$SL(2, \mathbb{C})$ -REPRESENTATION VARIETIES OF PERIODIC LINKS

SANG YOUL LEE

ABSTRACT In this paper, we characterize $SL(2, \mathbb{C})$ -representations of an *n*-periodic link \tilde{L} in terms of $SL(2, \mathbb{C})$ -representations of its quotient link L and express the $SL(2, \mathbb{C})$ -representation variety $\mathcal{R}(\tilde{L})$ of \tilde{L} as the union of *n* affine algebraic subsets which have the same dimension Also, we show that the dimension of $\mathcal{R}(\tilde{L})$ is bounded by the dimensions of affine algebraic subsets of the $SL(2, \mathbb{C})$ -representation variety $\mathcal{R}(L)$ of its quotient link L

1. Introduction

Let L be a tame link in the 3-sphere S^3 and let $G = \pi_1(S^3 - L)$ be the fundamental group of the complement $S^3 - L$. Let $\mathbb{R}(G)$ denote the set of all representations of G in the 2×2 special linear group $\mathrm{SL}(2,\mathbb{C})$ with entries in the field \mathbb{C} of complex numbers Suppose we fix a finite system of generators of G, say (g_1, \dots, g_m) . Then a representation $\rho \quad G \to \mathrm{SL}(2,\mathbb{C})$ is uniquely determined by specifying the m-tuple $(\rho(g_1), \dots, \rho(g_m))$ We define $\mathcal{R}(G) = \{(\rho(g_1), \dots, \rho(g_m)) \in$ $\mathrm{SL}(2,\mathbb{C})^m \mid \rho \in \mathbb{R}(G)\}$. Then $\mathcal{R}(G)$ carries with it the structure of an affine algebraic set in \mathbb{C}^{4m} Throughout this paper we shall call it the $\mathrm{SL}(2,\mathbb{C})$ -representation variety of L and denote it by $\mathcal{R}(L)$ $\mathrm{SL}(2,\mathbb{C})$ representation varieties of knots and links and their applications have

Received December 18, 2003

²⁰⁰⁰ Mathematics Subject Classification. 57M25

Key words and phrases affine algebraic set, $SL(2, \mathbb{C})$ -representation variety, dimension, periodic knot, periodic link.

This work was supported by grant No (2000-1-10100-010-1) from the Basic Research Program of the Korea Science & Engineering Foundation

been studied extensively by many mathematicians. For examples, see [2, 4, 5, 6, 7, 13, 14, 15] and therein.

A link \tilde{L} in S^3 is said to have period $n(n \geq 2)$ if there exists an *n*-periodic homeomorphism ϕ from S^3 onto itself such that \tilde{L} is invariant under ϕ and the fixed point set \tilde{K}_1 of the \mathbb{Z}_n -action induced by ϕ is homeomorphic to a 1-sphere in S^3 disjoint from \tilde{L} . By the positive solution of the Smith Conjecture [9], \tilde{K}_1 is unknotted and so the homeomorphism ϕ is conjugate to one point compactification of the $\frac{2\pi}{n}$ -rotation about the z-axis in \mathbb{R}^3 Hence the quotient map $q \cdot S^3 \to S^3/\mathbb{Z}_n$ is an *n*-fold cyclic covering branched along the unknot $q(\tilde{K}_1) = K_1$. Set $L = q(\tilde{L})$. Then the link $L_1 = K_1 \cup L$ in the orbit space $S^3/\mathbb{Z}_n \cong S^3$ is called the *quotient link* of \tilde{L} . Some authors showed that a certain properties of periodic links can be characterized by their quotient links [3, 5, 8, 11, 12]. In this paper we are interested in studying the SL(2, \mathbb{C})-representation variety $\mathcal{R}(\tilde{L})$ of an *n*-periodic link \tilde{L} in S^3 in terms of SL(2, \mathbb{C})-representations of its quotient link L_1 in SL(2, \mathbb{C})

The paper is organized as follows In Section 2, we review a few basic terminologies concerning affine algebraic sets. In Section 3, we consider the SL(2, \mathbb{C})-representation variety $\mathcal{R}(L_1)$ of a link $L_1 = K_1 \cup L$ with unknotted component K_1 . In Section 4, we show that SL(2, \mathbb{C})representations of an *n*-periodic link \tilde{L} are completely determined by the SL(2, \mathbb{C})-representations of its quotient link L_1 and express the SL(2, \mathbb{C})-representation variety $\mathcal{R}(\tilde{L})$ of \tilde{L} as the union of *n* affine algebraic subsets which have the same dimension. As a consequence, we show that the dimension of $\mathcal{R}(\tilde{L})$ is bounded by the dimensions of algebraic subsets of the SL(2, \mathbb{C})-representation variety $\mathcal{R}(L_1)$ of its quotient link L_1

2. Representation variety of knots and links

Let \mathbb{C} be the field of complex numbers An *(affine) algebraic set* in the affine space $\mathbb{C}^n (n \ge 1)$ is the set of zeros of some finite set of polynomials f_1, \dots, f_s in $\mathbb{C}[X_1, \dots, X_n]$ We denote it by $\mathcal{V}(f_1, \dots, f_s)$ or simply by \mathcal{V} , i.e., $\mathcal{V}(f_1, \cdots, f_s) =$

$$\{(a_1,\cdots,a_n)\in\mathbb{C}^n\mid f_i(a_1,\cdots,a_n)=0,\ \forall\ i=1,2,\cdots,s\}.$$

If \mathcal{U} is the ideal of $\mathbb{C}[X_1, \cdots, X_n]$ generated by f_1, \cdots, f_s , then the set of all zeros of $f'_i s$ is equal to the set of all zeros of every $g \in$ \mathcal{U} and so we will denote $\mathcal{V}(f_1, \cdots, f_s)$ also by $\mathcal{V}(\mathcal{U})$. A non-empty affine algebraic set is said to be *irreducible* if it cannot be expressed as the union of two proper algebraic subsets An irreducible algebraic subset $\mathcal{V} = \mathcal{V}(f_1, \cdots, f_s)$ of \mathbb{C}^n is called an *affine variety* defined by f_1, \cdots, f_s Every affine algebraic set may be written canonically as a finite union of affine varieties, called its *irreducible components*. An affine algebraic set \mathcal{V} has a well-defined (complex) dimension, denoted by $\dim(\mathcal{V})$ If $\mathcal{V} \subset \mathbb{C}^m$ and $\mathcal{W} \subset \mathbb{C}^n$ are affine algebraic sets, a map $\phi \quad \mathcal{V} \to \mathcal{W}$ is said to be *regular* if it is the restriction of some map from \mathbb{C}^m to \mathbb{C}^n which is defined by n polynomials in m variables[10].

Let $M(2,\mathbb{C})$ be the set of all 2×2 matrices with entries in \mathbb{C} . Throughout this paper, we shall identify $M(2,\mathbb{C})$ with \mathbb{C}^4 by simply writing down the rows of each matrix one after the other and so, for example, $M(2,\mathbb{C})^m$ is identified with \mathbb{C}^{4m} . The general linear group $GL(2,\mathbb{C})$ is the group of all members of $M(2,\mathbb{C})$ with nonzero determinant and the special linear group $SL(2,\mathbb{C})$ is the subgroup of $GL(2,\mathbb{C})$ with determinant 1

Let G be a finitely presented group A homomorphism $\rho \quad G \to SL(2,\mathbb{C})$ is called a representation of G in $SL(2,\mathbb{C})$ Two representations ρ and ρ' are equivalent, denoted by $\rho \equiv \rho'$, if $\rho' = \Lambda \rho$, where Λ is an inner automorphism of $SL(2,\mathbb{C})$. Let R(G) denote the set of all representations of G in $SL(2,\mathbb{C})$. Then it can be parametrized by points of an affine algebraic subset of \mathbb{C}^{4m} for some positive integer m as follows. Let $\mathcal{P} = \langle x_1, \cdots, x_m | r_j(x_1, \cdots, x_m), j = 1, 2, \cdots, n \rangle$ be a group presentation of G. Define $\mathcal{R}(G, \mathcal{P}) =$

$$\{P = (A_1, \cdots, A_m) \in \mathrm{SL}(2, \mathbb{C})^m \mid R_j(P) - I = O, j = 1, 2, \cdots, n\},\$$

where $R_j(P)(j = 1, 2, \dots, n)$ denotes the matrix $r_j(A_1, \dots, A_m)$ obtained from the relator $r_j(x_1, \dots, x_m)$ by substituting A_i for x_i , Idenotes the 2 × 2 identity matrix and O denotes the 2 × 2 zero matrix. Then $\mathcal{R}(G, \mathcal{P})$ is an affine algebraic subset of \mathbb{C}^{4m} . For each point $P = (A_1, \dots, A_m) \in \mathcal{R}(G, \mathcal{P})$, we define a representation ρ_P . S Y LEE

 $G \to \mathrm{SL}(2,\mathbb{C})$ by $\rho_P(x_i) = A_i (1 \leq i \leq m)$ Then ρ_P becomes a representation of G in $\mathrm{SL}(2,\mathbb{C})$. Conversely, for an arbitrary given representation $\rho: G \to \mathrm{SL}(2,\mathbb{C})$, the point $P = (\rho(x_1), \cdots, \rho(x_m))$ is an element of $\mathcal{R}(G,\mathcal{P})$ such that $\rho_P = \rho$. Therefore there is a natural 1-1 correspondence between the points of $\mathcal{R}(G,\mathcal{P})$ and $\mathrm{R}(G)$. If \mathcal{Q} is an another presentation of G, then there exists a canonical isomorphism $\phi: \mathcal{R}(G,\mathcal{P}) \to \mathcal{R}(G,\mathcal{Q})$ as affine algebraic sets. We shall identify points in $\mathcal{R}(G,\mathcal{P})$ with the corresponding representations. Although $\mathcal{R}(G;\mathcal{P})$ is not a variety in general, we call $\mathcal{R}(G,\mathcal{P})$ the $\mathrm{SL}(2,\mathbb{C})$ -representation variety of G associated to \mathcal{P} .

Now let $L = K_1 \cup \cdots \cup K_{\mu}$ be an oriented tame link in S^3 of μ components $(\mu \geq 1)$ and let $G = \pi_1(S^3 - L)$ be the link group of L, i.e., the fundamental group of the complement $S^3 - L$ with a finite presentation \mathcal{P} . Then in what follows the variety $\mathcal{R}(G, \mathcal{P})$ is called the SL(2, \mathbb{C})-representation variety of the link L associated to \mathcal{P} and denoted by $\mathcal{R}(L, \mathcal{P})$. Note that the isomorphism class $\mathcal{R}(L)$ of $\mathcal{R}(L, \mathcal{P})$ is an invariant of the link type L.

3. Representation variety of a link with one trivial component

Let $L_1 = K_1 \cup K_2 \cup \cdots \cup K_{\mu}$ be an oriented link in S^3 of μ components $(\mu \ge 2)$ such that K_1 is unknotted. For each $2 \le i \le \mu$, let $\lambda_{1i} = lk(K_1, K_i)$, the linking number of K_1 and K_i . Let $N_i(i = 1, \cdots, \mu)$ be a small open tubular neighborhood of K_i in S^3 whose boundary $\partial N_i = \mathbb{T}_i$ is a torus in S^3 . Let (m_i, l_i) be a meridianlongitude pair of \mathbb{T}_i . Then $\pi_1(\mathbb{T}_i)$ is a free abelian group generated by m_i and l_i and it has a presentation $\pi_1(\mathbb{T}_i) = \langle x_i, \xi_i \cdot x_i \xi_i x_i^{-1} \xi_i^{-1} \rangle$, where x_i and ξ_i represent m_i and l_i , respectively. This presentation is called a *canonical presentation* of $\pi_1(\mathbb{T}_i)$.

For our simplicity, we assume that $\mu = 2$ and $\lambda_{12} \neq 0$. Applying an isotopy deformation if necessary, we can choose an oriented diagram $D = D_1 \cup D_2$ in \mathbb{R}^2 of the link $L_1 = K_1 \cup K_2$ which is of the form as shown in Figure 1, where $D_i(i = 1, 2)$ denotes a diagram representing the component K_i .

FIGURE 1. $D = D_1 \cup D_2$

Using Wirtinger presentation and Tietz transformations if necessary, we obtain a deficiency one presentation \mathcal{P}' of the group $G = \pi_1(S^3 - L_1)$ which contains a canonical presentation of $\pi_1(\mathbb{T}_1)$, which is of the form(cf. [1])

$$\mathcal{P}' = \langle z_1, \cdots, z_a, w_1, \cdots, w_b, \xi_1 \mid r', s', \\ r'_{1i}(1 \le i \le a-1), r'_{2i}(1 \le i \le b-1) >,$$

where the generators z_i and w_j correspond to the *i*-th and *j*-th branch of the component D_1 and D_2 of D, respectively, and ξ_1 represents a longitude l_1 of D_1 and

$$\begin{aligned} r' &= z_1 \xi_1 z_1^{-1} \xi_1^{-1}, \\ s' &= \xi_1 (w_{j_1+1} w_{j_2+1} \cdots w_{j_r+1} w_{j_{r+1}}^{-1} \cdots w_{j_{a-1}}^{-1} w_b^{-1})^{-1}. \end{aligned}$$

The relators r'_{1i} and r'_{2j} correspond to the crossings in D. The relators r'_{1i} correspond to the crossings incident to the component D_1 , which have the form(cf. Figure 1)

$$\begin{aligned} r'_{11} &= w_{j_1+1}^{-1} z_1 w_{j_1+1} z_2^{-1}, \ r'_{12} &= w_{j_2+1}^{-1} z_2 w_{j_2+1} z_3^{-1}, \\ &\vdots \\ r'_{1r} &= w_{j_r+1}^{-1} z_r w_{j_r+1} z_{r+1}^{-1}, \ r'_{1r+1} &= w_{j_{r+1}} z_{r+1} w_{j_{r+1}}^{-1} z_{r+2}^{-1}, \\ &\vdots \\ r'_{1a-2} &= w_{j_{a-2}} z_{a-2} w_{j_{a-2}}^{-1} z_{a-1}^{-1}, \ r'_{1a-1} &= w_{j_{a-1}} z_{a-1} w_{j_{a-1}}^{-1} z_a^{-1}, \\ r'_{2j_1} &= w_{j_1} z_1 w_{j_1+1}^{-1} z_1^{-1}, \cdots, r'_{2j_r} &= w_{j_r} z_1 w_{j_r+1}^{-1} z_1^{-1}, \\ r'_{2j_{r+1}+1} &= z_1 w_{j_{r+1}+1} z_1^{-1} w_{j_{r+1}}^{-1}, \cdots, r'_{2j_{a-1}+1} &= z_1 w_{j_{a-1}+1} z_1^{-1} w_{j_{a-1}}^{-1}, \end{aligned}$$

The relators r'_{2j} correspond to the self crossings of the component D_2 , which have the form:

$$r'_{2q} = (w'_q)^{\epsilon_q} w_q(w'_q)^{-\epsilon_q} w_{q+1}^{-1}, 1 \le q \le b-1 \text{ with } q \ne j_1 - 1, \cdots, j_{a-1},$$

where w'_q is a certain generator $w_j (1 \le j \le b)$ and $\epsilon_q = \pm 1$.

We modify the presentation \mathcal{P}' of G as follows. Since $H_1(S^3 - L_1) = G/[G,G]$ is generated by z_1, w_1 , we have that $z_i \equiv z_1 \pmod{[G,G]}, i = 2, \cdots, a$, and $w_j \equiv w_1 \pmod{[G,G]}, j = 2, \cdots, b$, and $\xi_1 \equiv w_1^{\lambda_{12}} = w_1^{a-2r} \pmod{[G,G]}$. Introduce new generators $x_1 = z_1, x_i = z_i x_1^{-1} (2 \le i \le a), y_1 = w_1, y_j = w_j y_1^{-1} (2 \le j \le b)$, and $\ell_1 = \xi_1 y_1^{-\lambda_{12}}$. Using these generators, we obtain a new deficiency one presentation \mathcal{P} of G

(1)
$$\mathcal{P} = \langle x_1, \cdots, x_a, y_1, \cdots, y_b, \ell_1 \mid r, s, \\ r_{1i} (1 \le i \le a - 1), r_{2i} (1 \le j \le b - 1) >,$$

where r, s, r_{1i} and r_{2j} are obtained from r', s', r'_{1i} and r'_{2j} by rewriting in terms of the new generators x_i, y_j and ℓ_1 . Precisely,

$$\begin{aligned} r &= x_1 \ell_1 y_1^{\lambda_{12}} x_1^{-1} y_1^{-\lambda_{12}} \ell_1^{-1}, \\ s &= \ell_1 y_1^{\lambda_{12}} (y_{j_1+1} y_1 y_{j_2+1} y_1 \cdots y_{j_r+1} y_{j_{r+1}}^{-1} \cdots y_1^{-1} y_{j_{a-1}}^{-1} y_1^{-1} y_{j_a}^{-1})^{-1}, \\ r_{11} &= y_1^{-1} y_{j_1+1}^{-1} x_1 y_{j_1+1} y_1 x_1^{-1} x_2^{-1}, \\ r_{12} &= y_1^{-1} y_{j_2+1}^{-1} x_2 x_1 y_{j_2+1} y_1 x_1^{-1} x_3^{-1}, \\ \vdots &\vdots \end{aligned}$$

$$r_{1r} = y_1^{-1} y_{j_{r+1}}^{-1} x_r x_1 y_{j_r+1} y_1 x_1^{-1} x_{r+1}^{-1},$$

$$r_{1r+1} = y_{j_{r+1}} y_1 x_{r+1} x_1 y_1^{-1} y_{j_{r+1}}^{-1} x_1^{-1} x_{r+2}^{-1},$$

.

:

:

(2)

$$r_{1a-1} = y_{ja-1}y_1x_{a-1}x_1y_1^{-1}y_{ja-1}^{-1}x_1^{-1}x_a^{-1}$$

$$r_{2j_1} = y_{j_1}y_1x_1y_1^{-1}y_{j_1+1}^{-1}x_1^{-1},$$

:

$$r_{2j_{r}} = y_{j_{r}} y_{1} x_{1} y_{1}^{-1} y_{j_{r+1}}^{-1} x_{1}^{-1},$$

$$r_{2j_{r+1}+1} = x_{1} y_{j_{r+1}+1} y_{1} x_{1}^{-1} y_{1}^{-1} y_{j_{r+1}}^{-1},$$

$$r_{2j_{a-1}+1} = x_1 y_{j_{a-1}+1} y_1 x_1^{-1} y_1^{-1} y_{j_{a-1}}^{-1};$$

$$r_{2q} = (w_q)^{\epsilon_q} y_q y_1 (w_q)^{-\epsilon_q} y_1^{-1} y_{q+1}^{-1};$$

Now let $\mathcal{R}(L_1, \mathcal{P})$ be the SL(2, \mathbb{C})-representation variety of L_1 associated to the presentation \mathcal{P} in (1)

Let
$$A_i = \begin{pmatrix} X_{4(i-1)+1} & X_{4(i-1)+2} \\ X_{4(i-1)+3} & X_{4i} \end{pmatrix}$$
, $B_j = \begin{pmatrix} X_{4(a+j-1)+1} & X_{4(a+j-1)+2} \\ X_{4(a+j-1)+3} & X_{4(a+j)} \end{pmatrix}$,
 $C_1 = \begin{pmatrix} X_{4(a+b)+1} & X_{4(a+b)+2} \\ X_{4(a+b)+3} & X_{4(a+b+1)} \end{pmatrix} \in M(2,\mathbb{C}) \text{ for } i = 1, 2, \cdots, a, j = 1, 2, \cdots, b$ A point $P = (A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in M(2,\mathbb{C})^{a+b+1}$
lies in $\mathcal{R}(L_1, \mathcal{P})$, i.e., the map defined by $x_i \mapsto A_i (1 \le i \le a), y_j \mapsto B_j (1 \le j \le b), \ell_1 \mapsto C_1$ is a representation of G in $SL(2,\mathbb{C})$ if and

only if

- $(3) \quad \det(A_1) = 1$
- (4) $\det(A_i) = 1, \det(B_j) = 1, \det(C_1) = 1, 2 \le i \le a, 1 \le j \le b,$
- (5) $R(P) I = O, S(P) I = O, R_{1i}(P) I = O, 1 \le i \le a 1,$
- (6) $R_{2j}(P) I = O, 1 \le j \le b 1.$

On the other hand, a presentation \mathcal{P}_* of $G_* = \pi_1(S^3 - K_2)$ is obtained from \mathcal{P} by adding one relator $x_1 = 1$. Let $\mathcal{R}(K_2, \mathcal{P}_*)$ be the $SL(2, \mathbb{C})$ -representation variety of K_2 associated to the presentation \mathcal{P}_* .

PROPOSITION 3 1. $\mathcal{R}(K_2, \mathcal{P}_*)$ is an affine algebraic subset of $\mathcal{R}(L_1, \mathcal{P})$.

Proof A point $P = (A_1, \dots, A_a, B_1, \dots, B_b, C_1) \in M(2, \mathbb{C})^{a+b+1}$ lies in $\mathcal{R}(K_2, \mathcal{P}_*)$ if and only if it satisfies the equations (3), (4), (5), (6) and the equation $A_1 = I$, i.e.,

 $\mathcal{R}(K_2, \mathcal{P}_*) = \{ (A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in \mathcal{R}(L_1, \mathcal{P}) \mid A_1 = I \}$

This implies that $\mathcal{R}(K_2, \mathcal{P}_*)$ is an affine algebraic set defined by the defining polynomials of $\mathcal{R}(L_1, \mathcal{P})$, together with the polynomials $X_1 - 1 = 0, X_2 = 0, X_3 = 0$ and $X_4 - 1 = 0$.

Let $\mathcal{U}(\mathcal{P})$ be the ideal of $\mathbb{C}[X_1, X_2, X_3, X_4, X_5, \cdots, X_{4(a+b+1)}]$ generated by the polynomials in (3) and (4) and the entries of the left hand side of the matrix equations in (5) and (6). Note that $\mathcal{R}(L_1, \mathcal{P}) = V(\mathcal{U}(\mathcal{P}))$. Let $\pi_4 : \mathrm{M}(2, \mathbb{C})^{a+b+1} \to \mathrm{M}(2, \mathbb{C})^{a+b}$ be the projection map which sends $(A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)$ to $(A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)$ and let $\mathcal{U}_4(\mathcal{P}) = \mathcal{U}(\mathcal{P}) \cap \mathbb{C}[X_5, \cdots, X_{4(a+b+1)}]$ be the 4-th elimination ideal of $\mathcal{U}(\mathcal{P})$. Then it is well known that the projection $\pi_4(\mathcal{R}(L_1, \mathcal{P}))$ is given by

$$\pi_4(\mathcal{R}(L_1,\mathcal{P})) = \{ (A_2,\cdots,A_a,B_1,\cdots,B_b,C_1) \in V(\mathcal{U}_4(\mathcal{P})) \mid \\ \exists A_1 \in \mathcal{M}(2,\mathbb{C}) \text{ s.t. } (A_1,A_2,\cdots,A_a,B_1,\cdots,B_b,C_1) \in \mathcal{R}(L_1,\mathcal{P}) \}$$

and $V(\mathcal{U}_4(\mathcal{P})) = \overline{\pi_4(\mathcal{R}(L_1, \mathcal{P}))}$, the Zariski closure of $\pi_4(\mathcal{R}(L_1, \mathcal{P}))$ in $\mathbb{C}^{4(a+b)}$

Let n be an integer ≥ 2 and set $\zeta = \exp(\frac{2\pi\sqrt{-1}}{n})$, a primitive n-th root of 1 Let $\mathcal{V}(L_1, \mathcal{P})$ be the affine algebraic subset of $\mathbb{C}^{4(a+b+1)}$ consisting of all points $P = (A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in \mathcal{M}(2, \mathbb{C})^{a+b+1}$ satisfying all equations in (4), (5) and (6). For each $k = 0, 1, \cdots, n-1$, let $\mathcal{D}_k^n = \{M \in \mathcal{M}(2, \mathbb{C}) \mid M^n = I, \det(M) = \zeta^k\}$. Then we define $\mathcal{V}_k(L_1, \mathcal{P}), 0 \leq k \leq n-1$, to be the subset of $\mathbb{C}^{4(a+b+1)}$ given by

$$\mathcal{V}_k(L_1,\mathcal{P}) = \mathcal{V}(L_1,\mathcal{P}) \cap (\mathcal{D}_k^n \times V(\mathcal{U}_4(\mathcal{P})))$$

and define

$$\mathcal{R}_n(L_1,\mathcal{P}) = \bigcup_{k=0}^{n-1} \mathcal{V}_k(L_1,\mathcal{P}).$$

In particular, $\mathcal{V}_0(L_1, \mathcal{P}) =$

(8) {
$$(A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in \mathcal{R}(L_1, \mathcal{P}) \mid A_1^n = I$$
}

PROPOSITION 3.2. (1) For each $k = 0, 1, \dots, n-1, \mathcal{V}_k(L_1, \mathcal{P})$ is an affine algebraic subset of $\mathbb{C}^{4(a+b+1)}$ and so is $\mathcal{R}_n(L_1, \mathcal{P})$.

(2) If $0 \leq i \neq j \leq n-1$, then $\mathcal{V}_i(L_1, \mathcal{P}) \cap \mathcal{V}_j(L_1, \mathcal{P}) = \emptyset$

(3) For each $k = 1, \dots, n-1$, $\mathcal{V}_k(L_1, \mathcal{P})$ is isomorphic to $\mathcal{V}_0(L_1, \mathcal{P})$ as affine algebraic sets.

(4) $\mathcal{R}(K_2, \mathcal{P}_*) \subset \mathcal{V}_0(L_1, \mathcal{P}) \subset \mathcal{R}(L_1, \mathcal{P}) \text{ and } \mathcal{R}_n(L_1, \mathcal{P}) \cap \mathcal{R}(L_1, \mathcal{P}) = \mathcal{V}_0(L_1, \mathcal{P})$

Proof. Since $\mathcal{V}(L_1, \mathcal{P})$, \mathcal{D}_k^n and $V(\mathcal{U}_4(\mathcal{P}))$ are all affine algebraic sets, (1) follows immediately (2) follows from the fact that $\mathcal{D}_i^n \cap \mathcal{D}_j^n = \emptyset$ if $i \neq j$.

(3) We consider the map $\phi : \mathcal{V}_0(L_1, \mathcal{P}) \to \mathcal{V}_k(L_1, \mathcal{P})$ defined by

$$\phi((A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1))$$

= $(\zeta^{\frac{k}{2}} A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)$

for all $(A_1, A_2, \dots, A_a, B_1, \dots, B_b, C_1) \in \mathcal{V}_0(L_1, \mathcal{P})$ By the definition of $\mathcal{V}_0(L_1, \mathcal{P})$, it follows that $P = (A_2, \dots, A_a, B_1, \dots, B_b, C_1) \in \mathcal{V}(\mathcal{U}_4(\mathcal{P}))$, $\det(\zeta^{\frac{k}{2}}A_1) = \zeta^k \det(A_1) = \zeta^k$ and $(\zeta^{\frac{k}{2}}A_1)^n = \zeta^{\frac{nk}{2}}A_1^n = A_1^n = I$. Notice that either the relators r, s, r_1 , and r_{2j} in (2) contain S. Y LEE

both the generator x_1 and its inverse x_1^{-1} exactly once or they do not contain both x_1 and x_1^{-1} at all. This gives that

$$R(\zeta^{\frac{k}{2}}A_1, P) = R(A_1, P) = I, S(\zeta^{\frac{k}{2}}A_1, P) = S(A_1, P) = I,$$

$$R_{1i}(\zeta^{\frac{k}{2}}A_1, P) = R_{1i}(A_1, P) = I, R_{2j}(\zeta^{\frac{k}{2}}A_1, P) = R_{2j}(A_1, P) = I.$$

Hence $(\zeta^{\frac{k}{2}}A_1, P) \in \mathcal{V}_k(L_1, \mathcal{P})$. It is clear that ϕ is the restriction of a polynomial map from $\mathbb{C}^{4(a+b+1)}$ to itself. Thus ϕ is a well-defined regular mapping. Now let $\psi : \mathcal{V}_k(L_1, \mathcal{P}) \to \mathcal{V}_0(L_1, \mathcal{P})$ be a map defined by

$$\psi((A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1))$$

= $(\zeta^{-\frac{k}{2}} A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)$

for all $(A_1, A_2, \dots, A_a, B_1, \dots, B_b, C_1) \in \mathcal{V}_k(L_1, \mathcal{P})$. By similar argument above, ψ is a regular mapping. It is easy to check that $\psi \circ \phi = i d_{\mathcal{V}_0(L_1, \mathcal{P})}$ and $\phi \circ \psi = i d_{\mathcal{V}_k(L_1, \mathcal{P})}$. Therefore ϕ is an isomorphism.

(4) It follows from (7) and (8) shows that $\mathcal{R}(K_2, \mathcal{P}_*) \subset \mathcal{V}_0(L_1, \mathcal{P})$. By definition, $\mathcal{V}_0(L_1, \mathcal{P}) \subset \mathcal{R}(L_1, \mathcal{P}) \cap \mathcal{R}_n(L_1, \mathcal{P})$ Now let

$$P = (A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in \mathcal{R}(L_1, \mathcal{P}) \cap \mathcal{R}_n(L_1, \mathcal{P}).$$

Then P represents a representation of G into $SL(2, \mathbb{C})$ and so $P \in \mathcal{V}(L_1, \mathcal{P})$ and $\det(A_1) = 1$. Since $P \in \mathcal{R}_n(L_1, \mathcal{P}), A_1 \in D_k^n$ for some k. By (2), $\mathcal{R}_n(L_1, \mathcal{P}) = \coprod_{k=0}^{n-1} \mathcal{V}_k(L_1, \mathcal{P})$ and hence $P \in \mathcal{V}_0(L_1, \mathcal{P})$. This completes the proof.

4. Representation variety of an *n*-periodic link

Let $L_1 = K_1 \cup K_2$ be an oriented link in S^3 with 2 components such that K_1 is unknotted Let μ be the greatest common divisor of n and λ_{12} . For any integer $n \geq 2$, let $\pi : S^3 \to S^3$ be the *n*-fold cyclic cover branched along K_1 . Then K_2 is covered by μ knots $\tilde{K}_1, \dots, \tilde{K}_{\mu}$ in S^3 . We give orientations to $\tilde{K}_1, \dots, \tilde{K}_{\mu}$ inherited from K_2 . Then the oriented link $\tilde{L} = \pi^{-1}(K_2) = \tilde{K}_1 \cup \dots \cup \tilde{K}_{\mu}$ is the *n*-periodic link in S^3 with L as its quotient link. Note that every periodic links arises in this way

Let $\tilde{G} = \pi_1(S^3 - \tilde{L})$ be the link group of \tilde{L} . Then from the choice of the generators in the presentation \mathcal{P} of $G = \pi_1(S^3 - L_1)$ as given in (1), the group \tilde{G} has a presentation $\tilde{\mathcal{P}}$ of the form(cf. [11])

(9)
$$\tilde{\mathcal{P}} = \langle x_{ik}, y_{jk}, z_k (1 \le i \le a - 1, 1 \le j \le b, 1 \le k \le n) \mid r_k, s_k, \\ r_{1i}^k, r_{2j}^k (1 \le i \le a - 1, 1 \le j \le b - 1, 1 \le k \le n) >,$$

where

(10)
$$\begin{aligned} x_{ik} &= x_1^{k-1} x_{i+1} x_1^{-(k-1)}, y_{jk} = x_1^{k-1} y_j x_1^{-(k-1)}, z_k = x_1^{k-1} \ell_1 x_1^{-(k-1)}, \\ x_1^n &= 1, x_1^k \neq 1 \text{ for all } k = 1, \cdots, n-1, \end{aligned}$$

and

(11)
$$r_{k} = x_{1}^{k-1} r x_{1}^{-(k-1)}, s_{k} = x_{1}^{k-1} s x_{1}^{-(k-1)}, r_{1i}^{k} = x_{1}^{k-1} r_{1i} x_{1}^{-(k-1)}, r_{2j}^{k} = x_{1}^{k-1} r_{2j} x_{1}^{-(k-1)},$$

or equivalently, for each $k = 1, \cdots, n$,

$$\begin{aligned} r_{k} &= z_{k+1} y_{1k+1}^{\lambda_{12}} y_{1k}^{-\lambda_{12}} z_{k}^{-1}, \\ s_{k} &= z_{k} y_{1k}^{\lambda_{12}} (y_{j_{1}+1k} y_{1k} y_{j_{2}+1k} y_{1k} \ \cdot \ y_{j_{r}+1k} y_{j_{r+1}k}^{-1}, \\ y_{1k}^{-1} y_{j_{a}-1k}^{-1} y_{1k}^{-1} y_{j_{a}k}^{-1})^{-1}, \\ r_{11}^{k} &= y_{1k}^{-1} y_{j_{1}+1k}^{-1} y_{j_{1}+1k+1} y_{j_{k}+1} x_{1k}^{-1}, \\ r_{12}^{k} &= y_{1k}^{-1} y_{j_{2}+1k}^{-1} x_{1k} y_{j_{2}+1k+1} y_{1k+1} x_{2k}^{-1}, \end{aligned}$$

(12)

$$r_{1r}^{k} = y_{1k}^{-1} y_{jr+1k}^{-1} x_{r-1k} y_{jr+1k+1} y_{1k+1} x_{rk}^{-1},$$

$$r_{1r+1}^{k} = y_{jr+1k} y_{1k} x_{r1} y_{1k+1}^{-1} y_{jr+1k+1}^{-1} x_{r+1k}^{-1},$$

$$\vdots$$

;

$$r_{1a-1}^{k} = y_{j_{a-1}k}y_{1k}x_{a-2k}y_{1k+1}^{-1}y_{j_{a-1}k+1}^{-1}x_{a-1k}^{-1}$$

$$r_{2j_{1}}^{k} = y_{j_{1}k}y_{1k}y_{1k+1}^{-1}y_{j_{1}+1k+1}^{-1},$$

:

$$r_{2j_{a-1}+1}^{k} = y_{j_{a-1}+1k+1}y_{1k+1}y_{1k}^{-1}y_{j_{a-1}k}^{-1},$$

$$r_{2q}^{k} = (w_{qk})^{\epsilon_{qk}}y_{qk}y_{1k}(w_{qk})^{-\epsilon_{qk}}y_{1k}^{-1}y_{q+1k}^{-1}$$

We shall introduce some notations for the following theorem. Let $P_1 = (M_{11}, \cdots, M_{m1}), P_2 = (M_{12}, \cdots, M_{m2}), \cdots, P_n = (M_{1n}, \cdots, M_{m2}), \cdots, P_n = (M_{1n}, \cdots, M_{m1}), P_n = (M_{1n}, \cdots, M_{m1}), P_n = (M_{1n}, \cdots, M_{m1}), P_n = (M_{1n}, \cdots, M_{m2}), \dots, P_n = (M_{1n}, \cdots, M_{m1}), P_n = (M_{1n}, \cdots, M_{m2}), \dots, P_n = (M_{1n}, \cdots, M$ M_{mn} be n points in $M(2,\mathbb{C})^m$, where m is an integer ≥ 1 and $M_m \in M_m$ $M(2,\mathbb{C})$ Then (P_1, P_2, \cdots, P_n) denotes the point $(M_{11}, \cdots, M_{m1}, M_{12}, \dots, M_{m1}, M_{12})$ $\cdots, M_{m2}, \cdots, M_{1n}, \cdots, M_{mn}$) in $M(2, \mathbb{C})^{mn}$. For a matrix $N \in M(2, \mathbb{C})$ and an integer k, $N^k P_{j} N^{-k} (1 \leq j \leq n)$ denotes the point $(N^k M_{1j} N^{-k})$, $\cdots, N^k M_{m_1} N^{-k}$) in $M(2, \mathbb{C})^m$

THEOREM 4.1. Let $L_1 = K_1 \cup K_2$ be an oriented link in S^3 such that K_1 is unknotted and $\lambda_{12} = lk(K_1, K_2) \neq 0$ and let \mathcal{P} be the presentation of $G = \pi_1(S^3 - L_1)$ as given in (1). For any integer $n \geq 2$, let \tilde{L} be an *n*-periodic link in S^3 with the quotient link L_1 and let $\mathcal{R}(\tilde{L}, \tilde{P})$ be the $\mathrm{SL}(2, \mathbb{C})$ -representation variety of \tilde{L} associated to the presentation $\tilde{\mathcal{P}}$ in (9) Then a point $P = (P_1, P_2, \cdots, P_n) \in$ $\mathrm{M}(2,\mathbb{C})^{(a+b)n}$ lies in $\mathcal{R}(\tilde{L},\tilde{P})$ if and only if $P_1 \in V(\mathcal{U}_4(\mathcal{P}))$ and for each $k = 2, \cdots, n, P_k = M^{k-1} P_1 M^{-(k-1)}$ for some matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $(M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P})$.

Proof Let

(14)

$$P_{1} = (A_{11}, \cdots, A_{a-11}, B_{11}, \cdots, B_{b1}, C_{1}),$$

$$P_{2} = (A_{12}, \cdots, A_{a-12}, B_{12}, \cdots, B_{b2}, C_{2}),$$

$$\vdots$$

$$P_n = (A_{1n}, \cdots, A_{a-1n}, B_{1n}, \cdots, B_{bn}, C_n).$$

Suppose that $P = (P_1, P_2, \cdots, P_n)$ is a point of $\mathcal{R}(\tilde{L}, \tilde{P})$, i.e., the mapping defined by $x_{ik} \mapsto A_{ik}, y_{jk} \mapsto B_{jk}, z_k \mapsto C_k$ is a representation

of \tilde{G} in $SL(2, \mathbb{C})$. Then

(15)
$$\det(A_{ik}) = 1, \det(B_{jk}) = 1, \det(C_k) = 1,$$

(16)
$$R_k(P) - I = O, S_k(P) - I = O,$$

(17)
$$R_{1i}^{k}(P) - I = O, R_{2j}^{k}(P) - I = O$$

for all $1 \leq i \leq a-1, 1 \leq j \leq b$ and $1 \leq k \leq n$.

By (10), it follows that for all i, j and $k, \overline{A}_{ik} = M^{k-1}A_{i1}M^{-(k-1)}, B_{jk} = M^{k-1}B_{j1}M^{-(k-1)}, C_k = M^{k-1}C_1M^{-(k-1)}$ for some matrix $M \in \text{GL}(2, \mathbb{C})$ such that $M^n = I$, i.e., for each $k = 1, \cdots, n$,

(18)
$$P_k = M^{k-1} P_1 M^{-(k-1)} = M P_{k-1} M^{-1}.$$

From (12) and (13), it follows that for each $k = 1, \dots, n$, the relators r_k, s_k, r_{1i}^k and r_{2j}^k in $\tilde{\mathcal{P}}$ consist of the generators $x_{ik}, x_{ik+1}, y_{jk}, y_{jk+1}, z_k$ or z_{k+1} , where $1 \leq i \leq a-1$ and $1 \leq j \leq b$. So all entries of the matrices $R_k(P), S_k(P), R_{1i}^k(P)$ and $R_{2j}^k(P)$ are polynomials with indeterminants which are the entries of the matrices $A_{ik}, A_{ik+1}, B_{jk}, B_{jk+1}, C_k$ and C_{k+1} Hence we obtain that for each $k = 1, \dots, n$,

(19)

$$R_{k}(P) = r_{k}(P_{1}, P_{2}, \cdots, P_{n}) = r_{k}(P_{k}, P_{k+1}),$$

$$S_{k}(P) = s_{k}(P_{1}, P_{2}, \cdots, P_{n}) = s_{k}(P_{k}, P_{k+1}),$$

$$R_{1n}^{k}(P) = r_{1n}^{k}(P_{1}, P_{2}, \cdots, P_{n}) = r_{1n}^{k}(P_{k}, P_{k+1}),$$

$$R_{2j}^{k}(P) = r_{2j}^{k}(P_{1}, P_{2}, \cdots, P_{n}) = r_{2j}^{k}(P_{k}, P_{k+1})$$

By (10), we have that $x_{i1} = x_{i+1}, y_{j1} = y_j, z_1 = \ell_1$, where x_{i+1}, y_j and ℓ_1 are the generators of the presentation \mathcal{P} in (1) and so it follows from (2), (12) and (13) that

(20)

$$r_{1}(P_{1}, P_{2}) = r_{1}(P_{1}, MP_{1}M^{-1}) = r(M, P_{1}),$$

$$s_{1}(P_{1}, P_{2}) = s_{1}(P_{1}, MP_{1}M^{-1}) = s(M, P_{1}),$$

$$r_{1i}^{1}(P_{1}, P_{2}) = r_{1i}^{1}(P_{1}, MP_{1}M^{-1}) = r_{1i}(M, P_{1}),$$

$$r_{2i}^{1}(P_{1}, P_{2}) = r_{2i}^{1}(P_{1}, MP_{1}M^{-1}) = r_{2j}(M, P_{1}),$$

where r, s, r_{1i} and r_{2j} are the relators of the presentation \mathcal{P} of $G = \pi_1(S^3 - L_1)$ in (1) By (16), (17) and (19), it follows that $r(M, P_1) = I, s(M, P_1) = I, r_{1i}(M, P_1) = I, r_{2j}(M, P_1) = I$ and hence $P_1 \in V(\mathcal{U}_4(\mathcal{P}))$ and $(M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P})$

Conversely, let $P = (F_1, MP_1M^{-1}, \cdots, M^{n-1}P_1M^{-(n-1)})$ be a point of $M(2, \mathbb{C})^{(a+b)n}$ satisfying the conditions Since $P_1 \in V(\mathcal{U}_4(\mathcal{P}))$ and the ideal $\mathcal{U}_4(\mathcal{P})$ contains all polynomials in (4), $P_1 \in SL(2, \mathbb{C})^{a+b}$ and so $M^{k-1}P_1M^{-(k-1)}$ $\in SL(2, \mathbb{C})^{a+b}$ for all $k = 2, \cdots, n$ Hence $P \in SL(2, \mathbb{C})^{(a+b)n}$. Since $(M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P})$, it follows from (19) and (20) that $R_1(P) =$

 $(M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P})$, it follows from (19) and (20) that $R_1(P) = I, S_1(P) = I, R_{1_1}^1(P) = I, R_{2_j}^1(P) = I$. Then by (12), (13) and (19), we obtain that for each $k = 2, \dots, n$,

$$R_{k}(P) = r_{k}(P_{k}, P_{k+1})$$

= $r_{k}(M^{k-1}P_{1}M^{-(k-1)}, M^{k-1}P_{2}M^{-(k-1)})$
= $M^{k-1}r_{1}(P_{1}, P_{2})M^{-(k-1)}$
= $M^{k-1}R_{1}(P)M^{-(k-1)}$
= $I.$

Similarly, $S_k(P) = I$, $R_{1i}^k(P) = I$ and $R_{2j}^k(P) = I$ for all i, j and $k = 2, \dots, n$ Therefore $P \in \mathcal{R}(\tilde{L}, \tilde{P})$. This completes the proof. \Box

Let $\eta : \tilde{G} \to \mathrm{SL}(2,\mathbb{C})$ be a representation of \tilde{G} in $\mathrm{SL}(2,\mathbb{C})$ and let $\Theta : \tilde{G} \to \tilde{G}$ denote the *n*-periodic automorphism of \tilde{G} defined by $\Theta(x_{ik}) = x_{ik+1}, \Theta(y_{jk}) = y_{jk+1}$ and $\Theta(z_k) = z_{k+1}$. Then it is immediate that $\eta \circ \Theta$ is also a representation of \tilde{G} in $\mathrm{SL}(2,\mathbb{C})$

THEOREM 4.2. Let $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$ denote the set of all points $P = (P_1, P_2, \cdots, P_n)$ in $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ such that $\eta_P \circ \Theta = \eta_P$, where η_P denotes the representation of \tilde{G} corresponding to the point P. Then

(1) $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$ is an affine algebraic subset of $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ (2) $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) = \{(P_1, P_1, \cdots, P_1) \in R(\tilde{L}, \tilde{\mathcal{P}}) \mid \exists M \in \mathrm{GL}(2, \mathbb{C}) \text{ s.t.} (M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P}), MP_1 = P_1M\}.$

Proof. (1) Let $P = (P_1, P_2, \dots, P_n)$ be a point of $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$, where P_1, P_2, \dots, P_n are points of $M(2, \mathbb{C})^{a+b}$ as given in (14). Since $P = (P_1, P_2, \dots, P_n)$ hes in $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$, P satisfies the matrix equations in (15) and (17). It is clear that $\eta_P \circ \Theta = \eta_P$ if and only if

(21)
$$A_{ik+1} - A_{ik} = O, B_{jk+1} - B_{jk} = O, C_{k+1} - C_k = O$$

for all $1 \le i \le a-1$, $1 \le j \le b$ and $k = 1, 2, \dots, n$ This shows that P is a zero of the polynomials in (15) and the polynomials which are the entries of the left hand side matrix of the equations in (17) and (21).

(2) Let $P = (P_1, P_2, \dots, P_n)$ be a point of $\mathcal{R}(\tilde{L}, \tilde{P})$ such that $\eta_P \circ \Theta = \eta_P$, where P_1, P_2, \dots, P_n are points of $M(2, \mathbb{C})^{a+b}$ as given in (14). By Theorem 4.1, $P_1 \in \mathcal{V}(\mathcal{U}_4(P))$ and for each $k = 2, 3, \dots, n$, $P_k = M^{k-1}P_1M^{-(k-1)}$ for some matrix $M \in GL(2, \mathbb{C})$ such that $(M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P})$. Since $\eta_P \circ \Theta = \eta_P$, it follows that $A_{ik+1} = A_{ik}, B_{jk+1} = B_{jk}, C_{k+1} = C_k$ and so $MA_{ik}M^{-1} = A_{ik}, MB_{jk}M^{-1} = B_{jk}, MC_kM^{-1} = C_k$ for all $k = 1, 2, \dots, n-1$ Therefore $P_1 = MP_1M^{-1}$ Conversely, if $P = (P_1, P_2, \dots, P_n)$ is a point of $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ such that $P_1 = P_2 = \dots = P_n$, then it is clear that the corresponding representation η_P satisfies that $\eta_P \circ \Theta = \eta_P$. This completes the proof

Let *n* be an integer ≥ 2 and set $\zeta = \exp(\frac{2\pi\sqrt{-1}}{n})$. For each $k = 0, 1, \dots, n-1$, we define $\mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$ to be the subset of $\mathbb{C}^{4n(a+b)}$ given by $\mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}}) =$

$$\{(P, MPM^{-1}, \cdots, M^{n-1}PM^{-(n-1)}) \in \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}) \mid \det(M) = \zeta^k\}$$

and define $\phi_k \quad \mathcal{V}_k(L_1, \mathcal{P}) \to \mathrm{M}(2, \mathbb{C})^{n(a+b)} (= \mathbb{C}^{4n(a+b)})$ to be the mapping given by

$$\phi_k((M, P)) = (P, MPM^{-1}, \cdots, M^{n-1}PM^{-(n-1)})$$

for all $(M, P) \in \mathcal{V}_k(L_1, \mathcal{P})$

LEMMA 4.3 (1) For each $k = 0, 1, \dots, n-1$, ϕ_k is a regular map from $\mathcal{V}_k(L_1, \mathcal{P})$ onto $\mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$, i.e., $\phi_k(\mathcal{V}_k(L_1, \mathcal{P})) = \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$

(2)
$$\mathcal{R}(\tilde{L},\tilde{\mathcal{P}}) = \bigcup_{k=0}^{n-1} \mathcal{R}_k(\tilde{L},\tilde{\mathcal{P}})$$

(3) $\phi_0(\mathcal{R}(K_2,\mathcal{P}_*)) \subset \mathcal{F}(\tilde{L},\tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \mathcal{R}_k(\tilde{L},\tilde{\mathcal{P}}).$

S. Y LEE

Proof. (1) Let
$$M = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$$
, $P = (M_2, \cdots, M_{a+b}) \in \mathcal{M}(2, \mathbb{C})^{a+b-1}$,
where $M_i = \begin{pmatrix} X_{4(i-1)+1} & X_{4(i-1)+2} \\ X_{4(i-1)+3} & X_{4i} \end{pmatrix}$ for each $i = 2, \cdots, a+b$.

Suppose that $(M, P) \in \mathcal{V}_k(L_1, \mathcal{P})$. By Theorem 4.1, $\phi_k((M, P)) = (P, MPM^{-1}, \cdots, M^{n-1}PM^{-(n-1)}) \in \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$. Since $\det(M) = \zeta^k$, it follows that $\phi_k((M, P)) \in \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$. It is easy to see that $\phi_k(\mathcal{V}_k(L_1, \mathcal{P})) = \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$.

Now since $M^{-1} = \zeta^{-k} \begin{pmatrix} X_4 & -X_2 \\ -X_3 & X_1 \end{pmatrix}$, we have the following equations: for each $1 \le m \le n-1, 2 \le i \le a+b, M^m M_i M^{-m} = -$

$$\frac{1}{\zeta^{km}} \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}^m \begin{pmatrix} X_{4(i-1)+1} & X_{4(i-1)+2} \\ X_{4(i-1)+3} & X_{4i} \end{pmatrix} \begin{pmatrix} X_4 & -X_2 \\ -X_3 & X_1 \end{pmatrix}^m$$

This shows that all entries of the matrix $M^m M_i M^{-m}$ are polynomials in $X_1, X_2, X_3, X_4, X_{4(i-1)+1}, X_{4(i-1)+2}, X_{4(i-1)+3}$ and X_{4i} . Therefore each ϕ_k is a regular map.

(2) Let $P = (P_1, \dots, P_n)$ be a point of $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ By Theorem 4.1, $P_1 \in V(\mathcal{U}_4(\mathcal{P}))$ and there exists a matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $M^n = I$ and $P = (P_1, MP_1M^{-1}, \dots, M^{n-1}P_1M^{-(n-1)})$ Since $M^n = I$, $\det(M)^n = 1$. So $\det(M)$ must be a *n*-th root of unity, i.e., $\det(M) = \zeta^k$ for some $k(0 \leq k \leq n-1)$ Thus $P \in \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$ for some $k(0 \leq k \leq n-1)$

(3) Let $P = (A_1, A_2, \dots, A_a, B_1, \dots, B_b, C_1)$ be a point of $\mathcal{R}(K_2, \mathcal{P}_*)$. By (7), $A_1 = I$. Set $P_1 = \pi_4(P) = (A_2, \dots, A_a, B_1, \dots, B_b, C_1)$. Note that $\phi_0(P) = (P_1, \dots, P_1)$. By (4) of Proposition 3.2, $P = (I, P_1) \in \mathcal{V}_0(L_1, \mathcal{P}) \subset \mathcal{R}_n(L_1, \mathcal{P})$. By (2) of Theorem 4.2, $\phi_0(P) \in \mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$

Now let $P = (P_1, \dots, P_1)$ be a point of $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$. By (2) of Theorem 4.2, there exists a matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $(M, P_1) \in \mathcal{V}_j(L_1, \mathcal{P}) \subset \mathcal{R}_n(L_1, \mathcal{P})$ and $MP_1 = P_1M$ for some $0 \leq j \leq n-1$. For each $k = 0, 1, \dots, n-1$, let $M_k = \zeta^{\frac{k-j}{2}}M$. Then $\det(M_k) = \zeta^k$. Since $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$, by Theorem 4.2 $P_1 \in \mathcal{V}(\mathcal{U}_4(\mathcal{P}))$. It follows from (2) that (M_k, P_1) satisfies the matrix equations in (4), (5), and (6) and so $(M_k, P_1) \in \mathcal{V}_k(L_1, \mathcal{P})$ for each k. Note that $M_k P_1 = P_1 M_k$ for all k. Now $P = (P_1, \dots, P_1) = \phi_k(M_k, P_1) \in \phi_k(\mathcal{V}_k(L_1, \mathcal{P})) = \mathcal{R}_k(L_1, \mathcal{P})$ for

all
$$k = 0, 1, \dots, n-1$$
. Hence $P \in \bigcap_{k=0}^{n-1} \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$. Therefore $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$ This completes the proof.

In view of (1) in Lemma 4.3, for each $k = 0, 1, \dots, n-1$, we obtain an affine algebraic subset $\overline{\phi_k(\mathcal{V}_k(L_1, \mathcal{P}))}$ of $\mathbb{C}^{4n(a+b)}$. In the rest of this paper we denote it by $\tilde{\mathcal{V}}_k$ for simplicity, that is, $\tilde{\mathcal{V}}_k = \overline{\phi_k(\mathcal{V}_k(L_1, \mathcal{P}))} = \overline{R_k(\tilde{L}, \tilde{\mathcal{P}})}, 0 \le k \le n-1$ Then we have the following theorem

THEOREM 4.4. (1)
$$\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}) = \bigcup_{k=0}^{n-1} \tilde{\mathcal{V}}_k$$

(2) $\overline{\phi_0(\mathcal{R}(K_2, \mathcal{P}_*))} \subset \mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \tilde{\mathcal{V}}_k$

Proof. (1) By Lemma 4 3, we obtain that $\mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}}) = \phi_k(\mathcal{V}_k(L_1, \mathcal{P})) \subset \tilde{\mathcal{V}}_k$ and

$$\mathcal{R}(\tilde{L},\tilde{\mathcal{P}}) = \bigcup_{k=0}^{n-1} \mathcal{R}_k(\tilde{L},\tilde{\mathcal{P}}) \subset \bigcup_{k=0}^{n-1} \tilde{\mathcal{V}}_k$$

Note that $\mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}}) \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ and $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ is an affine algebraic subset of $\mathbb{C}^{4n(a+b)}$. Since $\tilde{\mathcal{V}}_k$ is the smallest algebraic subset of $\mathbb{C}^{4n(a+b)}$ containing $\phi_k(\mathcal{V}_k(L_1, \mathcal{P})) = \mathcal{R}_k(\tilde{L}, \tilde{\mathcal{P}})$, we have that $\tilde{\mathcal{V}}_k \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ for all $k = 0, 1, \cdots, n-1$. Therefore $\bigcup_{k=0}^{n-1} \tilde{\mathcal{V}}_k \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$.

(2) By (3) of Lemma 4.3,

$$\overline{\phi_0(\mathcal{R}(K_2,\mathcal{P}_*))} \subset \mathcal{F}(\tilde{L},\tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \mathcal{R}_k(\tilde{L},\tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \tilde{\mathcal{V}}_k$$

This completes the proof.

COROLLARY 4.5. (1)
$$\dim(\overline{\phi_0(\mathcal{R}(K_2, \bar{\mathcal{P}}_*))}) \leq \dim(\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})) \leq \dim(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}))$$

(2)

$$\dim(\mathcal{F}(\tilde{L},\tilde{\mathcal{P}})) \leq \dim(\mathcal{R}(\tilde{L},\tilde{\mathcal{P}})) \leq \dim(\mathcal{V}_0(L_1,\mathcal{P}))$$
$$\leq \dim(\mathcal{R}(L_1,\mathcal{P})).$$

Proof. (1) follows from Theorem 4.2 and Theorem 4.4.

(2) Since $\mathcal{V}_0(L_1, \mathcal{P}) \subset \mathcal{R}(L_1, \mathcal{P})$, $\dim(\mathcal{V}_0(L_1, \mathcal{P})) \leq \dim(\mathcal{R}(L_1, \mathcal{P}))$. By Theorem 4.2, $\dim(\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})) \leq \dim(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}))$ and, by Theorem 4.4, $\dim(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})) \leq \max\{\dim(\tilde{\mathcal{V}}_0), \dim(\tilde{\mathcal{V}}_1), \cdots, \dim(\tilde{\mathcal{V}}_{n-1})\}$. Since $\phi_k :$ $\mathcal{V}_k(L_1, \mathcal{P}) \to \tilde{\mathcal{V}}_k$ is a dominating map, $\dim(\tilde{\mathcal{V}}_k) \leq \dim(\mathcal{V}_k(L_1, \mathcal{P}))$ for each $k = 0, 1, \cdots, n-1$. By (3) of Proposition 3.2, $\dim(\mathcal{V}_0(L_1, \mathcal{P})) =$ $\dim(\mathcal{V}_k(L_1, \mathcal{P}))$ for all $k = 1, \cdots, n-1$. Hence $\dim(\tilde{\mathcal{V}}_k) \leq \dim(\mathcal{V}_0(L_1, \mathcal{P}))$ for all $k = 0, 1, \cdots, n-1$. Therefore $\dim(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})) \leq \dim(\mathcal{V}_0(L_1, \mathcal{P}))$. This completes the proof.

REFERENCES

- E. J. Brody, The topological classification of the lens spaces, Ann. Math. 71(1960), 163-176
- [2] G Burde, SU(2)-representation spaces for two-bridge knot groups, Math Ann 173(1990), 103-119.
- [3] G Burde and Z Zieschang, Knots, Walter de Gruyter, 1985
- [4] M Culler and P B Shalen, Varieties of group representations and splittings of 3-manifolds, Ann of Math. 117(1983), 109-146
- [5] H M. Hilden, M T. Lozano and J M Montesinos-Amilibia, On the chacter variety of periodic knots and links, Math. Proc. Camb. Phil. Soc. 129(2000), 477-490
- [6] M Heusener and J Kroll, Deforming abelian SU(2)-representations of knot groups, Comment Math. Helv 73(1998), 480-498
- [7] E Klassen, Representations of knot groups in SU(2), Trans Amer Math Soc 326(1991), 795-828
- [8] S Y Lee, Z_n-equivariant Goeritz matrices for periodic links, Osaka J Math 40(2003), 393-408
- [9] J Morgan and H Bass The Smith conjecture, Academic Press, Inc , 1984
- [10] D Mumford, Algebraic Geometry I Complex Projective Varieties, Grundlehren der mathematischen Wissenschaften 221, Springer 1976.
- [11] K Murasugi, On periodic knots, Comment Math Helv. 46(1971), 162-174
- [12] K Murasugi, On symmetry of knots, Tsukuba J Math 4(1980), 331-347
- [13] R Riley, Parabolic representations of knot groups, I, II, Proc. London Math. Soc. (3) 24(1972), 217-242, 31(1975), 61-72

- [14] R Riley, Nonabelian representations of 2-bridge knot groups, Quart J. Math. Oxford (2), 35(1984), 191-208
- [15] R Riley, Algebra for Heckoid groups, Trans Amer Math Soc 334(1992), 389-409

Department of Mathematics Pusan National University Pusan 609-735, Korea *E-mail* sangyoul@pusan.ac.kr