t), \quad d s_{G}^{2}(q(t) ; \xi, \bar{\xi}) \sim d s_{\Omega}^{2}(q(t) ; \xi, \bar{\xi})\right.$,
and

$$
R_{G}(q(t) ; \xi) \sim R_{\Omega}(q(t) ; \xi)
$$

We note that

$$
\begin{aligned}
K_{B(0,1)}(z, w) & =\frac{n!}{\pi^{n}} \cdot \frac{1}{\left(1-\sum_{\jmath=1}^{n} z_{\jmath} \bar{w}_{\jmath}\right)^{n+1}}, \\
d s_{B(0,1)}^{2}(z ; \xi, \bar{\xi}) & =\sum_{\jmath, k=1}^{n}(n+1) \frac{\left(1-|z|^{2}\right) \delta_{j k}+\bar{z}_{3} z_{k}}{\left(1-|z|^{2}\right)^{2}} \xi_{\jmath} \bar{\xi}_{k},
\end{aligned}
$$

and

$$
R_{B(0,1)}(z ; \xi)=-\frac{4}{n+1} .
$$

The Radıal Stream Case. Let $q(t)$ be the radial stream in the proof of Proposition 4. Consider the map $\Psi=\mathcal{T} \circ \mathcal{S} \circ \mathcal{L} \circ \mathcal{V}$ in Proposition 4.

First we consider the Bergman kernel function. Since Ψ is a biholomorphism on Ω, we have that
(6) $\quad K_{\Omega}(q(t), q(t))=\left.K_{\Psi(\Omega)}(\Psi(q(t)), \Psi(q(t))) \cdot\left|\operatorname{det} J_{\mathbb{C}}\right|_{q(t)}(\Psi)\right|^{2}$.

By (2), we have that
(7) $K_{B(0 ; \sqrt{1+C \sqrt{t})}}(\Psi(q(t)), \Psi(q(t))) \leq K_{\Psi(\Omega)}(\Psi(q(t)), \Psi(q(t)))$

$$
\leq K_{B(0, \sqrt{1-C \sqrt{t})}}(\Psi(q(t)), \Psi(q(t)))
$$

Note that
(8)

$$
\begin{aligned}
& K_{B(0, \sqrt{1+C \sqrt{t}}}(\Psi(q(t)), \Psi(q(t))) \\
& =K_{B}\left(\frac{1}{\sqrt{1+C \sqrt{t}}} \Psi(q(t)), \frac{1}{\sqrt{1+C \sqrt{t}}} \Psi(q(t))\right) \cdot\left(\frac{1}{\sqrt{1+C \sqrt{t}}}\right)^{n} \\
& =\frac{n!}{\pi^{n}} \frac{1}{\left(1-\frac{1}{1+C \sqrt{t}}\left|\frac{b t}{1-b t}\right|^{2}\right)^{n+1}} \cdot\left(\frac{1}{\sqrt{1+C \sqrt{t}}}\right)^{n} \\
& \sim \frac{n^{\prime}}{\pi^{n}}
\end{aligned}
$$

where $b=\frac{\partial^{2} \rho}{\partial z_{1} \partial z_{1}}(0)$. Similarly, we have that

$$
\begin{equation*}
K_{B(0, \sqrt{1-C \sqrt{t}})}(\Psi(q(t)), \Psi(q(t))) \sim \frac{n!}{\pi^{n}} . \tag{9}
\end{equation*}
$$

By (5), (6), (7), (8), and (9), we have

$$
K_{G}(q(t), q(t)) \sim \frac{n!}{4 \pi^{n}} \cdot\left(\frac{1}{d(q(t))}\right)^{n+1} \cdot \operatorname{det}\left(L_{\partial G, p}\right)
$$

We now consider the Bergman metric. Since Ψ is a biholomorphic on Ω, we have that

$$
\begin{equation*}
d s_{\Omega}^{2}(q(t) ; \xi, \bar{\xi})=d s_{\Psi(\Omega)}^{2}\left(\Psi(q(t)),\left.d \Psi\right|_{q(t)}(\xi),\left.\overline{d \Psi}\right|_{q(t)}(\xi)\right) \tag{10}
\end{equation*}
$$

By (2) and Proposition 1, we have that

$$
\begin{align*}
& d s_{\Psi(\Omega)}^{2}\left(\Psi(q(t)) ;\left.d \Psi\right|_{q(t)}(\xi),\left.\overline{d \Psi}\right|_{q(t)}(\xi)\right. \tag{11}\\
& \quad \sim d s_{B}^{2}\left(\Psi(q(t)) ;\left.d \Psi\right|_{q(t)}(\xi), \overline{\left.d \Psi\right|_{q(t)}(\xi)}\right),
\end{align*}
$$

From Proposition 4, we know that
(12) $d s_{B}^{2}\left(\Psi(q(t)) ;\left.d \Psi\right|_{q(t)}(\xi), \overline{\left.d \Psi\right|_{q(t)}(\xi)}\right)$,

$$
\sim(n+1)\left[\left(\frac{\left\|\xi_{N, p(t)}\right\|}{2 \cdot d(q(t))}\right)^{2}+\frac{L_{\partial G, p(t)}\left(\xi_{T, p(t)}, \xi_{T, p(t)}\right)}{d(q(t))}\right] .
$$

By (5), (10), (11), and (12), we have

$$
d s_{G}^{2}(q(t) ; \xi, \bar{\xi}) \sim(n+1)\left[\left(\frac{\left\|\xi_{N, p(t)}\right\|}{2 \cdot d(q(t))}\right)^{2}+\frac{L_{\partial G, p(t)}\left(\xi_{T, p(t)}, \xi_{T, p(t)}\right)}{d(q(t))}\right] .
$$

For the holomorphic curvature of the Bergman metric, by the same reason to the metric, we have

$$
R_{G}(q(t) ; \xi) \sim R_{B^{n}}\left(\Psi(q(t) ;(d \Psi)(\xi))=-\frac{4}{n+1}\right.
$$

General Stream Case. Let $q(t)$ be an arbitrary stream approaching p. Let $p(t)$ be the closest boundary point to $q(t)$. We may assume that $t=d(q(t), \partial G)$. Let \mathcal{A} be the unitary map such that

$$
\mathcal{A}(p(t))=0 \quad \text { and } \quad \mathcal{A}(q(t))=(-t, 0, \ldots, 0)
$$

Since we may choose the constants C, r, ϵ uniformly in (2), the identity (1) follows in this case by the same method as above. Therefore, we have the desired results. This completes the proof.

REFERENCES

[1] Gerardo Aladro, Some consequences of the boundary behavnor of the Carathéodory and Kobayashz metrics and applicatıons to normal holomorphac functrons, Ph D. thesis, Pennsylvania State University, 1985
[2] Stefan Bergman, uber due kernfunktion enne bereiches und ihr verhalten am rande, J. Reme Angew. Math 169 (1933), 1-42.
[3] _, The kernel function and conformal mapping, revised ed., American Mathematical Society, Providence, R.I , 1970, Mathematical Surveys, No. V. MR. 58 \#22502
[4] Klas Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann 187 (1970), 9-36. MR 41 \#7149
[5] __._Uber die 1. und 2 Ablestungen der Bergmanschen Kernfunktion und vhr Randverhalten, Math Ann. 203 (1973), 129-170. MR 48 \#6472
[6] Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domarns, Invent Math 26 (1974), 1-65. MR 50 \#2562
[7] B. Fuchs, uber geodätzsche mannigfalttgketten einer bet pseudokonformen abbaldungen mvarianten rsemannschen geometrse, Mat. Sbornik N.S. 44 (1937), 567-594.
[8] Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domazns in \mathbb{C}^{n} with smooth boundary, Trans. Amer. Math Soc 207 (1975), 219-240 MR 51 \#8468
[9] Lars Hormander, L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152 MR 31 \#3691
[10] Kang-Tae Kim and Jiye Yu, Boundary behavior of the Bergman curvature in structly pseudoconvex polyhedral domains, Pacific J Math. 176 (1996), no 1, 141-163 MR 97k:32037
[11] Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashe metruc on smooth bounded structly pseudoconvex sets, Indiana Univ Math. J. 27 (1978), no. 2, 275-282. MR 57 \#3455
[12] Sunhong Lee, Asymptotic behavior of the Kobayashi metric on certain infinztetype pseudoconvex domarns in c^{2}, J Math Anal. Appl. 256 (2001), no. 1, 190-215 MR 1820076
[13] Dao Wei Ma, Sharp estımates of the Kobayashi metric near strongly pseudoconvex points, The Madison Symposium on Complex Analyss (Madison, WI, 1991), Amer. Math. Soc., Providence, RI, 1992, pp 329-338 MR 93j:32031
[14] I Ramadanov, Sur une propriété de la fonctıon de Bergman, C. R Acad Bulgare Scl. 20 (1967), 759-762 MR 37 \#1632

Department of Mathematics
and Research Institute of Natural Science
Gyeongsang National University
Jinju, 660-701, Republic of Korea
E-mall: sunhong@nongae.gsnu.ac.kr

[^0]: Recerved April 10, 2003
 2000 Mathematics Subject Classification: Primary 32A36; Secondary 32A25
 Key words and phrases. Bergman kernel function, Bergman metric, holomorphic sectonal curvature, asymptotic boundary behavior

