A NOTE ON DEFINING IDENTITIES OF DISTRIBUTIVE LATTICES

Woo Hyun Kim, Jung Rae Cho and Józef Dudek

Abstract

There are many conditions or identities for a lattice to be distributive In this paper, we study some identities on algebras of type (2,2) and find another set of identities defining distributive lattices. We also study certan identities which define algebras of type (2,2) whose subalgebras generated by two elements are all distributive lattices with at most 4 elements.

It is known that the conditions $(x+y) z=x z+y z, x y+z=$ $(x+z)(y+z)$ and $(x+y)(y+z)(z+x)=x y+y z+z x$ are equivalent for a lattice ([5]). A lattice satisfying any of the above identities is called a distributive lattice. A distrıbutive lattice is one of the most interesting and important algebras in every area of mathematics and its application In this reason, the characterization of distributive lattices has been a very important research topic for a long time. There are many useful characterızations of distributive lattices in many different ways.

Padmanabhan ($[10]$) characterized lattices as algebras $(A,+, \cdot)$ of type $(2,2)$ by two identities $(x+y) z=z(x+x)+z(y+x)$ and $(z x+$ $z y)+(z z+z z)=z$. An interesting fact of this result is that lattices can be characterized by identities in three variables. Thus, by adding the identity $(x+y) z=x z+y z$ or $x y+z=(x+z)(y+z)$ to these two identities, we can define distributive lattices by identities in three variables.

[^0]Birkhoff ([1]) characterized distribtive lattices by prohıbiting sublattices isomorphic to one of the lattices M_{5} and N_{5} on the right. Birkhoff ([2]) and Stone ([11]) showed that a lattice is distributive if and only if it is isomorphic to a ring of sets.

M_{5}

N_{5}

More recently, approaching from another point of view, Dudek ([4]) showed that a commutative idempotent algebra of type (2,2) with $x+y \neq x \cdot y$ is term equivalent to a distributive lattice if and only if $(A,+, \cdot)$ has 9 essentially ternary term functions In connection with this characterization, Dudek rased the question is it true that a commutative idempotent algebra of type (2,2) with $x+y \neq x \cdot y$ is a distributive lattice of and only if $(A,+, \cdot)$ has 114 essentrally 4 -ary term functions? ([5], [8]) Dudek ([5]) also showed that an algebra (A, Ω) is term equivalent to a distributive lattice of and only if it has l_{n} essentially n-ary term functions for all integer n, where l_{n} is the number of essentially n-ary term functions of the two-element lattice. It is known that the number l_{n} for $n \geq 8$ is unknown This is called a Dedekind's problem ([3]) and more detailed discussion can be found in [8] and [9]. Some other identities related to distributive lattices are discussed in [6]

In this paper, we study some identaties on algebras of type (2,2) and find another set of identities defining distributive lattices in Theorem 1. In Theorem 2, we look in certain identities which define algebras of type (2,2) whose subalgebras generated by two elements are all distributive lattices with at most 4 elements.

For further definitions and terminology, we refer readers to [6] and [7].

Consider the following identities on an algebra $(A,+, \cdot)$ of type (2,2).
(1) $x+x=x$;
(2) $(x+y) y=y$;
(3) $x+y=y+x, x y=y x$;
(1) $x x=x$,
$(2)^{\prime} x y+y=y$.
Lemma 1. If $(A,+, \cdot)$ is an algebra of type (2,2) satzsfying the adentities (1) and (2), then at also satusfies the adentzty (1)'. Dually, if $(A,+, \cdot)$ satusfies the rdentitues (1)' and (2)', then at also satusfies the identity (1)

Proof. Putting y for x in (2), we have $(x+x) x=x$, which implies $(1)^{\prime}$ by (1). The proof of the dual part is similar.
Lemma 2. If $(A,+, \cdot)$ is an algebra of type (2,2) satisfying the identitues (1)-(3) and $(x+y) z=x z+y z$, then the operatron ' + ' is assocuative. Dually, of $(A,+, \cdot)$ satusfies the adentitues (1)', (2)', (3) and $x y+z=(x+z)(y+z)$, then the operation '' is associative

Proof. Auume the identrties (1)-(3) By Lemma 1, (1)' holds and so we have

$$
((x+y)+z) y=(x+y) y+z y=y+z y=y y+z y=(y+z) y=y .
$$

Then it follows that

$$
\begin{aligned}
((x+y)+z)((z+y)+x) & =((x+y)+z)(z+y)+((x+y)+z) x \\
& =[((x+y)+z) z+((x+y)+z) y]+x \\
& =(z+y)+x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
x+(y+z) & =(z+y)+x=((x+y)+z)((z+y)+x) \\
& =((z+y)+x)((x+y)+z)=(x+y)+z .
\end{aligned}
$$

The dual part can be proved analoguously.

Lemma 3. If $(A,+, \cdot)$ is an algebra of type (2,2) satisfying the adentitues (1)-(3), then the identitues $(x+y) z=x z+y z$ and $x y+z=$ $(x+z)(y+z)$ are equvalent, and $(A,+, \cdot)$ us a distributive lattice of one of these adentitues holds. Dually, if $(A,+, \cdot)$ satisfies the identuties $(1)^{\prime},(2)^{\prime},(3)$, we obtain the same conclusion.

Proof. By Lemma 1, we also have the identity (1)'. Suppose $(x+$ $y) z=x z+y z$. By Lemma 2, ' + ' is associative. Thus $(A,+, \cdot)$ is a distributive lattice.

$$
\begin{aligned}
(x+z)(y+z) & =(x+z) y+(x+z) z=(x y+z y)+z=x y+(y z+z) \\
& =x y+(y z+z z)=x y+(y+z) z=x y+z
\end{aligned}
$$

Conversely, suppose $x y+z=(x+z)(y+z)$. Then, we also have (2)' since

$$
x y+y=(x+y)(y+y)=(x+y) y=y
$$

and so $(2)^{\prime}$ holds Using the dual part of Lemma 2, we infer that the operation ' '' is associative. Thus,

$$
\begin{aligned}
x z+y z & =(x+y z)(z+y z)=(y z+x) z \\
& =((y+x)(z+x)) z=(y+x)((z+x) z)=(x+y) z
\end{aligned}
$$

as required. We note that The dual part can be proved analoguously.

Theorem 1. Let $(A,+, \cdot)$ be an algebra of type (2,2) satasfying the udentztıes (1)-(3) Then the following conditions are equivalent.
(i) $(A,+, \cdot)$ is a distributive lattice;
(ii) $(A,+, \cdot)$ satisfies $(x+y) z=x z+y z$,
(ii1) $(A,+, \cdot)$ satisfies $x y+z=(x+z)(y+z)$
Dually, we obtain the same conclusion of $(A,+, \cdot)$ satusfies the adentitues (1)', (2)', (3).

Proof By Lemmas 1, 2 and 3.
In connection with this theorem, we are interested in algebras $(A,+, \cdot)$ of type $(2,2)$ satisfying the identities $(1)-(3)$ and
(4) $\quad(x y+y z)+z x=((x+y)(y+z))(z+x)$.

Note that these algebras are very close to distributive lattices. The identity $x y+y=y$ follows from the identities (1)-(4) but it is not
a consequence of (1)-(3) only, as the following Lemma and Example show.

Lemma 4. If $(A,+, \cdot)$ is an algebra of type (2,2) satusfying the identaties (1)-(4), then it also satasfies the adentitues (1)' and (2)'.

Proof. By Lemma 1, we have $x x=x$. Letting $z=x$ in (4), we have

$$
(x y+y x)+x x=((x+y)(y+x))(x+x)
$$

and so $x y+x=(x+y) x$. By (3), we have $x y+x=x$, which is the same identity as (2)'.

Example 1. Consider the algebra $(\mathbb{N},+, \cdot)$, where \mathbb{N} is the set of positive integers and the operations are defined by $x+y=[x, y]$, the least common multiple of x and y, and $x y=\min \{x, y\}$. It is easy to check that $(\mathbb{N},+, \cdot)$ satısfies (1)-(3) but it does not satisfy $x y+y=y$. By Lemma 4, ($\mathbb{N},+, \cdot$) does not satisfies (4)

It is still aproblem that if there is an algebra $(A,+, \cdot)$ of type $(2,2)$ which is a model of the adentities (1)-(4) but not a lattice.

A commutative idempotent groupoid is called a near-semilattuce if it satisfies the identity $(x y) y=x y$. An algebra $(A,+, \cdot)$ of type $(2,2)$ is called a br-near-semolattice if both $(A,+)$ and (A, \cdot) are nearsemilattices.

Lemma 5. If $(A,+$,) is an algebra of type (2,2) satusfying the identutues (1)-(4), then $(A,+, \cdot)$ is a bi-near-semulattice

Proof. By Lemma 4, we also have $x y+y=y$. Putting $x y$ for x in (4), we obtain

$$
\begin{aligned}
((x y) y+y z)+z(x y) & =((x y+y)(y+z))(z+x y) \\
& =(y(y+z))(z+x y) \\
& =y(z+x y) .
\end{aligned}
$$

Put $x y$ for z in the above identity, we have

$$
((x y) y+y(x y))+(x y)(x y)=y(x y+x y)
$$

and hence $(x y) y+x y=(x y) y$ Since $(x y) y+x y=x y$ by Lemma 4, we have $x y=(x y) y$. Thus (A, \cdot) is a near-semilattice. Now, putting
$x+y$ for x in (4), we obtain that

$$
\begin{aligned}
(((x+y)+y)(y+z))((x+y)+z) & =((x+y) y+(y z))+(x+y) z \\
& =(y+y z)+(x+y) z \\
& =y+(x+y) z
\end{aligned}
$$

Then, putting $x+y$ for z in this identity, we have

$$
(((x+y)+y)(y+(x+y)))((x+y)+(x+y))=y+(x+y)(x+y)
$$

and hence $((x+y)+y)(x+y)=(x+y)+y$. Since $((x+y)+y)(x+y)=$ $x+y$ by Lemma 4, we have $x+y=(x+y)+y$. This shows that $(A,+)$ is a near-semilattice.
Lemma 6. Let $(A,+, \cdot)$ be an algebra of type (2,2) satusfynng the adentuties (1)-(4), then we have the following statements.
(i) The term $m(x, y, z)=((x+y)(y+z))(z+x)$ is a majority function, te, $m(x, y, y)=m(y, x, y)=m(y, y, x)=y ;$
(ii) $(A,+, \cdot)$ satisfies the identities $(x+y)(x y)=x y$ and $(x+y)+x y=$ $x+y$.
(iii) If ' + ' $2 s$ assocrative then $(A,+,-)$ also satusfies the $2 d e n t u t y ~(x y+$ $z) x=x y+x z$
Proof (i) Using Lemma 4, we have $m(x, y, y)=((x+y)(y+$ $y))(y+x)=((x+y) y)(x+y)=y(x+y)=y$. Similarly, we can show $m(y, x, y)=m(y, y, x)=y$.
(1i) Put $x z$ for y in (4), then we obtain

$$
((x+x z)(x z+z))(z+x)=(x(x z)+(x z) z)+x z
$$

The left hand side of the identity is equal to $(x z)(z+x)$ by Lemma 4, while the right hand side is equal to $(x z+x z)+x z$ by Lemma 5 . Thus, we have that $(x z)(z+x)=(x z+x z)+x z=x z$, which implies $(x+y)(x y)=x y$ Using this identity and Lemma 4, we get

$$
(x+y)+x y=(x+y)+(x+y)(x y)=x+y
$$

(iii) In the proof of Lemma 5, we have $(x y+z) y=(x y+z y)+(x y) z$ and hence $(x y+z y)+(x y) z=((x y) z+x y)+z y=x y+z y$, as required.
Theorem 2. Let $(A,+, \cdot)$ be an algebra of type (2,2) satisfying the identatues (1)-(4), then each subalgebra of $(A,+, \cdot)$ generated by two elements has at most four elements and it is a distributive lattice.

Proof. Let $a, b \in A$ and let $S(a, b)$ denote the subalgebra generated by $\{a, b\}$. By Lemmas 5 and 6 , we infer that any term in the two variables x and y is equal to one of the terms $x, y, x y, x+y$ on $(A,+, \cdot)$. Thus $S(a, b)=\{a, b, a+b, a b\}$. Now it is routine to check that $S(a, b)$ satisfies the identities (1)-(3) and the identity $(x+y) z=x z+y z$. Then, by Theorem $1, S(a, b)$ is a distributive lattice.

REFERENCES

[1] G. Birkhoff, Lattice Theory, Amer. Math Soc. Colloquium Publication Vol 25, Amer Math Soc, 1967, Providence, Rhode Island.
[2] G Bırkhoff, On the combination of subalgebras, Proc. Cambradge Philos Soc 29 (1933), 441-464
[3] R Dedekind, Uber die von dres Modulen erzengte Dualgruppe, Math Ann, 53 (1900), 371-403
[4] J Dudek, A characterzation of dzstributzve lattices, Contribution to lattice theory (Szeged 1980), Colloq Math. Soc János Bolyai, 33 (1983), NorthHolland, Amsterdam-New York, 325-335.
[5] J Dudek, Dedekind's numbers characterize distributive lattices, Algebra Unıversahs, 27 (1990), 1-4
[6] G Gratzer, General lattice theory, Academic press, New York-San Fransisco, 1978
[7] G Grätzer, Unversal Algebra, 2nd ed, Springer-Verlag, New York-Hedelberg-Berlin, 1979
[8] G Gratzer and A Kisielewice, A survey of some open problems on $p_{7 n}$ sequences and free spectra of algebras and vareetzes, "Unversal Algebra and Quasigroup Theory", A Romanowska and J D H Smith (eds), Helderman Verlag, Berlin, 1992, 57-88
[9] A Kisielewicz, A solution of Dedekind's problem on the number of asotone Boolean functrons, J Reine Angew Math 386 (1988), 139-144
[10] R Padmanabhan, On zdentutzes defining lattzces, Algebra Universalis 1 (1972), 359-361
[11] M Stone, The theory of representations for boolean algebras, Trans Amer Math Soc. 40 (1936), 37-111

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: jungcho@pusan.ac.kr
Mathematical Institute
University of Wrocław
pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-maul: dudek@math.uni.wroc.pl

[^0]: Received April 3, 2003 Revised June 11, 2003.
 2000 Mathematics Subject Classification 08A40, 20N02
 Key words and phrases definining adentity, distributive lattice, term functions
 The present research was supported by Pusan National University Research Grant, 1999

