East Asian Math. J 19 (2003), No. 1, pp. 1-15

ON THE ĊEBYŠEV'S INEQUALITY FOR UNWEIGHTED MEANS AND APPLICATIONS

S. S. Dragomir

Abstract

Some new sufficient conditions for the unweighted Čebyšev's mequality for real sequences to hold and related results are given. Applications for the moments of guessing mappings are also provided

1. Introduction

Let $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right), \overline{\mathbf{y}}=\left(y_{1}, \ldots, y_{n}\right)$ be two n-tuples of real numbers. If $\overline{\mathbf{x}}, \overline{\mathbf{y}}$ are synchronous (asynchronous), this means that

$$
\begin{equation*}
\left(x_{2}-x_{3}\right)\left(y_{2}-y_{j}\right) \geq(\leq) 0 \text { for each } \imath, \jmath \in\{1, \ldots, n\}, \tag{1.1}
\end{equation*}
$$

then the following well known Čebyšev's nequality

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} x_{\imath} y_{\imath} \geq(\leq) \frac{1}{n} \sum_{i=1}^{n} x_{\imath} \cdot \frac{1}{n} \sum_{\imath=1}^{n} y_{\imath} \tag{1.2}
\end{equation*}
$$

holds.
In [16], the following refinement of Čebyšev's inequality has been obtained

$$
\begin{align*}
T_{n}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) & =\frac{1}{n} \sum_{i=1}^{n} x_{\imath} y_{2}-\frac{1}{n} \sum_{i=1}^{n} x_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} y_{i} \tag{1.3}\\
& \geq \max \left\{\left|T_{n}(|\overline{\mathbf{x}}|, \overline{\mathbf{y}})\right|,\left|T_{n}(\overline{\mathbf{x}},|\overline{\mathbf{y}}|)\right|,\left|T_{n}(|\overline{\mathbf{x}}|,|\overline{\mathbf{y}}|)\right|\right\} \\
& \geq 0,
\end{align*}
$$

provided $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$ are synchronous
Recesved February 27, 2003.
2000 Mathematics Subject Classification: Primary 26D15, Secondary 94A05
Key words and phrases: C̆ebyšev's Inequality, guessing mapping.

In this paper, some new Čebyšev's type inequalities for unweighted means are obtained. Simlar results for the weighted case are considered in [12]

2. Čebyšev's Type Inequalities

The following identities hold.

Lemma 1. Let $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$, be two sequences of real numbers Define $A_{k}:=\sum_{k=1}^{k} a_{i}, \bar{A}_{k}:=A_{n}-A_{k}$, $k=1, \ldots, n-1$. Then

$$
\begin{align*}
T_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}) & =\frac{1}{n^{2}} \sum_{\imath=1}^{n-1} \operatorname{det}\left(\begin{array}{cc}
\imath & n \\
A_{\imath} & A_{n}
\end{array}\right) \Delta x_{\imath} \tag{2.1}\\
& =\frac{1}{n} \sum_{\imath=1}^{n-1} \imath\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right) \Delta x_{\imath} \\
& =\frac{1}{n^{2}} \sum_{\imath=1}^{n-1} \imath(n-\imath)\left(\frac{\bar{A}_{\imath}}{n-\imath}-\frac{A_{2}}{\imath}\right) \Delta x_{\imath},
\end{align*}
$$

where $\Delta x_{\imath}=x_{1+1}-x_{\imath}(\imath=0, \ldots, n-1)$ is the forward difference.

Proof. We use the following well known summation by parts formula

$$
\begin{equation*}
\sum_{\ell=p}^{q-1} b_{\ell} \Delta v_{\ell}=\left.b_{\ell} v_{\ell}\right|_{p} ^{q}-\sum_{\ell=p}^{q-1} v_{\ell+1} \Delta b_{\ell}, \tag{2.2}
\end{equation*}
$$

where $b_{\ell}, v_{\ell} \in \mathbb{R}, \ell=p, \ldots, q(q>p)$ If we choose in (2.2), $p=1$, $q=n, b_{2}:=\imath A_{n}-n A_{2}$, and $v_{\imath}=x_{2}(\imath=1, \ldots, n)$, then we get

$$
\begin{aligned}
& \sum_{\imath=1}^{n-1}\left(i A_{n}-n A_{\imath}\right) \Delta x_{\imath} \\
& =\left.\left(\imath A_{n}-n A_{\imath}\right) x_{\imath}\right|_{1} ^{n}-\sum_{\imath=1}^{n-1} \Delta\left(\imath A_{n}-n A_{\imath}\right) x_{\imath+1} \\
& =-\left(A_{n}-n A_{1}\right) x_{1}-\sum_{i=1}^{n-1}\left[(\imath+1) A_{n}-n A_{\imath+1}-\imath A_{n}+n A_{\imath}\right] x_{\imath+1} \\
& =-A_{n} x_{1}+n A_{1} x_{1}-\sum_{\imath=1}^{n-1}\left(A_{n}-n a_{\imath+1}\right) x_{\imath+1} \\
& =-A_{n} x_{1}+n A_{1} x_{1}-A_{n} \sum_{\imath=1}^{n-1} x_{\imath+1}+n \sum_{\imath=1}^{n-1} a_{2+1} x_{\imath+1} \\
& =-A_{n} \sum_{i=1}^{n} x_{2}+n \sum_{\imath=1}^{n} a_{\imath} x_{\imath}
\end{aligned}
$$

and the first identity in (21) is proved. The others are obvious.
The following theorem holds
THEOREM 1. Let $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$, be two sequences so that either
(i) $\overline{\mathrm{x}}$ is increasing and

$$
\frac{1}{n} A_{n}-\frac{1}{2} A_{2} \geq 0
$$

for each $\imath \in\{1, \ldots, n-1\}$;
or
(11) $\overline{\mathbf{x}}$ is decreasing and

$$
\frac{1}{n} A_{n}-\frac{1}{2} A_{2} \leq 0
$$

for each $\imath \in\{1, \ldots, n-1\}$

S. S. DRAGOMIR

Then one has the inequality
(2.3) $\quad T_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}) \geq \max \left\{\left|A_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}})\right|,\left|A_{n}(|\overline{\mathbf{x}}|, \overline{\mathbf{a}})\right|,\left|T_{n}(|\overline{\mathbf{x}}|, \overline{\mathbf{a}})\right|\right\} \geq 0$, where

$$
A_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}):=\frac{1}{n} \sum_{\imath=1}^{n-1}\left|A_{\imath}\right| \Delta x_{2}-\frac{\left|A_{n}\right|}{n} \cdot \frac{1}{n} \sum_{i=1}^{n-1} \imath \Delta x_{i}
$$

Proof. If ether (i) or (ii) hold, then

$$
\begin{aligned}
&\left(\frac{A_{n}}{n}-\frac{A_{\imath}}{i}\right)\left(x_{\imath+1}-x_{\imath}\right)=\left|\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right)\right| \\
& \geq\left\{\begin{array}{l}
\left|\left(\frac{\left|A_{n}\right|}{n}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right)\right| \geq 0
\end{array}\right. \\
&\left|\left(\frac{\left|A_{n}\right|}{n}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(\left|x_{\imath+1}\right|-\left|x_{\imath}\right|\right)\right| \geq 0
\end{aligned} \quad \begin{aligned}
& \left|\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right)\left(\left|x_{i+1}\right|-\left|x_{\imath}\right|\right)\right| \geq 0
\end{aligned}
$$

for each $\imath \in\{1, \quad, n-1\}$.
Multiplying by \imath, summing over \imath, and using the generalized triangle inequality, we get

$$
\begin{aligned}
T_{n}(\overline{\mathbf{x}}, \overline{\mathrm{a}}) & =\frac{1}{n} \sum_{\imath=1}^{n-1} \imath\left|\left(\frac{A_{n}}{n}-\frac{A_{\imath}}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right)\right| \\
& \geq \frac{1}{n} \times\left\{\begin{array}{l}
\left|\sum_{\imath=1}^{n-1} i\left(\frac{\left|A_{n}\right|}{n}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right)\right| \\
\left|\sum_{\imath=1}^{n-1} i\left(\frac{\left|A_{n}\right|}{n}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(\left|x_{\imath+1}\right|-\left|x_{\imath}\right|\right)\right| \\
\left|\sum_{\imath=1}^{n-1} \imath\left(\frac{A_{n}}{n}-\frac{A_{\imath}}{\imath}\right)\left(\left|x_{\imath+1}\right|-\left|x_{\imath}\right|\right)\right|
\end{array}\right.
\end{aligned}
$$

from where we easily deduce the desired inequality (2.3).

REMARK 1. We observe that if $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ is monotonic increasing in mean, i.e.,

$$
\frac{1}{\imath} A_{\imath} \leq \frac{1}{i+1} A_{\imath+1} \text { for } \imath=1, \ldots, n-1
$$

then obviously

$$
\frac{1}{\imath} A_{\imath} \leq \frac{1}{n} A_{n}
$$

for each $\imath \in\{1, \ldots, n-1\}$. The converse is not true
We also note that if $\overline{\mathbf{a}}$ is monotonic nondecreasing, then it is increasing in mean and thus

$$
\frac{1}{2} A_{i} \leq \frac{1}{n} A_{n}
$$

for each $\imath \in\{1, \ldots, n-1\}$.
Remark 2. We observe, since,

$$
\frac{A_{n}}{n}-\frac{A_{8}}{\imath}=\frac{n-\imath}{n}\left(\frac{\bar{A}_{2}}{n-\imath}-\frac{A_{2}}{\imath}\right)
$$

for each $\imath \in\{1, \ldots, n-1\}$, that

$$
\frac{A_{n}}{n} \geq \frac{A_{\imath}}{\imath} \text { for each } \imath \in\{1, \ldots, n-1\}
$$

If and only if

$$
\frac{\bar{A}_{2}}{n-\imath} \geq \frac{A_{2}}{\imath} \text { for each } \imath \in\{1, \quad, n-1\}
$$

Here $\bar{A}_{\imath}=A_{n}-A_{\imath}$ for $\imath \in\{1, \quad, n-1\}$.
Using the second identity in (2.1), we may prove the following refinement of Čebyšev's inequality as well.

Theorem 2. Assume that $\overline{\mathbf{a}}$ and $\overline{\mathrm{x}}$ satisfy the hypothesis (i) or (ii) in Theorem 1 Then one has the inequality.

$$
\begin{equation*}
T_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}) \geq \max \left\{\left|D_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}})\right|,\left|D_{n}(|\overline{\mathbf{x}}|, \overline{\mathrm{a}})\right|\right\} \geq 0, \tag{2.4}
\end{equation*}
$$

where

$$
D_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}):=\frac{1}{n^{2}} \sum_{\imath=1}^{n-1}(n-i)\left|A_{2}\right| \Delta x_{\imath}-\frac{1}{n^{2}} \sum_{\imath=1}^{n-1} \imath\left|\bar{A}_{\imath}\right| \Delta x_{2} .
$$

Proof. If either (i) or (ii) holds, then

$$
\begin{aligned}
\left(\frac{\bar{A}_{\imath}}{n-\imath}-\frac{A_{2}}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right) & =\left|\left(\frac{\bar{A}_{2}}{n-\imath}-\frac{A_{2}}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right)\right| \\
& \geq\left\{\begin{array}{l}
\left|\left(\frac{\left|\bar{A}_{2}\right|}{n-\imath}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(x_{\imath+1}-x_{i}\right)\right| \\
\left|\left(\frac{\left|\bar{A}_{\imath}\right|}{n-\imath}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(\left|x_{\imath+1}\right|-\left|x_{\imath}\right|\right)\right|
\end{array}\right.
\end{aligned}
$$

for each $\imath \in\{1, . ., n-1\}$.
Multıplying by $\imath(n-\imath)$, summing over i and using the generalized triangle inequality, we have

$$
\begin{aligned}
T_{n}(\overline{\mathrm{x}}, \overline{\mathrm{a}}) & =\frac{1}{n^{2}} \sum_{\imath=1}^{n-1} \imath(n-\imath)\left|\left(\frac{\bar{A}_{\imath}}{n-\imath}-\frac{A_{\imath}}{i}\right) \Delta x_{2}\right| \\
& \geq \frac{1}{n^{2}}\left\{\begin{array}{l}
\left|\sum_{\imath=1}^{n-1} \imath(n-\imath)\left(\frac{\left|\bar{A}_{\imath}\right|}{n-\imath}-\frac{\left|A_{2}\right|}{\imath}\right)\left(x_{\imath+1}-x_{\imath}\right)\right| \\
\left|\sum_{\imath=1}^{n-1} \imath(n-\imath)\left(\frac{\left|\bar{A}_{\imath}\right|}{n-\imath}-\frac{\left|A_{\imath}\right|}{\imath}\right)\left(\left|x_{\imath+1}\right|-\left|x_{\imath}\right|\right)\right|
\end{array}\right.
\end{aligned}
$$

from where we easily deduce the desired inequality (2.4).

3. Other Related Results

The following result holds.
Theorem 3. Let $\overline{\mathbf{a}}=\left(a_{1}, ., a_{n}\right)$ and $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$, be two sequences of real numbers. If $\overline{\mathbf{a}}$ is monotonic decreasing (increasing) in mean, $1 e$,

$$
\frac{1}{\imath} A_{\imath} \leq(\geq) \frac{1}{\imath+1} A_{\imath+1} \text { for each } \imath \in\{1, \ldots, n-1\}
$$

and $\tilde{\mathrm{x}}$ is convex (concave), i.e.,

$$
\frac{x_{\imath+2}+x_{i}}{2} \geq(\leq) x_{i+1} \text { for each } \imath \in\{1, \ldots, n-2\}
$$

then we have the inequality
(3.1) $T_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}) \geq\left[\frac{A_{n}}{n}-\frac{2}{n(n-1)} \sum_{i=1}^{n-1}(n-i) a_{\imath}\right]\left(x_{n}-\frac{1}{n} \sum_{i=1}^{n} x_{\imath}\right)$.

Proof. Define the sequences

$$
\begin{aligned}
& p_{\imath}=\imath, z_{\imath}:=\frac{A_{n}}{n}-\frac{A_{\imath}}{\imath}, \\
& y_{\imath}:=\Delta x_{\imath}=x_{\imath+1}-x_{2}, \imath=1, \ldots, n-1 .
\end{aligned}
$$

Then $p_{\imath}>0$,

$$
z_{\imath+1}-z_{\imath}=\frac{A_{\imath+1}}{\imath+1}-\frac{A_{2}}{\imath} \geq 0 \text { for each } \imath \in\{1, \ldots, n-2\},
$$

and
$y_{\imath+1}-y_{\imath}=\Delta x_{\imath+1}-\Delta x_{\imath}=x_{\imath+2}+x_{\imath}-2 x_{\imath+1} \geq 0$ for each $\imath \in\{1, \ldots$, $n-2$. Applying the werghted Čebyšev's inequality for monotonic sequences, we have

$$
P_{n-1} \sum_{i=1}^{n-1} p_{2} z_{2} y_{2} \geq \sum_{i=1}^{n-1} p_{2} z_{2} \cdot \sum_{i=1}^{n-1} p_{2} y_{2}
$$

giving

$$
\begin{equation*}
\frac{n(n-1)}{2} \sum_{i=1}^{n-1} \imath\left(\frac{A_{n}}{n}-\frac{A_{i}}{\imath}\right) \Delta x_{\imath} \geq \sum_{i=1}^{n-1} \imath\left(\frac{A_{n}}{n}-\frac{A_{i}}{\imath}\right) \sum_{i=1}^{n-1} \imath \Delta x_{\imath} . \tag{32}
\end{equation*}
$$

However, by (21) we have

$$
\begin{gathered}
\sum_{i=1}^{n-1} i\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right) \Delta x_{\imath}=n\left[\frac{1}{n} \sum_{\imath=1}^{n} a_{\imath} x_{\imath}-\frac{1}{n} \sum_{\imath=1}^{n} a_{2} \cdot \frac{1}{n} \sum_{\imath=1}^{n} x_{\imath}\right], \\
\sum_{i=1}^{n-1} i\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right)=\frac{(n-1) n}{2 n} A_{n}-\sum_{\imath=1}^{n-1} A_{i}=\frac{n-1}{2} A_{n}-\sum_{i=1}^{n-1}(n-1) a_{\imath},
\end{gathered}
$$

$$
\begin{aligned}
\sum_{i=1}^{n-1} \imath \Delta x_{\imath}= & \sum_{i=1}^{n-1} \imath\left(x_{i+1}-x_{\imath}\right) \\
= & x_{2}+2 x_{3}+\cdots+(n-2) x_{n-1}+(n-1) x_{n} \\
& -x_{1}-2 x_{2}-\cdots-(n-1) x_{n-1} \\
= & n x_{n}-\left(x_{1}+\cdots+x_{n}\right)=n\left(x_{n}-\frac{1}{n} X_{n}\right)
\end{aligned}
$$

Using (3.2), we get,

$$
\begin{aligned}
& n\left[\frac{1}{n} \sum_{\imath=1}^{n} a_{\imath} x_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} x_{\imath}\right] \\
\geq & \frac{2}{(n-1) n}\left[\frac{n-1}{2} A_{n}-\sum_{\imath=1}^{n-1}(n-\imath) a_{\imath}\right]\left[n\left(x_{n}-\frac{1}{n} X_{n}\right)\right] \\
= & {\left[A_{n}-\frac{2}{n-1} \sum_{i=1}^{n-1}(n-\imath) a_{i}\right]\left[x_{n}-\frac{1}{n} \sum_{i=1}^{n} x_{\imath}\right] }
\end{aligned}
$$

and the inequality (31) is obtained.
REMARK 3. If $\overline{\mathbf{a}}$ is monotonic decreasing (increasing) in mean but $\overline{\mathbf{x}}$ is concave (convex), the reverse inequality in (3.1) holds.

The following result also holds
Theorem 4. Let $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$, be two sequences of real numbers If $\overline{\mathbf{a}}$ is monotonic decreasing (increasing) in mean and $\overline{\mathbf{x}}$ is monotonic increasing with $x_{n}>x_{1}$, then one has the inequality
(3.3) $T_{n}(\overline{\mathbf{x}}, \overline{\mathbf{a}}) \geq(\leq)\left(x_{n}-\frac{1}{n} \sum_{i=1}^{n} x_{2}\right)\left(\frac{A_{n}}{n}-\frac{1}{x_{n}-x_{1}} \sum_{i=1}^{n-1} \frac{A_{1}}{\imath} \Delta x\right)$.

Proof Define the sequence

$$
\begin{aligned}
& p_{\imath}=\Delta x_{2}, \imath \in\{1, \ldots, n-1\} \\
& z_{2}:=\frac{A_{n}}{n}-\frac{A_{2}}{\imath} \text { and } \\
& y_{1}:=\imath, \imath \in\{1, \ldots, n-1\}
\end{aligned}
$$

Then

$$
\begin{aligned}
p_{\imath} & \geq 0, \quad \imath \in\{1, \ldots, n-1\} \text { with } \sum_{\imath=1}^{n-1} p_{\imath}>0 \\
z_{\imath+1}-z_{\imath} & =\frac{A_{\imath+1}}{i+1}-\frac{A_{2}}{\imath} \underset{(\leq)}{\geq} 0 \text { for each } \imath \in\{1, \ldots, n-2\},
\end{aligned}
$$

and y_{i} is increasing.
Applying the weighted Čebyšev's inequality for monotonic sequences, we have

$$
\begin{equation*}
\sum_{\imath=1}^{n-1} \Delta x_{i} \sum_{\imath=1}^{n-1} \imath\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right) \Delta x_{\imath} \geq(\leq) \sum_{\imath=1}^{n-1} \imath \Delta x_{\imath} \sum_{\imath=1}^{n-1}\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right) \Delta x_{\imath} . \tag{3.4}
\end{equation*}
$$

However,

$$
\begin{aligned}
\sum_{\imath=1}^{n-1} \Delta x_{\imath} & =x_{n}-x_{1}>0, \\
\sum_{\imath=1}^{n-1} \imath\left(\frac{A_{n}}{n}-\frac{A_{\imath}}{\imath}\right) \Delta x_{\imath} & =n\left(\frac{1}{n} \sum_{\imath=1}^{n} a_{\imath} x_{\imath}-\frac{1}{n} \sum_{\imath=1}^{n} a_{\imath} \cdot \frac{1}{n} \sum_{i=1}^{n} x_{\imath}\right), \\
\sum_{\imath=1}^{n-1} \imath \Delta x_{\imath} & =n\left(x_{n}-\frac{1}{n} X_{n}\right)
\end{aligned}
$$

and

$$
\sum_{\imath=1}^{n-1}\left(\frac{A_{n}}{n}-\frac{A_{2}}{\imath}\right) \Delta x_{2}=\frac{A_{n}}{n}\left(x_{n}-x_{1}\right)-\sum_{i=1}^{n-1} \frac{A_{2}}{\imath} \Delta x_{2}
$$

Using (3.4), we have

$$
\begin{aligned}
\left(x_{n}-x_{1}\right) n & \left(\frac{1}{n} \sum_{i=1}^{n} a_{\imath} x_{2}-\frac{1}{n} \sum_{\imath=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} x_{2}\right) \\
& \geq(\leq)\left(n x_{n}-\frac{1}{n} \sum_{\imath=1}^{n} x_{\imath}\right)\left[\frac{A_{n}}{n}\left(x_{n}-x_{1}\right)-\sum_{i=1}^{n-1} \frac{A_{2}}{\imath} \Delta x_{\imath}\right]
\end{aligned}
$$

from where we get (3.3).

REmARK 4. A similar result may be stated if one uses the weighted Čebyšev's inequality for:
$p_{\imath}:=\frac{A_{n}}{n}-\frac{A_{\imath}}{\imath} \geq 0 \quad$ (assumed for each $\imath \in\{1, \ldots, n-1\}$)
$y_{2}:=\imath, \quad$ (monotonic increasing)
$z_{2}:=\Delta x_{2} \quad$ (assumed monotoncally increasing (decreasing))
(or equivalently, $\overline{\mathbf{x}}$ is convex (concave))

4. Some Applications for Moments of Guessing Mappings

In 1994, J L Massey [18] considered the problem of guessing the value taken on by a discrete random variable X in one trial of a random experiment by asking questions of the form "Did X take on its $i^{\text {th }}$ possible value?" untul the answer is in the affirmative.

This problem arises for instance when a cryptologist must try different possible secret keys one at a time after minimizing the possiblities by some cryptoanalysis

Consider a random variable X with finite range $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and distribution $P_{X}\left(x_{k}\right)=p_{k}$ for $k=1,2, \ldots, n$.

A one-to-one function $G \quad \chi \rightarrow\{1, \ldots, n\}$ is a guessing function for X Thus

$$
E\left(G^{m}\right) \cdot=\sum_{k=1}^{n} k^{m} p_{k}
$$

is the $m^{\text {th }}$ moment of this function, provided we renumber the x_{2} such that x_{k} is always the $k^{\text {th }}$ guess.

In [18], Massey observed that, $E(G)$, the average number of guesses, us minimized by a guessing strategy that guesses the possible values of X in decreasing order of probabulity.

In the same paper [18], Massey proved that for an optimal guessing strategy

$$
E(G) \geq \frac{1}{4} 2^{H(X)}+1 \text { provided } H(X) \geq 2 \text { bits }
$$

where $H(X)$ is the Shannon entropy

$$
H(X)=-\sum_{i=1}^{n} p_{\imath} \log _{2}\left(p_{\imath}\right)
$$

He also showed that $E(G)$ may be arbitrarily large when $H(X)$ is an arbitrarily small positive number so that there is no interesting upper bound on $E(G)$ in terms of $H(X)$.

In 1996, Arikan [2] proved that any guessing algorithm for X obeys the lower bound

$$
E\left(G^{\rho}\right) \geq \frac{\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{1+\rho}}\right]^{1+\rho}}{[1+\ln n]^{\rho}}, \quad \rho \geq 0
$$

where an optimal guessing algorithm for X satisfies

$$
E\left(G^{\rho}\right) \leq\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{1+\rho}}\right]^{1+\rho}, \quad \rho \geq 0
$$

In 1997, Boztaş [4] proved that for $m \geq 1$, and integer

$$
\begin{aligned}
& E\left(G^{m}\right) \leq \frac{1}{m+1}\left[\sum_{k=1}^{n} p_{k}^{\frac{1}{1+m}}\right]^{1+m} \\
+ & \frac{1}{m+1}\left\{(m+12) E\left(G^{m-1}\right)-(m+13) E\left(G^{m-2}\right)+\cdots+(-1)^{m+1}\right\}
\end{aligned}
$$

provided the guessing strategy satisfies the relation:

$$
p_{k+1}^{\frac{1}{1+m}} \leq \frac{1}{k}\left(p_{1}^{\frac{1}{1+m}}+\cdots+p_{k}^{\frac{1}{1+m}}\right), k=1, \ldots, n-1
$$

In 1997, Dragomir and Boztaş [14] obtained, for any guessing sequence, the following bounds for the expectation:

$$
\begin{aligned}
& \left|E(G)-\frac{n+1}{2}\right| \leq \frac{(n-1)(n+1)}{6} \max _{1 \leq 1<j \leq n}\left|p_{2}-p_{3}\right| \\
& \left|E(G)-\frac{n+1}{2}\right| \leq \sqrt{\frac{(n-1)(n+1)\left(n\|p\|_{2}^{2}-1\right)}{12}}
\end{aligned}
$$

where $\|p\|_{2}^{2}=\sum_{z=1}^{n} p_{\imath}^{2}$ and

$$
\left|E(G)-\frac{n+1}{2}\right| \leq\left[\frac{n+1}{2}\right]\left(n-\left[\frac{n+1}{2}\right]\right) \max _{1 \leq k \leq n}\left|p_{k}-\frac{1}{n}\right|
$$

with $[x]$ representing the integer part of x.
For other results on $E\left(G^{p}\right), p>0$ see also [15]. We highlight only the following result which uses the Grüss inequality, giving for $p, q>0$ that

$$
\begin{equation*}
\left|E\left(G^{p+q}\right)-E\left(G^{p}\right) E\left(G^{q}\right)\right| \leq \frac{1}{4}\left(n^{q}-1\right)\left(n^{p}-1\right) \tag{4.1}
\end{equation*}
$$

The result (41) may be complemented in the following way (see for example [11]).

ThEOREM 5. With the above assumptions, we have the inequality

$$
\begin{aligned}
& \left|E\left(G^{p+q}\right)-\frac{1+n^{q}}{2} E\left(G^{p}\right)-\frac{1+n^{p}}{2} E\left(G^{q}\right)+\frac{1+n^{q}}{2} \cdot \frac{1+n^{p}}{2}\right| \\
\leq & \frac{1}{4}\left(n^{q}-1\right)\left(n^{p}-1\right)
\end{aligned}
$$

for any $p, q>0$
Applications for different particular instances of $p, q>0$ may be provided, but we omit the details.

To obtain other inequalities for the moments of guessing mappings, we use the following Cebyšev type nequality [6]

$$
\begin{equation*}
D_{n}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \geq(\leq) 0 \tag{42}
\end{equation*}
$$

provided

$$
\left(x_{\imath}-x_{M}\right)\left(y_{\imath}-y_{M}\right) \geq(\leq) 0 \text { for each } i \in\{1, \ldots, n\}
$$

with a subscript M denoting the arithmetic mean
The following result holds [6].
Theorem 6. Assume that $S_{n}(p), p>0$ denotes the sum of $p^{\text {th }}-$ power of the first n natural numbers, that is

$$
S_{n}(p):=\sum_{k=1}^{n} \imath^{p}
$$

If

$$
p_{i}\left\{\begin{array}{cc}
\leq(\geq) \frac{1}{n}, & \text { for } t \leq\left[\frac{S_{n}(p)}{n}\right\rfloor^{1 / p} \\
\geq(\leq) \frac{1}{n}, & \text { otherwise }
\end{array}\right.
$$

where $\lfloor x\rfloor$ represents the integer part of x, then we have the inequality

$$
E\left(G^{p}\right) \geq(\leq) \frac{1}{n} S_{n}(p)
$$

The proof follows by the inequality (4.2) on choosing $x_{\imath}=p_{\imath}$ and $y_{\imath}=\imath^{p}$, but we omit the details.

For particular values of p, one may produce some interesting partıcular inequalities.

If $p=1$, then we have the inequality

$$
E(G) \geq(\leq) \frac{n+1}{2}
$$

provided

$$
p_{i} \begin{cases}\leq(\geq) \frac{1}{n}, \quad \imath \leq\left\lfloor\frac{n+1}{2}\right\rfloor \\ \geq(\leq) \frac{1}{n}, & \text { otherwise }\end{cases}
$$

For $p=2$, then

$$
E(G) \geq(\leq) \frac{1}{6}(n+1)(2 n+1)
$$

provided

$$
p_{\imath}\left\{\begin{array}{lc}
\leq(\geq) \frac{1}{n}, & \imath \leq\left\lfloor\frac{1}{6}(n+1)(2 n+1)\right\rfloor^{1 / 2} \\
\geq(\leq) \frac{1}{n}, & \text { otherwise }
\end{array}\right.
$$

Using Theorem 1, (i), we are able to point out the following result that complements Theorem 6 above

Theorem 7. With the above notations for $S_{n}(p)$ and $E\left(G^{p}\right), p>$ 0 , we have the mequality

$$
\begin{equation*}
E\left(G^{p}\right) \geq \frac{1}{n} S_{n}(p) \tag{4.3}
\end{equation*}
$$

provided the probability distribution $p_{\imath}(\imath=1, \ldots, n)$ satisfy

$$
\begin{equation*}
\frac{p_{1}+\cdots+p_{i}}{i} \leq \frac{1}{n}, \quad i=1, \ldots, n-1 \tag{4.4}
\end{equation*}
$$

If the sign of the inequality in (4.4) is reversed, then (4.3) holds with " \leq ".

REFERENCES

[1] D. Andrica and C Badea, Grüss' mequalıty for posıtive linear functzonals, Periodica Math Hungarica, 19 (1988), 155-167
[2] E Arikan, An inequalaty on guessing and ats applicatzon to sequentral decoding, IEEE Tran. Inf Th., 42 (1988), 99-105.
[3] M Biernacki, H Pidek, and C. Ryll-Nardzewski, Sur une inégahté entre des intégrales definzes, Ann. Univ. Marıae Curie-Skolodowska, A4 (1950), 1-4.
[4] S Boztaş, Comments on "An Inequaltty of Guessing and Its Applications to Sequental Decoding", IEEE Tran Inf Th, 43 (1997), 2062-2063
[5] P. Cerone and S S Dragomir, A refinement of Grüss' inequalty and applucatzons, RGMIA Res Rep Coll, 5(2002), No 2, Artıcle 15 [ONLINE http://rgmia.vu.edu.au/v5n2.html]
[6] P. Cerone and S S. Dragomir, New inequalttres for the Čebyšev functzonal mnvolvrng two n-tuples of real numbers and applications, RGMIA Res. Rep. Coll., 5 (2002), Article 4 [ONLINE. http://rgmia.vu.edu.au/v5n3.htm1]
[7] S S Dragomir, A generalization of Grüss's inequality in inner product spaces and applications, J Math. Anal. Appl 237 (1999), 74-82
[8] S. S. Dragomir, Integral Griuss anequahty for mappings with values in Helbert spaces and apphcatzons, J Korean Math. Soc. 38 (2001), 1261-1273.
[9] S. S. Dragomir, Another Gruss type inequality for sequences of vectors in normed linear spaces and applications, J. Comp Analysis \& Appl., 4 (2002), 157-172
[10] S. S Dragomir, A Grüss type inequalhty for sequences of vectors in normed lnnear spaces, RGMIA Res Rep. Coll., 5 (2002), Article 9 [ONLINE http://rgmia.vu.edu.au/v5n2.html]
[11] S S. Dragomir, A companzon of the Griss znequality and applicatzons, RGMIA Res. Rep Coll, 5 (2002), Supplement, Article 13 [ON LINE: http://rgmıa.vu.edu.au/v5(E).html]
[12] S S Dragomir, On the Cebyshev nequality for weighted means and apphcathons, in preparation(2002)
[13] S S. Dragomir and G L Bootb, On a Gruiss-Lupas type inequaltty and ats applscation for the estimation of p-moments of guessing mappings, Math. Comm., 5 (2000), 117-126
[14] S. S Dragomir and S Boztaş, Some estzmates of the average number of guesses to determine a random variable, Proc 1997 IEEE Int Symp. on Inf Th, (Ulm, Germany, 1997), p 159.
[15] S. S. Dragomir and S. Boztas, Estimation of arthmetic means and thetr applications in guessing theory, Math. Comput. Modelling, 28 (1998), 31-43.
[16] S S Dragomir and J Pec̃arıc, Refinements of some inequalitıes for ${ }^{2 s o t o n ı c}$ functionals, Anal Num. Theor. Approx , 18 (1989), 61-65
[17] A M. Fink, A treatuse on Gruss' inequality Analytic and Geometric Inequalities and Applications, 93-113, Math Appl, 478 (1999), Kluwer Acad Publ., Dordrecht,
[18] J L Massey, Guessing and entropy, Proc 1994 IEEE Int Symp. on Inf. Th., (Trondherm, Norway, 1994), p. 204
[19] J. Pec̆aric, On some inequalities analogous to Grüss inequalty, Mat. Vesnik, 4 (1980), 197-202.

School of Computer Science \& Mathematics
Victoria University of Technology
PO Box 14428
MCMC 8001, Victoria, Australia
E-manl sever@matılda vu.edu.au
URL: http•//rgmia.vu.edu.au/SSDragomirWeb.html

