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INTEGRAL INEQUALITIES OF GRUSS TYPE VIA 
POLYA-SZEGO AND SHISHA-MOND RESULTS

S. S. Dragomir and N. T. Diamond

Abstract Integral inequalities of Griiss type obtained via Polya- 

Szego and Shisha-Mond results are given Some applications for 

Taylor's generalized expansion are also provided

고. Introduction

For two measurable functions g . [a, 이 T R, define the functional, 
which is known m the literature as Chebychev's functional

T (hg；a,b) := eA j f (꾀 g (m 血 - 而 1切2 / f (x) dx / 9 (^) dx, 

provided that the involved integrals exist.

The following inequality is well known in the literature as the Griiss 

inequality [11]

(11) \T (/, g-,a,b)\ - m) (N - n),

provided that m < f < M and n < g < N a.e. on [a, 6], where 

m, M, n, N are real numbers The constant | in. (1.1) is the best 

possible

Another inequality of this type is due to Chebychev (see for example 

[16, p. 207]). Namely, if /, g are absolutely continuous on [a, 비 and
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€ Loo 皿 이 and WfW^ ：= ess sup \ff (i)|, then

仔(爲心)| <*||广II。。岫。涂-疗 
丄厶

and the constant — is the best possible.

Finally, let us recall a result by Lupa§ (see fo호 example [16, p. 210]), 

which states that:

a, 6)1 < 彩 \\f'\\2 ||g'|l2 (b- a),

provided /, g are absolutely continuous and 巳 g' G [a, b\. The 

constant 寿 is the best possible here.

For other Gruss type inequalities, see the books [16] and [13], and 

the papers [2]-[10], where further references are given.

The main aim of this paper is to establish some new Griiss type 

inequalities and apply them for the generalized Taylor's expansion.

2. Integral Inequalities of Griiss Type

The following Griiss type inequality holds.

Theorem 1. Let f^g : [a,6] —> be two integrable functions so

that

0<w</(x)<M<oo and 0 < n < g (x) < N < co

for a e. x e [a, 비 .
Then one has the inequality

(2 1) \T(f,g-a,b)\

1 (M — m) (N — n)

4 VmnMN 我 L 仲汕리八*
The constant | is best possible in (2.1) in the sense that it cannot be 

replaced by a smaller constant
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Proof. We have, by the Cauchy-Buniakowski-Schwartz inequality 

for double integrals, that

(2.2)

区(/,g,Q,b)|

'1 [ [ (/ (^) - f ⑶))(g (W) — 9 3)) -dxdy

J a J cl

n
b _
(/ (z) - f (y))2 dxdy •

b

2 (6 - a)2

~ 2 (b- a)2

1

_ 2 (6 - a)2

x

x

4 (& - a) [ f (x) dx 一 (/

(b _ d)]扌(x、) dx - (J g (硏 do)

1
2

日"心
1
2

己血—（上（、*）
1
2

Utilizing the Polya-Szego inequality for integrals [15], i.e.,

1 < j* /叩)dx 球彤(z) dx 

(fa h (X) 1 (X)dxY

Mi M>2 

miTYl2

mim2

provided 0 < mi < h(x) < M1 < oo, 0 < < I (x) < M2 < co for

a.e x G [ay 이 , we may state that

(b -产 3)血

(£/(游"

(M +时 
mM
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giving

0  a) f2 {x}dx -(£ f (z) dz)2 < 上(肱 + 刘2 】_ (M -

—4 mM 4mM(faf(X)dx)2

that is, 

(2-3)

(/心血) 스移 (/，(弘) •

In a similar fashion, we obtain 

(2-4)

(b - a) [ 92 (游 dx - g (功 dz) ' < 詩(J： g(力必)" 

Using (2.2), (2.3) and (2 4), we deduce the desired inequality (2.1).

Now, assume that the inequality in (2.1) holds with a constant 

c > 0, i.e., 

(2-5) \T(f,g-a,b)\

(M - m) (TV - n) 1 fbf. 1 fb ,
< c .---- 尸 -- ----  / / (z) dx . ----  / g(£)dx.
- VmnMN b-aja J k 7 b-aja 7

We choose the functions f — g with

( rn, x £ [a, 으判
f (x) — X , 0 < m < M < oo.

[ M, xe (啰，비 ，

Then

m2 + M2 fm + M\2
=--- ---------------

= ： (M — 7끼2 ,
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and by (2.5) we deduce

1 、2 (M — Tn)? f m + M\2
~(M ~ m)2 < c • ---- --  • —-—
4v 7 - mM \ 2 J

from where we get

(2-6) mM < c (M 一 m)2

for any 0 < m < M < oo.

If in (2.6) we consider m — 1 — e, 7W — 1 4- e G (0,1), then we 

get 1 — e2 < 4c for any e G (0,1), which shows that c > |. □

The second result of Gruss type is embodied m the following theo­

rem.

Theorem 2. Assume that f and g are as m Theorem 1. Then one 

has the ine이uality:

(2 7) [T(f,g;a,b)[

The constant c ~ 1 is best possible in the sense that it cannot be 

replaced by a smaller constant.

Proof. We shall use the Shisha-Mond inequality [17] (see also [13, 

P- 121])

(2-8)
（戸 /可、「

时 - \Vm2 VM丿，

provided 0 < < Mi < oo and 0 < m2 < < 00 for all

z £ {1,..,n}.
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Applying a standard procedure for Riemann sums instead of 如 g礼
i.e.,

特 EXH 凡 （a + 늠 也 - a））』侦 + 幸 （b - a））

竺으£旗（M（a +幸0-Q））Z（a+； 传一力） < （ 网 匝、
宁 展2（H）） - \ym2 V 也丿，

provided /z, I are Riemann integrable on [a, 이 and 0 < m± < h (z) < 

Mi < oo, 0 < m2 < Z (a?) < M2 < oo, we may deduce, by letting 

n —> oo, the integral inequality

(2-9)
£ h? (끼 血 

£ h (E) I (z) dx

(硏 l (:z;) dx 

fa 12 S)dx

which is the integral version of the Shisha-Mond inequality (2.8).

From (2.9) we may easily deduce

(2.10)

and

(2.U)
当上/財（g一 （户 Jg）血） 

<《尽—V）「— J g （z） dx.

Finally, by making use of (2.2), (2.10) and (2.11), we obtain the 

desired inequality (2.7).
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To prove the sharpness of the constant, assume that (2.7) holds 

with a constant c > 0, i.e , 

(2.12) 

c(V頒-V)(VN -、司 J長 / f (x) dx . ■土云 j g (x) dx.

Now, let us choose f = g and *

( 772, if ⑦ € [tl, 쁭의 ,
/ 3)=〈一

(M, if ze (啰 M].

Then from (2.12) we deduce (see also Theorem 1) that

& (M — m)2 < c ^y/M — y/mj 히' , 0 < m < M < oo 

that is,

：(v应-而)2 (面 + V彼)％ c (\/成—而)2 m + M

giving for any 0 < m < M < oo that

^\/M + \V)< 2c (m + M)

If in (2 13) we choose m — 1 —乌 M = 1 + 6, £ G (0,1), we get 
(\/T — £ + "I + 8)2 < 4c. Letting e -> 0+, we deduce c > 1, and the 

theorem is proved □

2

(2.13)

By the classical Gruss1 inequality, we obviously have

(2.14) \T (f, g,a,b)\<^(M- m) (N — 끼.

It is natural to compare the bounds provided by (2.1), (2.7) and

(2.14) .

Proposition 1. The bounds provided by (2.1), (2 7) and (2,14) are 

not related. This means that one is better than the others depending 

on the different choices of functions f and g
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Proof. 1. With the assumptions in Theorem 2, consider, for f = 

n = m, N = the quantity

卩：=也主矿>0

(b — a)2 mM

We want to compare this quantity with 1.

Choose q = 0,b = 3 and

f 1 if X e [0,2], 

f (z)=〈
(k if XE (2,3], k>l.

Then f (x) dx = 1 + k, m = 1, M = k and thus

叩:) = " =(繹匕
y/c

We observe that

U(k) - 1 =
(& — 1) G - 4)

9k

Rowing that if E (0,1] U[4, oo), [/ (A;) > 1 while for k G (1,4),

In conclusion, for the above choice, if A; e (1,4), 나】e bound 
provided by (2 1) is better than the bound provided by (2.14), 

white for E (4, oo) this bound is worse than that provided by 

the Griiss inequality

2. With 난le assumptions in Theorem 2, consider, for f = g」n =

N = M〉the quantity 

A ：= |(M-m)2, h ：= (a/丽-y/mj 卩—/ f (x) dx.

If we assume that m = 0,M = 1, then A = §,& = & (z) dx,
provided 0 < f (x) <1, x e [a, 6]. °

Now, if we choose f so that 洁(硏血 < I，then the 

bound p호ovided by (2.7) is better than the one provided by

(2.14).  If 洁日 (亿)血 > % then GrussJ inequality provides
a better bound.
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3. With the assumptions in Theorem 2, consider, for / = p, n = m, 

N = M, the quantities

h : =； 쁘疝羿• (리 /⑴ 血) 2 

h : =(VM — y/mj . bj f (z) dx.

If we choose m ~ 1, M = 4, we get

9 1 rb
Ji = ~y2^ J》= y where y = ----  / f (功 dx e [1,4].

16 b - a Ja

Now, observe that

丁 7 0 (钩 一 16)J] _ J2 = ---- 77---- )
16

showing that for y E [1, 쁭] the bound provided by (2.1) is better 

than the bound provided by (2.7) while for y 6 (쁭』, the 

conclusion is the other way around.

□

3. Some Pre-Griiss Type Inequalities and Applications

If there is no information available about the upper and lower 

bounds of the function g, but the integrals -

广b pb
/ g2 (z) dx and / g (z) dx

J a J a

can be exactly computed, then the following pre-Griiss type result 

may be stated.

Theorem 3. Let /, g ： 旗 이 T IR be two integrable functions such 

that there exist m, M > 0 with

G < m < f (x) < M < oc
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and g E L2 [a, b\. Then one has the inequality

„ ,、| 1 (M — m) 1 (而
\T (/, g； 9 , -7—7 ■ , 7_- / f (时 血

2 VmM b~ a Ja

The constant * is best possible.

The proof is similar to the one incorporated in Theorem 1 and we 

omit the details.

Similarly, we may state the corresponding pre-Griiss inequality that

may be deduced from Shisha-Mond5s result

Theorem 4. With the assumption of Theorem 3, we have

\T M （/M 一 y/稅洁二］f （a：） dx

X 总/如（쩨上/搭血）
1
2

The constant c = 1 is best possible in the sense that it cannot be 

replaced by a smaller constant.

Following Matic et al [12], we may say that the sequence of poly­

nomials {Pn (z)}ncN is a harmomc sequence if

P： (t) = Pn~i (%) for n > 1 and Pq (z) = 1.

In the above mentioned paper [12], the authors considered the follow­

ing particular instances of harmonic polynomials:

Pn=

Pn (*)= 

g =

(4 一 x)n
---j—, > 0;

n!
1 ( a + x\n 八 见(j 丁)' n-°! 

伝 一 a}n R 
上M ,fb (t) = 1, n > 2;

n)
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where Bn (i) are the well known Bernoulli polynomials, and

R(t)= 느으)，R(t) = L 孔之1,

where En (i) are the Euler polynomials.

The following perturbed version of the generalized Taylor's formula 

was obtained in [12].

Theorem 5. Let {Pn(T)}n€N be a harmonic sequence of polynomi­

als. Let I C R_be a closed interval and a € I. Suppose that f : / T R 
is such that f W is absolutely continuous. Then for any x E I we have 

the generalized Taylor's formula:

(3.1) _ ~

f(x)=Tn (/; a, x)+(-l)n [Pn+i (x) - Pn+1 (a)] [/(n); a, 씨 +Gn (/; a, x~),

where

n

Tn (/； a,x) = f (a) + £ (-l)fe+1 [Pk (z)扩)⑴ 一 pk (a)扩)(a)] 

fc=l

and

[广);E = Z性!二竺I이.
l 」 x — a

For x > a. the remainder G (/; a, x) satisfies the estimation

~ 7 — /7 1
(3.2) (I、(z)一火游)区(R,R)F，

乙

where

n："-(冬 財)2

and

7(rr) = inf 舟+i)(土)，「(z) = sup /(n+1) (t) 
t£[a,x] t£[a}x]

Using Theorems 3 and 4, we may point out the following bounds 

for the remainder G as w신L

T (R, P福 J x) := -느 / 
工一 aJa
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Theorem 6. Assume that {Pn (a;)}nEN and f are as in Theorem 5. 

Moreover, if 7 (z) > 0, then we have the representation (3.1) and the 

remainder G (/; a, x) satisfies the bounds

(3.3) Gn (/; a, x)

I - :爲 潔 [/㈤; a，이 区(R，耳； 国 ')】* ⑶ - 力

I (\/「(:c) - \/伯)) vlfS)；a, :이 [T (Pn, Pn； a, 时]* (c - a) 

for any x > a.

The proof is similar to the one in Theorem 3, [12] and we omit the 

details.

Remark 1. If we choose the above particular instances of harmonic 

polynomials, then we may produce a number of particular Taylor-hke 

formulae whose remainder will obey similar bounds to those incorpo­

rated in (3.3). We omit the details.

Remark 2. As shown by Proposition 1, the bounds provided by 

(3 2) and (3.3) cannot be compared in general.
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