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ON THE CEBYSEV’S INEQUALITY FOR
UNWEIGHTED MEANS AND APPLICATIONS

S. 8. DRAGOMIR

ABSTRACT. Some new sufficient conditions for the unweighted
Cebysev’s mequality for real sequences to hold and related results

are given. Applications for the moments of guessing mappings are
also provided

1. Introduction

Let X = (zy, ..,z,), ¥ = (¥1,...,%n) be two n—tuples of real
numbers. If X, ¥ are synchronous (asynchronous), this means that

(1.1) (z, — ;) (% — ;) > (<) 0 for each 1,7 € {1,...,n},

then the following well known Cebygev’s mequality

1 & 1" 1"
1.2 —_ > (<) = .= ,
( ) ngxzyz—(_)ngxx n;%

holds.

In (16], the following refinement of Cebysev’s inequality has been
obtained

(1‘3) I, (xX,9). Zm‘tyt" _sz Zyt

1=1

>de{|T (%], 9)1, |7 (%, IYI)I 1T (%[, [71)}
20,

provided X and ¥ are synchronous
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In this paper, some new Cebysev’s type inequalities for unweighted
means are obtained. Similar results for the weighted case are consid-
ered in [12]

2. Cebysev’s Type Inequalities

The following identities hold.

LEMMA 1. Let a = {ay,...,a,) and X = (z1,...,%,), be two se-
quences of real numbers Define A, = Zleat, A = A, — Ag,
k=1,...,n—1. Then

n-1
I 1 T n
(2.1) T, (%,a) == ) det ( A A, ) Ax,

where Az, .= 2,4y —z, (1 =0,...,n— 1) 1s the forward difference.

Proof. We use the following well known summation by parts for-
mula

g—1 g—1
(2-2) Z beAvg = bwelf, - Z Ver1Aby,
{=p £=p
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where by, v, € R, £ = p,.. ,¢ (g > p) If we choose in (2.2), p =1,
g=mn,b =14, —nA,, and v, =z, (1 =1,...,n), then we get

n—1
Z (1A, — nA,) Az,

=1

n-1
= (24, — n4,) x,|: - ZA (1A, — n4,) T4y

=1
n~1

=— (A, —nA)zy — Z [(t+1)A, —nd, 1 —14, +nA, 2,

2=1

n—1
= ~Apzy +nAyzy — E {Ap ~ Na,) T
2=1
n-1 n—1

= —Apty +nA 1T — A, E Tog1 + N E Qy41L241

=1 2]

n n
= —A, E L, +n E %,
1=1 =1

and the first identity in (2 1) 1s proved. The others are obvious. [J
The following theorem holds

THEOREM 1. Let a = (a1,...,6,) and X = {(21,...,2,), be two
sequences so that either
(i) X is increasing and
1 1
—A, — ~A, >0
n 2

for each2 € {1,...,n—1};
or
(1) X 18 decreasing and

1 1
—-A,—-A, <0
n 3

foreachi € {1,...,n—1}
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Then one has the inequality
(2.3) T (%,8) > max {|Aa (%,3)|, 4. (I%],8)], |T0 (1%, 8)[} 2 O,

where
1 Al 133
A, (%, a) := - |A,| Az, — i E 1Az,

T
=1 =1

Proof. If erther (i) or (ii) hold, then
A, A, A, A
(_" - T) (371+1 - xz) = |(_ - 7) (-'BH-I - -Tz)

n , n( [Anl LAA) (T2 = )

n 1

>0

23 | (B - 22d) gt - | 2 0
| (5 -%) Gt -] 2 0

foreach 2 € {1, .,n—~1}.
Multiplying by :, summing over 2, and using the generalized triangle

inequality, we get
A A
(Tn - —Z—l> ($z+1 - xz)

Tn(i,é):%gz
N (1l "“Z')m-z,)

=1 i

_12(' ol )fz')(lmm]—lle)

1=1

So(22-2) ol - 1o

\ (=1
from where we easily deduce the desired inequality (2.3). a

3

v
S|

X

M
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REMARK 1. We observe that if & = (a1, ...,0,) is monotonic in-
creasing in mean, l.e.,
1

1
;Azgma‘q,_t_] for ZZI,...,R—l,

then obviously

1 1
"Az S _’An
1 Tt

for each 1 € {1, ..,n — 1}. The converse is not true
We also note that if 8 is monotonic nondecreasing, then it is in-
creasing in mean and thus

1 1

‘“Azg—An

? n
foreach1€ {1,...,n —1}.

REMARK 2. We observe, since,

A, A n—1( A A,
- =

)

0 n \n—i 1

for each v € {1, ..,n~ 1}, that

A A

—nﬁ > z’ foreach 1€ {1,...,n—1}
if and only if

A, A,

> — foreach »€{l, ,n-—1}.
n—1_ 1

Here A, .= A, — A, forve {1, ,n—1}.

‘Using the second identity in (2.1), we may prove the following re-
finement of Cebysev’s inequality as well.

THEOREM 2. Assume that @ and X satisfy the hypothesis (i} or (1i)
in Theorem 1 Then one has the inequality
(2.4) T, (x,8) z max {|Dy (%,a){,|Dn (|%],8){} = 0,
where

n=-1 n—1
1

D, (%,8) == — > (n— ) |4 Az, - %Zz |4,| Az,

=1 =1
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Proof. If either (i) or (ii) holds, then

A, A, _ A, A,
(n—-z __Z—> (Tor1 — o) = (n_z _'T) (To1 — 20)
( —_
4] _ Al
(;LT% - ) (Tot1 — i)

| (;}-m) A
foreach: € {1,. .,n—1}.

Multiplying by z (n — 2) , summing over ¢ and using the generalized
triangle inequality, we have

Ta(%,

4

1 n—1 /—11
)—Egz(n—z) —

( - i4;_z)sz

n

({1 A, A
> t(n—1) (! L_| ’I> (Zar1 — 2,)
=1 n—t 1
> 1
= 52 _
n—1 |Az| ‘Az|
\ ; v(n—1) (m - T) ({zosr] = Jasl)
from where we easily deduce the desired inequality (2.4). &

3. Other Related Results

The following result holds.

THEOREM 3. Let 4 = (a1, . ,a,) and X = (z1,...,%p), be two

sequences of real numbers. If a is monotonic decreasing (increasing)
in mean, i e,

1

2+

1
;Azg(z) IA’“ for each 1€ {1,. .,n— 1},
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and X is convex (concave), i.e.,

Typ2 +T;
2
then we have the inequality

(31) T, (%,3) > %—;@2__1_);(71—5)%] (x,,,—-:‘; a:)

i=1

> (<)x41 foreach 1€ {1,...,n—2},

Proof. Define the sequences

An A,
pz*%azz - n 7,1
Yo —Ax;-$1,+1'—'$,,7—1, 7n_1
Then p, > 0,
A A
2:+1"“zz:2_:_+1‘—2120 for cach 2 € {1,. .,n— 2},
and

Yorl — Y = Dy — Az, = 240+ 2, — 22,1, > 0 foreach 2 € {1,.. ,

n — 2. Applying the weighted Cebygev’s mequality for monotonic se-
quences, we have

n—1

P,_ lzp‘tzlyl > szzz szyz

gving

nin—1) e (4, A4, = (A, A
(32) -—»—2——-23(7—?) Az, > 4 2(7-—7)21153:,.

=1 =1

However, by (2 1) we have
n-—1 b2 n )
A, A, 1 1 1
E 2 (—T‘l—ﬁ—;—) AQ‘)Z_'H. |:E 1:51 a, T, — Eilaz‘g 1521 .’.131] s
n—1 n—1
E ‘L(?“—T) A E A An E (n—l)a“
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n—1 n—1

ZzAz‘ = Z 1{Zyy1 — T,)

=1 =1
=z9+203+ -+ {n—2)Tp1+(n—1)z,
—zy =229~ - —(n—1L)ap

1
:m:,,,—(x1+---+:cn)=n(3:n——ﬁXn).

Using (3.2}, we get,

= [An—nilg(n——z)m‘ !:xn—% " 3:,]

and the inequality (3 1) is obtained. a

REMARK 3. If d is monotonic decreasing (increasing) in mean but
X is concave (convex), the reverse inequality in (3.1) holds.

The following result also holds

THEOREM 4. Let & = (a;, ..,a,) and X = {21, ..,Z,), be two
sequences of real numbers If a is monotonic decreasing (increasing)
in mean and X is monotonic increasing with z, > x,, then one has the
inegualty

(33) Tn(iaé)Z(S)( "-th) (‘“— _xleT )

Proof Define the sequence
p, = Az, e {l,...,n— 1},
A, A,

2, ;== — — — and
n 1

y=12€{l,...,n—1}.
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Then
n—1
P20, 1e{l, ..,n-1} with > p >0,

=1

Az+1 A1 Z
e (S)O for each ¢ € {1,. .,n—2},

and y, is increasing.
Applying the weighted Cebysev’s inequality for monotonic sequences,

we have

(3.4)
n—1 n—1 A A n—1 n-1 A A
=Z_ > (< — - 2 Ax,.
;Azl;z(n Z>sz_(_)zz:;zllx1;<n 2) x
However,
n—1

ZA% =z, —x1 >0,

1=1
n—1 n n T

A, A, 1 1 1
z(—;———Z—)Axl_n(;Zal:cl—gZai-g x;),

=1 1=1 =1

n—1 1

Z’LAZBZ =n (zn — —Xn>

n

1=1

and
n—1

from where we get (3.3).
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_ REMARK 4. A similar result may be stated if one uses the weighted
Cebyéev’s inequality for:

A, A
p,::———-TZO (assumed for each 1€ {1,...,n—1})
n
Y =1, (monotonic increasing)
2, = Az, (assumed monotomcally increasing (decreasing))

(or equivalently, X is convex (concave})

4. Some Applications for Moments of Guessing Mappings

In 1994, JL Massey [18] considered the problem of guessing the
value taken on by a discrete random variable X in one trial of a random
experiment by asking questions of the form “Did X take on its '}
possible value?” until the answer 1s in the affirmative,

This problem arises for instance when a cryptologist must try differ-
ent possible secret keys one at a time after minimizing the possibilities
by some cryptoanalysis

Consider a random vanable X with finite range X = {z1,...,2,}
and distribution Py (2x) =pi for £ =1,2,...,n.

A one-to-one function G x — {1,...,n} is a guessing function for
X Thus

E@G™) .= k"p
k=1

is the m*® moment of this function, provided we renumber the z, such
that z; is always the k'* guess.

In [18], Massey observed that, £ (G, the average number of guesses,
15 manimized by a guessing strategy that guesses the possible values of
X in decreasing order of probability.

In the same paper [18|, Massey proved that for an optimal guessing
strategy

E(G) > iszﬁ’f) +1 provided H (X) > 2 bits,
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where H (X'} is the Shannon entropy

H(X) = - sz ]ng (pz)

11

He also showed that E (G) may be arbitrarily large when H (X)) is an
arbitrarilly small positive number so that there 1s no interesting upper

bound on £ (G) in terms of H (X).

In 1996, Arikan [2] proved that any guessing algorithm for X obeys

the lower bound

[Zk~ l+p] 1+p

1+1nn
where an optimal guessing algorithm for X satisfies

E(G*) > p>0

4o
p@)= Y] L g2

In 1997, Boztas [4] proved that for m > 1, and nteger

1 n . 1+m
E Gm < T¥m
( ) T m+l [k—ipk :1

! ; {m+12)E(G™ ) —(m+ 13)E(G™?) +

m -+
provided the guessing strategy satisfies the relation:

1
péi"f <z (Px”’" +- +p,i“), k=1,...,n—1.

+ (_l)m-}-l}

In 1997, Dragomir and Boztag [14] obtained, for any guessing sequence,

the following bounds for the expectation:

IE(G)_RZI g(nwl)ﬁ(n-fl) 1gfl<;§)§n!p1—p3|,
2
lE(G)_”Jr1 < (ﬂ—l)(n+1)(nllpuz—1)7

12
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where [lpl|2 = 2, 72 and

E(G)_n-zl-ll < [n;l] (n-— [n;—l])g@n e

with [z] representing the integer part of .

For other results on E (G?), p > 0 see also [15]. We highlight only
the following result which uses the Griiss inequality, giving for p,¢ > 0
that

(1) |E(G) - E(C)E(G)] < 3 (0~ 1) (@~ 1),

|

The result (4 1) may be complemented in the following way (see for
example [11]).
THEOREM 5. With the above assumptions, we have the inequality

1+an(Gp)__1+n" -;n"cl-;n?’

E (GP*) - EGY)+°

< (' -1)@-1),

| e

for any p,q > 0

Applications for different particular instances of p,g > 0 may be
provided, but we omit the details.

To obtain other inequalities for the moments of guessing mappings,
we use the following Cebysev type 1nequality [6]

(42) D, (x,¥)=2(<)0
provided
(z, — zp) (g — yu) > ()0 foreach i € {1,...,n}

with a subscript M denoting the arithmetic mean
The following result holds [6].

THEOREM 6. Assume that S, (p),p > 0 denotes the sum of pt-
power of the first n natural numbers, that is

Sn (p) = Zzp.
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If
1/
] ) 1 fori< l%”-’J !
> (<) 4, otherwise
where |z represents the integer part of x, then we have the inequality

B(6") 2 (<) -5 (0).

The proof follows by the inequality (4.2) on choosing z, = p, and
1, = ¥, but we omit the details.

For particular values of p, one may produce some interesting par-
ticular inequalities.

If p =1, then we have the inequahty

EG) 2 (9
provided

(@) 1< M

P

> (<)L, otherwisc

For p = 2, then
E(@)> ()5 (m+1) @0 +1)

provided

<)L 1<) @n+1))
D
> (<) 5, otherwise
Using Theorem 1, (i), we are able to point out the following result
that complements Theorem 6 above

THEOREM 7. With the above notations for S, (p) and E (G?),p >
0, we have the mequality

1
(43) E(G?) > =5, (7)
provided the probability distribution p, (+ = 1,...,n) satisfy
(4.4) AR A

1 n
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If the sign of the inequality in (4.4) is reversed, then (4.3} holds with
“<”.

REFERENCES

(1] D. Andrica and C Badea, Griiss’ meguahty for posstive linear functionals,
Periodica Math Hungarica, 19 {1988}, 155-167

{21 E Arikan, An inequahty on guessing and its application to sequential decoding,
IEEE Tran. Inf Th., 42 (1988), 99-105.

[3] M Biernacki, H Pidek, and C. Ryli-Nardzewski, Sur une inégalité entre des
tntégrales defintes, Ann. Univ. Manae Curie-Skolodowska, A4 (1950}, 1-4.

4] S Boztag, Comments on “An Inequahty of Guessing and Its Applications to
Sequential Decoding”, IEEE Tran Inf Th, 43 (1997), 2062-2063

[5] P. Cerone and S S Dragomir, A refinement of Griiss’ wequality and ap-
phieetions, RGMIA Res Rep Coll, 5(2002), No 2, Artaicle 15 [ONLINE
http://rgmia.vu.edu.au/v5n2 . html]

[6] P. Cerone and S S. Dragomir, New inequaliies for the Cebyfev functional
involving two n—tuples of real numbers and apphcations, RGMIA Res. Rep.
Coll., 5 (2002), Article 4 [ONLINE. http://rgmia.vu.edu.au/v5n3.html]

(7} S S Dragomir, A generahization of Griiss’s wnequality n tnner product spaces
and applications, J Math. Anal. Appl 237 (1999}, 74-82

{8} S. S. Dragomir, Integral Griuss wmnequality for mappings with values sn Hilbert
spaces and apphcations, J Korean Math. Soc. 38 (2001), 1261-1273.

[9] S. S. Dragomir, Another Gruss type tnequality for sequences of vectors in
normed linear spaces and applications, J. Comp Analysis & Appl., 4 (2002),
157-172

[10] S. § Dragomur, A Gruss type wnequality for sequences of vectors in normed
hnear spaces, RGMIA Res Rep. Coll., 5 (2002), Article 9 [ONLINE
http://rgmia.vu.edu.an/vin2.html]

f111 S S. Dragomur, A companion of the Gruss wmequality and apphcations,
RGMIA Res. Rep Coll, 5 (2002), Supplement, Article 13 | ON LINE:
http://rgmia.vu.edu.au/v5(E) . html |

f12] S S Dragomir, On the Cebyshev nequality for weighted means and apphca-
tions, in preparation(2002)

{13] S S. Dragomur and G L Booth, On a Gruss-Lupas type mequality and its
application for the estimation of p~moments of guessing mappings, Math,
Comm., 5 (2000), 117-126

[14] 8. S Dragomir and S Boztag, Some estimates of the average number of
guesses to determine a random veriable, Proc 1997 IEEE Int Symp. on Inf
Th, (Ulm, Germany, 1997), p 159.

[15] S. S. Dragomir and 8. Boztas, Estimation of arsthmetic means and theswr ap-
phcations n guessing theory, Math. Comput. Modelling, 28 (1998), 31-43.


file:///rgmia.vu.edu.au/v5(E

CEBYSEV’S INEQUALITY FORUNWEIGHTED MEANS 15

[16] S S Dragomir and J Pecaric, Refinements of some inegualittes for isotonic
functionals, Anal Num. Theor. Approx, 18 (1989), 61-65

[17] A M. Fink, A treatise on Gruss’inequahty Analytic and Geometric Inequal-
ities and Applications, 93-113, Math Appl, 478 (1999), Kluwer Acad Publ,,
Dordrecht,

(18] J L Massey, Guessing and entropy, Proc 1994 IEEE Int Symp. on Inf. Th.,
(Trondheim, Norway, 1994), p. 204

[19] J. Pecaric, On some wmequalities analogous to Griss inequality, Mat. Vesnik,
4 (1980), 197-202.

School of Computer Science & Mathematics

Victoria University of Technology

PO Box 14428

MCMC 8001, Victoria, Australia

FE-mail sever@matilda vu.edu.au

URL: http' //rgmia.vu.edu.au/SSDragomirWeb. html



