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INTEGRAL INEQUALITIES OF GRUSS TYPE VIA
POLYA-SZEGO AND SHISHA-MOND RESULTS

S. S. DRAGOMIR AND N. T. DIAMOND

ABSTRACT Integral inequalities of Griiss type obtained via Pélya-
Szegd and Smsha-Mond results are given Some applications for
Taylor’s generalized expansion are also provided

1. Introduction

For two measurable functions f, g . [a, b] — R, define the functional,
which is known 1 the hiterature as Chebychev’s functional

b b b
TG g0t =5 [ f@e@te -t [ @ [e@a

provided that the involved integrals exist.

The following inequality 18 well known in the literature as the Gruss
inequality [11]

(11) IT(f,9:0,) < 3 (M = m) (N = n),

provided that n < f < M and n < ¢ < N ae. on {a,b], where
m, M,n, N are real numbers The constant § in (1.1) is the best
possible

Another inequahty of this type 1s due to Chebychev (see for example
[16, p. 207}). Namely, if f, g are absolutely continuous on [a, b] and
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¢ € Ly [a,b) and || f'|l, :=ess sup |f'(t)|, then

t€(e,b]

I7(£,930,0)| < 55 17l Il (b — 0

and the constant g5 is the best possible.
Finally, let us recall a result by Lupag (see for example {16, p. 210]),
which states that:

17 (930,01 < = 171 'l b — @),

provided f,g are absolutely continuous and f',¢' € L,[a,b]. The
constant w%- is the best possible here.

For other Gruss type inequalities, see the books [16] and {13], and
the papers [2]-[10], where further references are given.

The main aim of this paper is to establish some new Griiss type
inequalities and apply them for the generalized Taylor’s expansion.

2. Integral Inequalities of Griiss Type

The following Gruss type inequality holds.

THEOREM 1. Let f, ¢ : [a,b] — R, be two integrable functions so
that

0<m<fz)<M<oo and 0<n<g(z) < N<oo

forae. z € [a,b].
Then one has the inequality

(21) IT(f g;0,)|
S1 (M — m)(N—n . /f(a:)dm

Z mn

f (z)dz.

The constant % is best possible in (2.1) in the sense that it cannot be
replaced by a smaller constant
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Proof. We have, by the Cauchy-Buniakowski-Schwartz inequality
for double integrals, that

(2.2)

IT(f, g,a,b)

12(17 / / (f{=) ~ f () (g {2) — g{y))dzdy

s [ [ -roran [ [ 6o
E—(b'_i_a')"[ [(b—a)f f2(m)dx~(ff dm)}

« (b—a)/:g2(x)dx— (/:g(x)dx)z]]%

L

= -biaf:fg(x)dx* (b—};/:f(xmx)T

1

[ 1 b , i b 272
X b—a]ag (x)dxu(m/ag(x)dm)}

-

Utilizing the Polya-Szegs inequality for integrals [15}, i.e.,
f R ( x)dxf 52(x)d:r< ( [M Mz )
) (Jen@ 1@ dz) Ml

provided 0 < m; < h(z) < My < 00,0 <my <1{z) < My < oo for
a.e z € [a,b], we may state that

(b—a) [l f2(z)dz 1 1 (M +m)’
(fafxmzx Z([ \/’) SR

DO
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giving
(b—a) [ 2 (z)de — (Lff(w) akv)2 JIMam)?® (M —m)
(27 @) dz)” —4 oM amAM
that is,
(2.3)

—a/ﬂ ac)dx—(/f(x)dx) S(M m) (ff d:n).

In a similar fashion, we obtain
(2.4)

=) [ 7@z ([:g(z)dx)zs%’lf(/:g(m)dx)z

Using (2.2), (2.3) and (2 4}, we deduce the desired nequality (2.1).
Now, assume that the inequality in {2.1) holds with a constant
c> 0, ie.,

(25) 1T (f,9:a,0)]
S CEL NNy Py

mn

We choose the functxons f = g with

m, xe[a,i‘;—b]
fx) = < m< M < oo,
M, z e (22,0 :

Then

bfa/:f?(x)dx— (ﬁf:f(x)dxy

_mP+ M (m+ M\
2 2

1
=Z(M“m)2:
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and by (2.5) we deduce

1 ) (M —m)?® [(m+M\°
4(M m)  <e- oy 5

from where we get
(2.6) mM < c(M — ni)
forany 0 <m < M < .

If in (2.6) we consider m =1 —¢, M =1+¢, € € {0,1), then we
get 1 — &% < 4c for any ¢ € (0,1), which shows that ¢ > 1. O

The second result of Gruss type 1s embodied 1 the following theo-
rem.

THEOREM 2. Assume that f and g are as in Theorem 1. Then one
has the inequality:

(27) 1T (f g:0,b)

< (VB — vim) (VN - V&) \/b—i—&/abf(mdx.bia/abg(x)dx-

The constant ¢ = 1 is best possible in the sense that it cannot be
replaced by a smaller constant.

Proof. We shall use the Shisha-Mond inequality [17] (see also [13,
p. 121])

2
noz2 AT f M, [m.
28 n:;:l T o zil 19t < el el ’
( ) 5—‘4221 Zoth =1 y? o (L M2

provided 0 < m; < 2, < My <ocand 0 < my <y, €< M; < oo for all
v € {l,. .,n}.
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Applying a standard procedure for Riemann sums instead of z,, ¥;,
ie.,

b—a 377 hz(a+:—i(b—a))

1 =0

be St h(a+i(b—a))l(a+t(d—a))

ey h{a+i(b—a))l{a+t(b—a)) M [ 2
R = (V- )

provided h,! are Riemann integrable on [a,b] and 0 < m; < h(z) <
M, < 00,0 < my < I{z) < My < 00, we may deduce, by letting
n — oo, the integral inequality

2
(2.9) [Ph2 (z)dx f:h(a;)l(x)dx< [My  [mi
‘ Pr@)i(zyds  [2@z)ds ~ \Vme VM)~
which is the integral version of the Shisha-Mond inequality (2.8).
From {2.9) we may easily deduce

bia/abe(x)dx— (b—i(;/abf(x)dx>2
< (\/M-—\/ﬁ)Qg—l—& (@) do

- a

(2.10) 0<

and

(2.11) 0< ia[abg2(x)dx~(b—_1_—?‘-£bg(x)dm)2

Finally, by making use of (2.2}, (2.10) and (2.11), we obtain the
desired inequality {2.7).
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To prove the sharpness of the constant, assume that (2.7) holds
with a constant ¢ > 0, i.e,

(2.12) |T(f,g;0,0)| <

o(VFT ) (VE ) /f(m)dm

Now, let us choose f = g and
m, if z € [a,%2],
flz)=
M, of ze (%h].
Then from (2.12) we deduce (see also Theorem 1) that
(M m)? <c(\/— \/——) m+M,0<m<M<oo
that is,
2 2 2
L (VA - vm) (VI +vm) <o (VAT - ym) 2P
4 2
giving for any 0 < m < M < oo that
2
(2.13) (VM + vim) < 20(m + M)

If in (213) we choose m = 1 —-¢, M = 1+¢, ¢ € (0,1), we get

(Vi—e+ V1 +6)2 < 4c. Letting £ — 04, we deduce ¢ > 1, and the
theorem is proved . ]

/ g(z)dz.

By the classical Gruss’ inequality, we obviously have
(2.14) T (f,0,0,8)| < 3 (M —m) (N~ n).

It is natural to compare the hounds provided by (2.1), (2.7) and
(2.14).

PROPOSITION 1. The bounds provided by (2.1}, (2 7) and (2.14) are
not related. This means that one is better than the others depending
on the different choices of functions f and g
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Proof. 1. With the assumptions in Theorem 2, consider, for f =
g, n=m, N = M, the quantity

- (121 (mz) dr)
(b—a)*mM

We want to compare this quantity with 1.
Choose 0 =0, 5= 3 and

1 if z€(0,2],
flz) =
koif ze(2,3), k> 1

> 0.

Then f:f(a;)dx:1+k,m=1,M=kandthus

(k +2)°
9k

Ulk)y=U =

We observe that
_ k=1 -4

Uk) -1 - ,

showing that if £ € (0,1]U{4, 00), U (k) > 1 while for & € (1,4),
U k) <1.

In conclusion, for the above choice, if k£ € (1,4), the bound
provided by (2 1) 1s better than the bound provided by (2.14),
whale for £ € (4, 00) this bound is worse than that provided by
the Griiss inequality

2. With the assumptions in Theorem 2, consider, for f=g,n=m,
N = M, the quantity

1 ;=43(M~m)2, Iy = (\/H—\/r;ﬁ)Qb—i;/:f(x)dz.

If we assume that m = 0, M = 1, then I, = %, L = g%; f: f(z)dz,
provided 0 < f(z) <1, z € [a, 8].

Now, 1if we choose f so that Ei—af:f(x)dx < 1 then the
bound provided by (2.7) is better than the one provided by
(2.14). 1f - f:’ f(z)dz > I, then Griiss’ inequality provides
a better bound.
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3. With the assumptions in Theorem 2, consider, for f = ¢, n = m,
N = M, the quantities

2

I :%(M;Mm)z‘(biaf:f(x)dx) ,

Jp :(m—“\/ﬁ)z-ﬁll}f(x)da}.

If we choose m =1, M =4, we get

9

. 1 b
= L2 = e — .
J = eY Jy = y where y b—o;[a f{z)dz € [1,4]

Now, observe that

9y —~ 16
J— = y16 )

showing that for y € {1, 2] the bound provided by (2.1} is better
than the bound provided by (2.7) while for y € (3£,4], the
conclusion is the other way around.

0

3. Some Pre-Griiss Type Inequalities and Applications

If there 1s no information available about the upper and lower
bounds of the function g, but the integrals

f:gg (z)dz and /:g(x)dx

can be exactly computed, then the following pre-Griiss type resuit
may be stated.

THEOREM 3. Let f,g: [a,b] = R be two integrable functions such
that there exist m, M > 0 with

0<m< f{z) < M<oo
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and g € Lg[a,b]. Then one has the inequality

T(fg50B) < 5 (M ) /f(x)d:z:

X [z:*i‘;;/ o (z) do — (bi—a/‘;bg(:c)da:)z]%.

The constant % is best possible.

The proof is similar to the one incorporated in Theorem 1 and we
omit the details.

Similarly, we may state the corresponding pre-Griiss inequality that
may be deduced from Shisha-Mond’s result

THEOREM 4. With the assumption of Theorem 3, we have

g (f’g’ab”((‘/_ vm \F ff(x)da:
><[b_l.a/a”gZ(x)dx_(g%_afabg(x)dx)zr

The constant ¢ = 1 is best possible in the sense that it cannot be
replaced by a smaller constant.

Following Matié et al [12], we may say that the sequence of poly-
nomials {F, () },cn is @ harmonic sequence if

P (z)=P,_1{z) for n>1 and Py(z)=1.

In the above mentioned paper [12}, the authors considered the follow-
ing particular instances of harmonic polynomials:

b

Pn(t)_ . (t_a—l_x) ’ n201

R = 2o

nl

Pty = & ;,“)an (i_ “) Rt =1,n>2;
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where B,, (t) are the well known Bernoulli polynomials, and

P = ;,a)nEn (;:‘;) Pt)y=1,n>1,

where E, (t) are the Euler polynomials.

The following perturbed version of the generalized Taylor’s formula
was obtained in {12].

THEOREM 5. Let {F, ()}, .y be a harmonic sequence of polynomi-
als. Let I C R be a closed interval and a € I. Suppose that f: I — R
is such that f*) is absolutely continuous. Then for any = € I we have
the generalized Taylor’s formula:

(3.1)

f (1}) = Tn (fa a, $)+(_1)n [Pn+l (I) - Pn+l ((L)] [f(n);a‘1 iL‘] +C~;ﬂ- (fa a, .T,) 3

where
To(fia,2) = f(a) + i (-1)**"' [P (2) 1® (2) - P (a) ¥ (a)]
£=1

and

_ 1% (@) - [ ()

r—aq

{f(n); a, a:]

For x > a, the remainder (f; a,z) satisfies the estimatioun

~ X —a
Gn(f,a,x)ls 5

N~

(3.2)

(F (:E) - ’}'(.’l))) [T (PmPn)] >

where

l T 1 z 2
T(P,, Fh;a, = 2 —{ P,
(Py, Paia, 7) x_afa P2 (¢) dt (x_af% (t)dt)
and

y{z) = inf @), T(z)= sup fO(2)
te[ﬂ.,&:] tE[G,I]

Using Theorems 3 and 4, we may point out the following bounds
for the remainder G (f;a,z) as well.
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THEOREM 6. Assume that {P, (x)}, .y and f are as in Theorem 5.
Moreover, if v {(z) > 0, then we have the representation (3.1) and the
remainder G (f;a,z) satisfies the bounds

(3.3) |G’n (f;q, m)i
l . I'(z) — 7 (z) [f(");a, 3;] [T (P, Py; a, (D)]% {z — a)

2 V(@I ()
(VTG - V7 @) VI 2] [T (P, Pria,2)f* (z ~ a)

for any z > a.

<

The proof 18 sumilar to the one in Theorem 3, [12] and we omit the
details.

REMARK 1. If we choose the above particular instances of harmonic
polynomials, then we may produce a number of particular Taylor-hke
formulae whose remainder will obey similar bounds to those incorpo-
rated in (3.3). We omit the details.

REMARK 2. As shown by Proposition 1, the bounds provided by
(3 2) and (3.3) cannot be compared in general.
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