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ON THE CEBYSEV^ INEQUALITY FOR 
UNWEIGHTED MEANS AND APPLICATIONS

S. S. Dragomir

Abstract. Some new sufficient conditions for the unweighted 

Cebysev^ inequality for real sequences to hold and related results 

are given. Applications for the moments of guessing mappings are 

also provided

1- Introduction

Let x = (zi, .., xn), y = (v/i,.. .,yn) be two n-tuples of real 
numbers. If x, y are synchronous (asynchronous), this means that 
(1.1) (气 一 Xj) -订)> (<)0 for each z, j G (1,... ,n}, 

then the following well known Cebysev's inequality
I、으r 1 n 1 n

(L2) 

1u - lb lb
i=l i=l 2=1

holds.
In [16], the following refinement of Cebysev^ inequality has been 

obtained 一

1 n I n 1 n

(L3) Tn 추 y) 皿
z그 1 1=1 1=1

> max{|7" (I히 ,訶 , \Tn (x, |y|)|, \Tn (|히 , |y|)|} 
>0,

provided x and y are synchronous
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In this paper, some new Cebysev^ type inequalities for unweighted 
means are obtained. Similar results for the weighted case are consid
ered in [12]

2. Cebysev5s Type Inequalities

The following identities hold.

Lemma 1. Let a =(如,...,an) and x = , xn), be two se
quences of real numbers Define := 二i 的, := An — /侦,
A; = 1,..., n — 1. Then

(2.1)
7件,a) = §3"et(, %) 8

= £(X) 요

1 n—1
= /〉(?")

1—1

-牛)J

where △气xl+1 — xz (i = n ~ 1) is the forward difference.

Proof. We use the following well known summation by parts for
mula

(2-2)
g—1 q—1
52 饥△我 = 饥‘쎄: 一〉二此+1△饥,
t—p 1—P
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where 妃 & W IR, £ = 饱..,q (q > p) If we choose in (2.2), p = 1, 
q = := iAn 一 nAz, and vt = (z = 1,..., n), then we get

n—1 

2=1

n—1

= (win - 72/侦) Ng" —〉: △ {%An — 孔瓦) £어T. 
z=l 

n—1
二二 — (/如 — X\ —[(z + 1) An — nA^i — %An + n/니 w서」 

Z=1

n—l

=~~Anx\ + nA\X\ —〉[ [An ― n(&+i)皿+i 

Z=1

n—l n—l

=—+ nA-^xi — An%z+i + n国+r功_口 
2=1 1=1

n n
=—Anxt + n c頒Ez

z=l i=l
and the first identity in (2 1) is proved. The others are obvious. □

The following theorem holds

Theorem 1. Let a 二三(a15..., an) and x = (z. ..., xn), be two 
sequences so that either

(i) x is increasing and

1 . 1 4 c
 厶2 2 0 n %

for each i e {1,..., n — 1}; 
or

(n) x is decreasing and
1 , 1 4
-~An----Az < 0
n %

for each 2 G (1,...)n — 1}
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Then one has the inequality

(2.3) Tn (x, a) > max {|4n( 又，豆 )|, |& (I 히, 司 I，|4 (I 히, 互 )|} > 0, 

where
1 二」 14 1 1

^■n (x, a) := — |A| h、，---- --- -- 〉：彼\如
i=i t=i

Proof. If either (i) or (ii) hold, then

for each z C {1, ., n ~ 1}.
Multiplying by z, summing over z, and using the generalized triangle 

inequality, we get

from where we easily deduce the desired inequality (2.3). □
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Remark 1. We observe that if 巨=(ai,... ,an) is monotonic in
creasing in mean, i.e.,

-A < —丄for 2 = 1,…jz — 1, 
i z + 1

then obviously 
14 n -Ai < ~An 
z n

for each % G {1, .., n — 1} . The converse is not true
We also note that if a is monotonic nondecreasing^ then it is in

creasing in mean and thus
14 n
2 n

for each z G (1,..., n — 1}.

G {1,..., n ~ 1}for each 
z

> —for each 
z

% G {1, , n - 1}.

Remark 2. We observe, since,

冬_冬= 
n %

for each % G {1, .., n — 1} ? that
〉& 

n
if and only if

&
n — ％

Here At .二二 An 一 Az for z € {1, , n — 1}.

Using the second identity in (2.1), we may prove the following re
finement of Cebysev5s inequality as well.

Theorem 2. Assume that a and x satisfy the hypothesis (i) or (ii) 
in Theorem 1 Then one has the inequality*

(2.4) 孔 (又，히 > 1问〈{|£妇(瓦互)|巾為(|히,히|} > 0,
where

]n—1 ] n—1
D” (x, a) := — (n — i) \AZ\ ----- - % △⑦据

z=l i=l
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Proof. If either (i) or (ii) holds, then

for each z € (1,. ., n — 1}.
Multiplying by 2 (n — z), summing over i and using the generalized 

triangle inequality, we have

耳任，히 = —z） （쓴 一 牛）8

Z = 1

1

n—1
2 2 (n - 2)
Z=1

(^+1 -

n—1

2 Z (n — 2)
2=1

(E+11 — \xt\)

from where we easily deduce the desired inequality (2.4). □

3. Other Related Results

The following result holds.

Theorem 3. Let a = (ai, . , an) and x = (x15..., xn), be two 
sequences of real numbers. If a is monotonic decreasing (increasing) 
in mean, 1 e ,

-Ai < (>)丄for each z € {1,. ., n — 1},
% x + 1
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and x is convex (concave)^ Le.,

3저圮;〜 * > (<) for each i G {1,... ,n — 2) ,

then we have the inequality

(3.1) Tn (x, a) > 쓰一湍二⑪喜"' (為 — !*:)

Proof. Define the sequences

Pi = S 如:—----n
Vi ：= △气=

Then pz > 0,

_ Az、
—為=  ----- >Z + 1 I

A
%

一 Xly 2 — 1, . . . , 71 — 1.

0 for each z E {1,. ., n — 2},

and

切+1 一 免 =△⑦z+t 一 =气+2 + 的 一 2气+1 > 0 for each z € (1,..,
n ~ 2. Applying the weighted Cebysev^ inequality for monotonic se
quences, we have

n—1 7i—l n—1

史0%英> »為• »心
2=1 Z=1 1=1

giving

(3 2)
¥尝（쓰-牛） △心以（卜勺矣皿.

2=1 ' 丿 X=1

However, by (2 1) we have

言 (쓰-*) △"

V? f — - —=("一 i)n 
\ n 2 丿 2n

In -f ft 1 ft
云〉旋丿어、〉/

n r n

f <3兀 一 ■ 
t—i " i=i

n—1 rn — 1

, n

“2=1

n—1

An —Ai = —-—An —(n — 1) aZ1
2 = 1 U二고
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n—1 n—1

= £ 2 gi - w)
t=l l—l

=叼 + 2⑦3 + ■ • • +(71 — 2) Xn-1 +(72 — 1) Xn
-xr~ 2x2-------- (n - 1) xn-x

Using (3.2), we get,

3=1

2
-(n - 1) n

n
1 A 1 A 

a輝2-------〉^2 , — /nn 
2=1 1=1

" - n—1n — 1
"2 '

71—1 r /
An 一 £ (n — z) & nlxn-

1 L \z=l

n—1

孔 _]ES — 2)az
2=1

and the inequality (3 1) is obtained. □

Remark 3. If a is monotonic decreasing (increasing) in mean but 
x is concave (convex), the reverse inequality in (3.1) holds.

The following result also holds

Theorem 4. Let a — (a15 . .,an) and x = ,xn), be two
sequences of real numbers If a is monotonic decreasing (increasing) 
in mean and x is monotonic increasing with xn > Xi. then one has the 
inequality

&- 2 ］口 
常—打〉* 

. z=L

(3.3) Tn 任，互) 2 ： Wj (쓰 — -1— 切 牛圣

Proof Define the sequence

Pi

4

Vi

=2 6 {1,..., n — 1},
A j:=----------- and

n 2
：=z, z G {1,..., n — 1).
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Then
n—1

Pl > o, I G (1, .. ,n- 1} with，，為 > 0,
2=1

Zz+l 一如=二——(%)0 for each z € (1,. ., n — 2}, 

and yt is increasing.
Applying the weighted Cebysev^ inequality for monotonic sequences, 

we have

n-1

and
n—lE
Z=1

Using (3.4), we have

"£财扁-打〉* • 
z=l i—1 z=l

/ r n \ 「， n—1

from where we get (3.3). □
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Remark 4. A similar result may be stated if one uses the weighted 
Cebysev^s inequality for:

p% := — — — > 0 fassumed for each z € (1,..., n — 1}) 
n i

yt := z, (monotonic increasing)
Zi := ("assumed monotonically increasing (decreasing))

(or equivalently^ x is convex (concave))

4. Some Applications for Moments of Guessing Mappings

In 1994, J L Massey [18] considered the problem of guessing the 
value taken on by a discrete random variable X in one trial of a random 
experiment by asking questions of the form "Did X take on its zth 
possible value?” until the answer is in the affirmative.

This p호oblem arises for instance when a cryptologist must try differ
ent possible secret keys one at a time after minimizing the possibilities 
by some cryptoanalysis

Consider a random variable X with finite 호ange X — {xi,...,xn} 
and distribution Px for fc = 1,2,..., n.

A one-to-one function G % > (1,..., n} is a guessing function for 
X Thus

n
Eg) .= »門％

k=l
is the mth moment of this function, provided we renumber the xx such 
that xk is always the A;나1 guess.

In [18], Massey observed that； E (G), the average number of guesses, 
zs minimized by a guessing strategy that guesses the possible values of 
X in decreasing order of probability.

In the same paper [18], Massey proved that for an optimal guessing 
strategy

E (G、) > W + 1 provided H (X) > 2 bits,
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where H (X) is the Shannon entropy 
n

H(X) = ~^Jp1log2(p1) 
2=1

He also showed that E (G) may be arbitrarily large when H (X) is an 
arbitrarily small positive number so that there is no interesting upper 
bound on E (G) in terms of H (X).

In 1996, Arikan [2] proved that any guessing algorithm for X obeys 
the lower bound

- 1 ~i
Etipr

硏<伞%讦"，凡。

where an optimal guessing algorithm for X satisfies

-n j ] 1+Q 

E (GO < ，P>0.

In 1997, Bozta§ [4] proved that for m > 1, and integer

r n 1 1+m
1 J% ]

£疔
Lfc=i J

+涪^{(m +]2)E(G"T) - (m +13) E(Gm~2) +... + (—1)”中 

provided the guessing strategy satisfies the relation:

V 方—I-------卜 = 1,..., n - 1.

I요 1997, Dragomir and Bozta§ [14] obtained, for any guessing sequence, 
the following bounds for the expectation:

河* < —一Of + 尸整 \Pr - /이 ,

- 1)(食 + ；)(7z HpIIM 二£
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where ||冲言=P： and

L 5、、 n + 1 \n+ 1 ( n + 1 1
厶

< ------
-[2

(”一
2 .

)maxJ l<k<n Pk-----n

with [x] representing the integer part of x.
For other results on E (Gp), p > 0 see also 卩디. We highlight only 

the following result which uses the Gruss inequality, giving for p^q > 0 
that 
(4.1) |E(GP+g) —E(GP)E(&q)| < i (n« - 1) (np - 1).

The result (4 1) may be complemented in the following way (see for 
example [11]).

Theorem 5. With the above assumptions, we have the inequality

E （5）-丄領E侄）一号E⑹）+ 罗 .丄芸

< ：（泌- 1）四-1）， 

for any 饱 g〉0

Applications for different particular instances of p, q > 0 may be 
provided, but we omit the details.

To obtain other inequalities for the moments of guessing mappings, 
we use the following Cebysev type inequality [6]

(4 2) Dn (x, y) > (<) 0
provided

(气-(切-yM) > (<) 0 for each z e
with a subscript M denoting the arithmetic mean

The following result holds [6].

Theorem 6. Assume that Sn (p),p > 0 denotes the sum of 俨- 

power of the first n natural numbers, that is

Sn（P）：= E：=
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sja) 
n

If
v [ < (>) fori<
Pl \ :

I 2 (<) 슴〉 otherwise 
where represents the integer part ofx} then we have the inequality

E (GP) > (<) (?) ■n
The proof follows by the inequality (4.2) on choosing = pt and 

场=z七 but we omit the details.
For particular values of p, one may produce some interesting par

ticular inequalities.
If 但=1, then we have the inequality

provided
f <(>)^ 以 [끄刿

Pt <
I > (<) otherwise

For 可=2)then

E (G) > (<) —(7i + 1) (2n + 1)

provided

f V (2) 土 2 M 3 + 1) (2n + l)j
A \

[> (<)土 otherwise

Using Theorem 1, (i\ we are able to point out the following result 
that complements Theorem 6 above

Theorem 7. With the above notations for Sn (p) and E (Gp), p > 
0, we have the inequality

(4.3) E(Gp)>-Sn(P)
n

provided the probability distribution (z = 1,..., n) satisfy
Pi + --+Pz . 1 1 1V 一, 2 — 1, . . . , 一 1.

_ n(4-4) i
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If the sign of the inequality in (4.4) is reversed, then (4.3) holds with 
a<\
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