SL(2, C)-REPRESENTATION VARIETIES OF PERIODIC LINKS

Sang Youl Lee

Abstract

In this paper, we characterize $\mathrm{SL}(2, \mathbb{C})$-representations of an n-periodic link \tilde{L} in terms of $\mathrm{SL}(2, \mathbb{C})$-representations of its quotient link L and express the $\mathrm{SL}(2, \mathbb{C})$-representation variety $\mathcal{R}(\tilde{L})$ of \tilde{L} as the union of n affine algebrace subsets which have the same dimension Also, we show that the dimenson of $\mathcal{R}(\tilde{L})$ is bounded by the dimensions of affine algebratc subsets of the $\mathrm{SL}(2, \mathbb{C})$-representation variety $\mathcal{R}(L)$ of its quotient link L

1. Introduction

Let L be a tame link in the 3 -sphere S^{3} and let $G=\pi_{1}\left(S^{3}-L\right)$ be the fundamental group of the complement $S^{3}-L$. Let $\mathrm{R}(G)$ denote the set of all representations of G in the 2×2 special linear group $\mathrm{SL}(2, \mathbb{C})$ with entries in the field \mathbb{C} of complex numbers Suppose we fix a fimte system of generators of G, say $\left(g_{1}, \cdots, g_{m}\right)$. Then a representation $\rho \quad G \rightarrow \mathrm{SL}(2, \mathbb{C})$ is uniquely determined by specifying the m-tuple $\left(\rho\left(g_{1}\right), \cdots, \rho\left(g_{m}\right)\right)$ We define $\mathcal{R}(G)=\left\{\left(\rho\left(g_{1}\right), \cdots, \rho\left(g_{m}\right)\right) \in\right.$ $\left.\mathrm{SL}(2, \mathbb{C})^{m} \mid \rho \in \mathrm{R}(G)\right\}$. Then $\mathcal{R}(G)$ carries with it the structure of an affine algebrase set in $\mathbb{C}^{4 m}$ Throughout this paper we shall call it the $\mathrm{SL}(2, \mathbb{C})$-representation variety of L and denote it by $\mathcal{R}(L) \mathrm{SL}(2, \mathbb{C})$ representation varreties of knots and links and their applications have

[^0]been studied extensively by many mathematıcıans. For examples, see $[2,4,5,6,7,13,14,15]$ and therein.

A link \tilde{L} in S^{3} is said to have perzod $n(n \geq 2)$ if there exists an n-periodic homeomorphism ϕ from S^{3} onto itself such that \tilde{L} is invarıant under ϕ and the fixed point set \bar{K}_{1} of the \mathbb{Z}_{n}-action induced by ϕ is homeomorphic to a 1 -sphere in S^{3} disjoint from \tilde{L}. By the positive solution of the Smith Conjecture [9], \tilde{K}_{1} is unknotted and so the homeomorphism ϕ is conjugate to one point compactification of the $\frac{2 \pi}{n}$-rotation about the z-axis in \mathbb{R}^{3} Hence the quotient map $q . S^{3} \rightarrow S^{3} / \mathbb{Z}_{n}$ is an n-fold cyclic covering branched along the unknot $q\left(\tilde{K}_{1}\right)=K_{1}$. Set $L=q(\tilde{L})$. Then the lonk $L_{1}=K_{1} \cup L$ in the orbit space $S^{3} / \mathbb{Z}_{n} \cong S^{3}$ is called the quotzent lonk of \bar{L}. Some authors showed that a certain properties of perıodic links can be characterızed by their quotient links $[3,5,8,11,12]$. In this paper we are interested in studynng the $\mathrm{SL}(2, \mathbb{C})$-representation variety $\mathcal{R}(\tilde{L})$ of an n-periodic link \tilde{L} in S^{3} in terms of $\mathrm{SL}(2, \mathbb{C})$-representations of its quotient link L_{1} in $\operatorname{SL}(2, \mathbb{C})$

The paper is organized as follows In Section 2, we review a few basic terminologies concerning affine algebrac sets. In Section 3, we consider the $\mathrm{SL}(2, \mathbb{C})$-representation variety $\mathcal{R}\left(L_{1}\right)$ of a link $L_{1}=K_{1} \cup$ L with unknotted component K_{1}. In Section 4 , we show that $\operatorname{SL}(2, \mathbb{C})$ representations of an n-perıodic link \tilde{L} are completely determined by the $\mathrm{SL}(2, \mathbb{C})$-representations of its quotient link L_{1} and express the $\mathrm{SL}(2, \mathbb{C})$-representation variety $\mathcal{R}(\vec{L})$ of \bar{L} as the union of n affine algebraic subsets which have the same dimension. As a consequence, we show that the dimension of $\mathcal{R}(\tilde{L})$ is bounded by the dimensions of algebraic subsets of the $\mathrm{SL}(2, \mathbb{C})$-representation variety $\mathcal{R}\left(L_{1}\right)$ of its quotient lınk L_{1}

2. Representation variety of knots and links

Let \mathbb{C} be the field of complex numbers An (affine) algebraic set in the affine space $\mathbb{C}^{n}(n \geq 1)$ is the set of zeros of some finite set of polynomials f_{1}, \cdots, f_{s} in $\mathbb{C}\left[X_{1}, \cdots, X_{n}\right]$ We denote it by $\mathcal{V}\left(f_{1}, \cdots, f_{s}\right)$
or simply by \mathcal{V}, 1.e., $\mathcal{V}\left(f_{1}, \cdots, f_{s}\right)=$

$$
\left\{\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{C}^{n} \mid f_{2}\left(a_{1}, \cdots, a_{n}\right)=0, \forall \imath=1,2, \cdots, s\right\} .
$$

If \mathcal{U} is the rdeal of $\mathbb{C}\left[X_{1}, \cdots, X_{n}\right]$ generated by f_{1}, \cdots, f_{s}, then the set of all zeros of $f_{2}^{\prime} s$ is equal to the set of all zeros of every $g \in$ \mathcal{U} and so we will denote $\mathcal{V}\left(f_{1}, \cdots, f_{s}\right)$ also by $\mathcal{V}(\mathcal{U})$. A non-empty affine algebraic set is said to be $\begin{aligned} \text { rreducible if it cannot be expressed }\end{aligned}$ as the union of two proper algebraic subsets An irreducible algebrac subset $\mathcal{V}=\mathcal{V}\left(f_{1}, \cdots, f_{s}\right)$ of \mathbb{C}^{n} is called an affine varnety defined by f_{1}, \cdots, f_{s} Every affine algebraic set may be written canonically as a finite union of affine varieties, called its trreducrble components. An affine algebrace set \mathcal{V} has a well-defincd (complex) dimension, denoted by $\operatorname{dim}(\mathcal{V})$ If $\mathcal{V} \subset \mathbb{C}^{m}$ and $\mathcal{W} \subset \mathbb{C}^{n}$ arc affine algebrace sets, a map $\phi \quad \mathcal{V} \rightarrow \mathcal{W}$ is said to be regular if it is the restriction of some map from \mathbb{C}^{m} to \mathbb{C}^{n} which is defined by n polynomials in m varıables $[10]$.

Let $\mathrm{M}(2, \mathbb{C})$ be the set of all 2×2 matrices with entries in \mathbb{C}. Throughout this paper, we shall identify $M(2, \mathbb{C})$ with \mathbb{C}^{4} by simply writing down the rows of each matrix one after the other and so, for example, $\mathrm{M}(2, \mathbb{C})^{m}$ is identified with $\mathbb{C}^{4 m}$. The general linear group $\mathrm{GL}(2, \mathbb{C})$ is the group of all members of $\mathrm{M}(2, \mathbb{C})$ with nonzero determinant and the special linear group $\operatorname{SL}(2, \mathbb{C})$ is the subgroup of $\mathrm{GL}(2, \mathbb{C})$ with determinant 1

Let G be a fintely presented group A homomorphsm $\rho \quad G \rightarrow$ $\mathrm{SL}(2, \mathbb{C})$ is called a representation of $G \mathrm{~mL}(2, \mathbb{C})$ Two representatrons ρ and ρ^{\prime} are equivalent, denoted by $\rho \equiv \rho^{\prime}$, if $\rho^{\prime}=\Lambda \rho$, where Λ is an mner automorphism of $\mathrm{SL}(2, \mathbb{C})$. Let $\mathrm{R}(G)$ denote the set of all representatrons of G in $\operatorname{SL}(2, \mathbb{C})$. Then it can be parametrized by points of an affine algebraic subset of $\mathbb{C}^{4 m}$ for some positive integer m as follows. Let $\mathcal{P}=\left\langle x_{1}, \cdots, x_{m} \mid r_{j}\left(x_{1}, \cdots, x_{m}\right), \jmath=1,2, \cdots, n\right\rangle$ be a group presentation of G. Define $\mathcal{R}(G, \mathcal{P})=$

$$
\left\{P=\left(A_{1}, \cdots, A_{m}\right) \in \mathrm{SL}(2, \mathbb{C})^{m} \mid R_{\jmath}(P)-I=O, \jmath=1,2, \cdots, n\right\}
$$

where $R_{3}(P)(\jmath=1,2, \cdots, n)$ denotes the matrix $r_{3}\left(A_{1}, \cdots, A_{m}\right)$ obtamed from the relator $r_{3}\left(x_{1}, \cdots, x_{m}\right)$ by substituting A_{2} for x_{2}, I denotes the 2×2 identity matrix and O denotes the 2×2 zero matrix. Then $\mathcal{R}(G, \mathcal{P})$ is an affine algebraic subset of $\mathbb{C}^{4 m}$. For each point $P=\left(A_{1}, \cdots, A_{m}\right) \in \mathcal{R}(G, \mathcal{P})$, we define a representation ρ_{P}.
$G \rightarrow \mathrm{SL}(2, \mathbb{C})$ by $\rho_{P}\left(x_{\imath}\right)=A_{\imath}(1 \leq \imath \leq m)$ Then ρ_{P} becomes a representation of G in $\mathrm{SL}(2, \mathbb{C})$. Conversely, for an arbitrary given representation $\rho: G \rightarrow \mathrm{SL}(2, \mathbb{C})$, the point $P=\left(\rho\left(x_{1}\right), \cdots, \rho\left(x_{m}\right)\right)$ is an element of $\mathcal{R}(G, \mathcal{P})$ such that $\rho_{P}=\rho$. Therefore there is a natural 1-1 correspondence between the points of $\mathcal{R}(G, \mathcal{P})$ and $\mathrm{R}(G)$. If \mathcal{Q} is an another presentation of G, then there exists a canonical isomorphism $\phi . \mathcal{R}(G, \mathcal{P}) \rightarrow \mathcal{R}(G, \mathcal{Q})$ as affine algebrace sets. We shall identify points in $\mathcal{R}(G, \mathcal{P})$ with the corresponding representations. Although $\mathcal{R}(G ; \mathcal{P})$ is not a variety in general, we call $\mathcal{R}(G, \mathcal{P})$ the $\mathrm{SL}(2, \mathbb{C})$ representation varnety of G associated to \mathcal{P}.

Now let $L=K_{1} \cup \cdots \cup K_{\mu}$ be an oriented tame link in S^{3} of μ components $(\mu \geq 1)$ and let $G=\pi_{1}\left(S^{3}-L\right)$ be the link group of L, i.e., the fundamental group of the complement $S^{3}-L$ with a finite presentation \mathcal{P}. Then in what follows the variety $\mathcal{R}(G, \mathcal{P})$ is called the $\operatorname{SL}(2, \mathbb{C})$-representation variety of the link L associated to \mathcal{P} and denoted by $\mathcal{R}(L, \mathcal{P})$. Note that the isomorphism class $\mathcal{R}(L)$ of $\mathcal{R}(L, \mathcal{P})$ is an invariant of the link type L.

3. Representation variety of a link with one trivial component

Let $L_{1}=K_{1} \cup K_{2} \cup \cdots \cup K_{\mu}$ be an oriented link in S^{3} of μ components $(\mu \geq 2)$ such that K_{1} is unknotted For each $2 \leq \imath \leq \mu$, let $\lambda_{12}=l k\left(K_{1}, K_{2}\right)$, the linkmg number of K_{1} and K_{2}. Let $N_{2}(\imath=$ $1, \cdots, \mu$) be a small open tubular neıghborhood of K_{2} in S^{3} whose boundary $\partial N_{i}=T_{1}$ is a torus m S^{3}. Let $\left(m_{t}, l_{t}\right)$ be a merıdianlongıtude pair of \mathbb{T}_{2} Then $\pi_{1}\left(\mathbb{T}_{2}\right)$ is a free abelian group generated by m_{2} and l_{2} and it has a presentation $\left.\pi_{1}\left(\mathbb{T}_{2}\right)=<x_{2}, \xi_{2} \cdot x_{2} \xi_{2} x_{2}^{-1} \xi_{2}^{-1}\right\rangle$, where x_{2} and ξ_{2} represent m_{2} and l_{2}, respectively This presentation is called a canonical presentation of $\pi_{1}\left(\mathbb{T}_{2}\right)$.

For our simplicity, we assume that $\mu=2$ and $\lambda_{12} \neq 0$. Applying an isotopy deformation if necessary, we can choose an oriented diagram $D=D_{1} \cup D_{2}$ in \mathbb{R}^{2} of the link $L_{1}=K_{1} \cup K_{2}$ which is of the form as shown in Figure 1, where $D_{2}(\imath=1,2)$ denotes a diagram representing the component K_{2}.

Figure 1. $D=D_{1} \cup D_{2}$

Using Wirtinger presentation and Thetz transformations if necessary, we obtain a deficiency one presentation \mathcal{P}^{\prime} of the group $G=$ $\pi_{1}\left(S^{3}-L_{1}\right)$ which contans a canonical presentation of $\pi_{1}\left(\mathbb{T}_{1}\right)$, which is of the form(cf. [1])

$$
\begin{aligned}
\mathcal{P}^{\prime}=< & z_{1}, \cdots, z_{a}, w_{1}, \cdots, w_{b}, \xi_{1} \mid r^{\prime}, s^{\prime}, \\
& r_{12}^{\prime}(1 \leq \imath \leq a-1), r_{2 g}^{\prime}(1 \leq \imath \leq b-1)>
\end{aligned}
$$

where the generators z_{2} and w_{1} correspond to the ℓ-th and \jmath-th branch of the component D_{1} and D_{2} of D, respectively, and ξ_{1} represents a longitude l_{1} of D_{1} and

$$
\begin{aligned}
& r^{\prime}=z_{1} \xi_{1} z_{1}^{-1} \xi_{1}^{-1}, \\
& s^{\prime}=\xi_{1}\left(w_{j_{1}+1} w_{j_{2}+1} \cdots w_{j_{r}+1} w_{\jmath_{r+1}}^{-1} \cdots w_{\jmath_{a-1}}^{-1} w_{b}^{-1}\right)^{-1} .
\end{aligned}
$$

The relators r_{12}^{\prime} and r_{23}^{\prime} correspond to the crossings in D. The relators r_{12}^{\prime} correspond to the crossings incident to the component D_{1}, which have the form(cf. Flgure 1)

$$
\begin{aligned}
& r_{11}^{\prime}=w_{\jmath_{1}+1}^{-1} z_{1} w_{\jmath_{1}+1} z_{2}^{-1}, r_{12}^{\prime}=w_{\jmath_{2}+1}^{-1} z_{2} w_{\jmath_{2}+1} z_{3}^{-1} \\
& \vdots \\
& r_{1 r}^{\prime}=w_{\jmath_{r}+1}^{-1} z_{r} w_{\jmath_{r}+1} z_{r+1}^{-1}, r_{1 r+1}^{\prime}=w_{\jmath_{r+1}} z_{r+1} w_{\jmath_{r+1}}^{-1} z_{r+2}^{-1} \\
& \vdots \\
& r_{1 a-2}^{\prime}=w_{\jmath_{a-2}} z_{a-2} w_{\jmath_{a-2}}^{-1} z_{a-1}^{-1}, r_{1 a-1}^{\prime}=w_{\jmath_{a-1}} z_{a-1} w_{\jmath_{\alpha-1}}^{-1} z_{a}^{-1} \\
& r_{2 \jmath_{1}}^{\prime}=w_{\jmath_{1}} z_{1} w_{\jmath_{1+1}+1}^{-1} z_{1}^{-1}, \cdots, r_{23_{r}}^{\prime}=w_{\jmath_{r}} z_{1} w_{\jmath_{r}+1}^{-1} z_{1}^{-1} \\
& r_{2 j_{r+1}+1}^{\prime}=z_{1} w_{\jmath_{r+1}+1} z_{1}^{-1} w_{\jmath_{r+1}}^{-1}, \cdots, r_{2 \jmath_{a-1}+1}^{\prime}=z_{1} w_{\jmath_{a-1}+1} z_{1}^{-1} w_{\jmath_{a-1}}^{-1}
\end{aligned}
$$

The relators $r_{2,}^{\prime}$ correspond to the self crossings of the component D_{2}, which have the form:

$$
r_{2 q}^{\prime}=\left(w_{q}^{\prime}\right)^{\epsilon_{q}} w_{q}\left(w_{q}^{\prime}\right)^{-\epsilon_{q}} w_{q+1}^{-1}, 1 \leq q \leq b-1 \text { with } q \neq j_{1}-1, \cdots, j_{a-1},
$$

where w_{q}^{\prime} is a certain generator $w_{j}(1 \leq \jmath \leq b)$ and $\epsilon_{q}= \pm 1$.
We modify the presentation \mathcal{P}^{\prime} of G as follows. Since $H_{1}\left(S^{3}-L_{1}\right)=$ $G /[G, G]$ is generated by z_{1}, w_{1}, we have that $z_{2} \equiv z_{1}(\bmod [G, G]), \imath=$ $2, \cdots, a$, and $w_{j} \equiv w_{1}(\bmod [G, G]), \jmath=2, \cdots, b$, and $\xi_{1} \equiv w_{1}^{\lambda_{12}}=$ $w_{1}^{a-2 r}(\bmod [G, G])$. Introduce new generators $x_{1}=z_{1}, x_{2}=z_{2} x_{1}^{-1}(2 \leq$ $\left.{ }^{\imath} \leq a\right), y_{1}=w_{1}, y_{3}=w_{3} y_{1}^{-1}(2 \leq \jmath \leq b)$, and $\ell_{1}=\xi_{1} y_{1}^{-\lambda_{12}}$. Using these generators, we obtain a new deficiency one presentation \mathcal{P} of G

$$
\begin{align*}
\mathcal{P}= & <x_{1}, \cdots, x_{a}, y_{1}, \cdots, y_{b}, \ell_{1} \mid r, s, \\
& r_{12}(1 \leq \imath \leq a-1), r_{2 g}(1 \leq \jmath \leq b-1)> \tag{1}
\end{align*}
$$

where r, s, r_{12} and $r_{2 j}$ are obtained from $r^{\prime}, s^{\prime}, r_{12}^{\prime}$ and $r_{2 j}^{\prime}$ by rewriting in terms of the new generators x_{2}, y_{3} and ℓ_{1}. Precisely,

$$
\begin{aligned}
& r=x_{1} \ell_{1} y_{1}^{\lambda_{12}} x_{1}^{-1} y_{1}^{-\lambda_{12}} \ell_{1}^{-1} \\
& s=\ell_{1} y_{1}^{\lambda_{12}}\left(y_{3_{1}+1} y_{1} y_{j_{2}+1} y_{1} \cdots y_{y_{r}+1} y_{j_{r+1}}^{-1} \cdots y_{1}^{-1} y_{j_{a-1}}^{-1} y_{1}^{-1} y_{y_{a}}^{-1}\right)^{-1} \\
& r_{11}=y_{1}^{-1} y_{y_{1}+1}^{-1} x_{1} y_{j_{1}+1} y_{1} x_{1}^{-1} x_{2}^{-1} \\
& r_{12}=y_{1}^{-1} y_{j_{2}+1}^{-1} x_{2} x_{1} y_{j_{2}+1} y_{1} x_{1}^{-1} x_{3}^{-1} \\
& \quad \cdot \\
& r_{1 r}=y_{1}^{-1} y_{j_{r}+1}^{-1} x_{r} x_{1} y_{j_{r}+1} y_{1} x_{1}^{-1} x_{r+1}^{-1} \\
& r_{1 r+1}=y_{j_{r+1}} y_{1} x_{r+1} x_{1} y_{1}^{-1} y_{j_{r+1}}^{-1} x_{1}^{-1} x_{r+2}^{-1}
\end{aligned}
$$

$$
\begin{gather*}
r_{1 a-1}=y_{\jmath_{a-1}} y_{1} x_{a-1} x_{1} y_{1}^{-1} y_{\jmath_{a-1}}^{-1} x_{1}^{-1} x_{a}^{-1} \tag{2}\\
r_{2 \jmath_{1}}=y_{\jmath_{1}} y_{1} x_{1} y_{1}^{-1} y_{\jmath_{1}+1}^{-1} x_{1}^{-1}, \\
\vdots \\
r_{2 \jmath_{r}}=y_{\jmath_{r}} y_{1} x_{1} y_{1}^{-1} y_{\jmath_{r}+1}^{-1} x_{1}^{-1} \\
r_{2 \jmath_{r+1}+1}=x_{1} y_{\jmath_{r+1}+1} y_{1} x_{1}^{-1} y_{1}^{-1} y_{\jmath_{r+1}}^{-1} \\
\vdots \\
r_{2 \jmath_{a-1}+1}=x_{1} y_{\jmath_{a-1}+1} y_{1} x_{1}^{-1} y_{1}^{-1} y_{\jmath_{a-1}}^{-1} \\
r_{2 q}=\left(w_{q}\right)^{\epsilon q} y_{q} y_{1}\left(w_{q}\right)^{-\epsilon_{q}} y_{1}^{-1} y_{q+1}^{-1}
\end{gather*}
$$

Now let $\mathcal{R}\left(L_{1}, \mathcal{P}\right)$ be the $\mathrm{SL}(2, \mathbb{C})$-representation variety of L_{1} associated to the presentation \mathcal{P} in (1)

$$
\begin{aligned}
& \text { Let } A_{\imath}=\left(\begin{array}{cc}
X_{4(\imath-1)+1} & X_{4(\imath-1)+2} \\
X_{4(\imath-1)+3} & X_{42}
\end{array}\right), B_{3}=\left(\begin{array}{cc}
X_{4(a+\jmath-1)+1} & X_{4(a+\jmath-1)+2} \\
X_{4(a+\jmath-1)+3} & X_{4(a+\jmath)}
\end{array}\right), \\
& C_{1}=\left(\begin{array}{ll}
X_{4(a+b)+1} & X_{4(a+b)+2} \\
X_{4(a+b)+3} & X_{4(a+b+1)}
\end{array}\right) \in \mathrm{M}(2, \mathbb{C}) \text { for } \imath=1,2, \cdots, a, \jmath= \\
& 1,2, \cdots, b \text { A point } P=\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathrm{M}(2, \mathbb{C})^{a+b+1}
\end{aligned}
$$

$$
\text { lies in } \mathcal{R}\left(L_{1}, \mathcal{P}\right) \text {, i.e., the map defined by } x_{2} \mapsto A_{2}(1 \leq \imath \leq a), y_{3} \mapsto
$$

$$
B_{\jmath}(1 \leq \jmath \leq b), \ell_{1} \mapsto C_{1} \text { is a representation of } G \text { in } \mathrm{SL}(2, \mathbb{C}) \text { if and }
$$

only if
(3) $\operatorname{det}\left(A_{1}\right)=1$
(4) $\operatorname{det}\left(A_{2}\right)=1, \operatorname{det}\left(B_{3}\right)=1, \operatorname{det}\left(C_{1}\right)=1,2 \leq \imath \leq a, 1 \leq \jmath \leq b$,
(5) $\quad R(P)-I=O, S(P)-I=O, R_{1_{2}}(P)-I=O, 1 \leq \imath \leq a-1$,
(6) $\quad R_{2 \jmath}(P)-I=O, 1 \leq \jmath \leq b-1$.

On the other hand, a presentation \mathcal{P}_{*} of $G_{*}=\pi_{1}\left(S^{3}-K_{2}\right)$ is obtamed from \mathcal{P} by adding one relator $x_{1}=1$. Let $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)$ be the $\mathrm{SL}(2, \mathbb{C})$-representation variety of K_{2} assoclated to the presentation \mathcal{P}_{*}.

Proposition 3 1. $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)$ is an affine algebraic subset of $\mathcal{R}\left(L_{1}, \mathcal{P}\right)$.
Proof A point $P=\left(A_{1}, \cdot \cdot, A_{a}, B_{1}, \cdot \cdot, B_{b}, C_{1}\right) \in \mathrm{M}(2, \mathbb{C})^{a+b+1}$ hes in $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)$ if and only if it satisfies the equations (3), (4), (5), (6) and the equation $A_{1}=I$, i.e,

$$
\begin{equation*}
\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)=\left\{\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathcal{R}\left(L_{1}, \mathcal{P}\right) \mid A_{1}=I\right\} \tag{7}
\end{equation*}
$$

This implies that $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)$ is an affine algebraic set defined by the defining polynomals of $\mathcal{R}\left(L_{1}, \mathcal{P}\right)$, together with the polynomials $X_{1}-$ $1=0, X_{2}=0, X_{3}=0$ and $X_{4}-1=0$.

Let $\mathcal{U}(\mathcal{P})$ be the ideal of $\mathbb{C}\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, \cdots, X_{4(a+b+1)}\right]$ generated by the polynomals in (3) and (4) and the entries of the left hand side of the matrix equations in (5) and (6). Note that $\mathcal{R}\left(L_{1}, \mathcal{P}\right)=$ $V(\mathcal{U}(\mathcal{P}))$. Let $\pi_{4}: \mathrm{M}(2, \mathbb{C})^{a+b+1} \rightarrow \mathrm{M}(2, \mathbb{C})^{a+b}$ bë the projection map which sends $\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)$ to $\left(A_{2}, \cdots, A_{a}, B_{1}, \cdots\right.$, $\left.B_{b}, C_{1}\right)$ and let $\mathcal{U}_{4}(\mathcal{P})=\mathcal{U}(\mathcal{P}) \cap \mathbb{C}\left[X_{5}, \cdot, X_{4(a+b+1)}\right]$ be the 4 -th elimination ideal of $\mathcal{U}(\mathcal{P})$. Then it is well known that the projection $\pi_{4}\left(\mathcal{R}\left(L_{1}, \mathcal{P}\right)\right)$ is given by

$$
\begin{aligned}
& \pi_{4}\left(\mathcal{R}\left(L_{1}, \mathcal{P}\right)\right)=\left\{\left(A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in V\left(\mathcal{U}_{4}(\mathcal{P})\right) \mid\right. \\
& \left.\exists A_{1} \in \mathrm{M}(2, \mathbb{C}) \text { s.t. }\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathcal{R}\left(L_{1}, \mathcal{P}\right)\right\}
\end{aligned}
$$

 $\mathbb{C}^{4(a+b)}$

Let n be an integer ≥ 2 and set $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{n}\right)$, a primitive n-th root of 1 Let $\mathcal{V}\left(L_{1}, \mathcal{P}\right)$ be the affine algebraic subset of $\mathbb{C}^{4(a+b+1)}$ consssting of all points $P=\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathrm{M}(2, \mathbb{C})^{a+b+1}$ satisfying all equations in (4), (5) and (6). For each $k=0,1, \cdots, n-1$, let $\mathcal{D}_{k}^{n}=\left\{M \in \mathrm{M}(2, \mathbb{C}) \mid M^{n}=I\right.$, $\left.\operatorname{det}(M)=\zeta^{k}\right\}$. Then we define $\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right), 0 \leq k \leq n-1$, to be the subset of $\mathbb{C}^{4(a+b+1)}$ given by

$$
\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)=\mathcal{V}\left(L_{1}, \mathcal{P}\right) \cap\left(\mathcal{D}_{k}^{n} \times V\left(\mathcal{U}_{4}(\mathcal{P})\right)\right)
$$

and define

$$
\mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)=\bigcup_{k=0}^{n-1} \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)
$$

In particular, $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)=$

$$
\begin{equation*}
\left\{\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathcal{R}\left(L_{1}, \mathcal{P}\right) \mid A_{1}^{n}=I\right\} \tag{8}
\end{equation*}
$$

Proposition 3.2. (1) For each $k=0,1, \cdots, n-1, \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$ is an affine algebraic subset of $\mathbb{C}^{4(a+b+1)}$ and so is $\mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$.
(2) If $0 \leq \imath \neq \jmath \leq n-1$, then $\mathcal{V}_{\imath}\left(L_{1}, \mathcal{P}\right) \cap \mathcal{V}_{\jmath}\left(L_{1}, P\right)=\emptyset$
(3) For each $k=1, \cdots, n-1, \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$ is isomorphic to $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$ as affine algebrace sets.
(4) $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right) \subset \mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right) \subset \mathcal{R}\left(L_{1}, \mathcal{P}\right)$ and $\mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right) \cap \mathcal{R}\left(L_{1}, \mathcal{P}\right)=$ $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$

Proof, Since $\mathcal{V}\left(L_{1}, \mathcal{P}\right), \mathcal{D}_{k}^{n}$ and $V\left(\mathcal{U}_{4}(\mathcal{P})\right)$ are all affine algebraic sets, (1) follows mmediately (2) follows from the fact that $\mathcal{D}_{2}^{n} \cap \mathcal{D}_{3}^{n}=\emptyset$ if $t \neq 3$.
(3) We consider the map $\phi: \mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right) \rightarrow \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$ defined by

$$
\begin{aligned}
& \phi\left(\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)\right) \\
& =\left(\zeta^{\frac{k}{2}} A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)
\end{aligned}
$$

for all $\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$ By the definitoon of $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$, it follows that $P=\left(A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in$ $V\left(\mathcal{U}_{4}(\mathcal{P})\right), \operatorname{det}\left(\zeta^{\frac{k}{2}} A_{1}\right)=\zeta^{k} \operatorname{det}\left(A_{1}\right)=\zeta^{k}$ and $\left(\zeta^{\frac{k}{2}} A_{1}\right)^{n}=\zeta^{\frac{n k}{2}} A_{1}^{n}=$ $A_{1}^{n}=I$. Notice that elther the relators r, s, r_{12} and $r_{2 j}$ in (2) contain
both the generator x_{1} and its inverse x_{1}^{-1} exactly once or they do not contain both x_{1} and x_{1}^{-1} at all. This gives that

$$
\begin{aligned}
& R\left(\zeta^{\frac{k}{2}} A_{1}, P\right)=R\left(A_{1}, P\right)=I, S\left(\zeta^{\frac{k}{2}} A_{1}, P\right)=S\left(A_{1}, P\right)=I \\
& R_{1_{2}}\left(\zeta^{\frac{k}{2}} A_{1}, P\right)=R_{1_{\imath}}\left(A_{1}, P\right)=I, R_{2_{3}}\left(\zeta^{\frac{k}{2}} A_{1}, P\right)=R_{2 j}\left(A_{1}, P\right)=I
\end{aligned}
$$

Hence $\left(\zeta^{\frac{k}{2}} A_{1}, P\right) \in \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$. It is clear that ϕ is the restriction of a polynomial map from $\mathbb{C}^{4(a+b+1)}$ to itself. Thus ϕ is a well-defined regular mapping. Now let $\psi: \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right) \rightarrow \mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$ be a map defined by

$$
\begin{aligned}
& \psi\left(\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)\right) \\
& =\left(\zeta^{-\frac{k}{2}} A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)
\end{aligned}
$$

for all $\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$. By sımilar argument above, ψ is a regular mapping. It is easy to check that $\psi \circ \phi=\imath d_{\nu_{0}\left(L_{1}, \mathcal{P}\right)}$ and $\phi \circ \psi=\imath d_{\nu_{k}\left(L_{1}, \mathcal{P}\right)}$. Therefore ϕ is an isomorphism.
(4) It follows from (7) and (8) shows that $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right) \subset \mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$. By definition, $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right) \subset \mathcal{R}\left(L_{1}, \mathcal{P}\right) \cap \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$ Now let

$$
P=\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right) \in \mathcal{R}\left(L_{1}, \mathcal{P}\right) \cap \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)
$$

Then P represents a representation of G into $\mathrm{SL}(2, \mathbb{C})$ and so $P \in$ $\mathcal{V}\left(L_{1}, \mathcal{P}\right)$ and $\operatorname{det}\left(A_{1}\right)=1$. Since $P \in \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right), A_{1} \in D_{k}^{n}$ for some k. By (2), $\mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)=\square_{k=0}^{n-1} \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$ and hence $P \in \mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)$. This completes the proof.

4. Representation variety of an n-periodic link

Let $L_{1}=K_{1} \cup K_{2}$ be an oriented lank in S^{3} with 2 components such that K_{1} is unknotted Let μ be the greatest common divisor of n and λ_{12}. For any integer $n \geq 2$, let $\pi: S^{3} \rightarrow S^{3}$ be the n-fold cyclic cover branched along K_{1}. Then K_{2} is covered by μ knots $\tilde{K}_{1}, \cdots, \tilde{K}_{\mu}$ in S^{3}. We give orientations to $\tilde{K}_{1}, \cdots, \tilde{K}_{\mu}$ inherited from K_{2}. Then the oriented link $\tilde{L}=\pi^{-1}\left(K_{2}\right)=\bar{K}_{1} \cup \cdots \cup \bar{K}_{\mu}$ is the n-pertodic link in S^{3} with L as its quotient link. Note that every periodic links arises in thes way

Let $\tilde{G}=\pi_{1}\left(S^{3}-\tilde{L}\right)$ be the link group of \tilde{L}. Then from the cholce of the generators in the presentation \mathcal{P} of $G=\pi_{1}\left(S^{3}-L_{1}\right)$ as given in (1), the group \tilde{G} has a presentation $\tilde{\mathcal{P}}$ of the form(cf. [11])

$$
\begin{array}{r}
\tilde{\mathcal{P}}=<x_{2 k}, y_{\jmath k}, z_{k}(1 \leq \imath \leq a-1,1 \leq \jmath \leq b, 1 \leq k \leq n) \mid r_{k}, s_{k}, \tag{9}\\
r_{12}^{k}, r_{2 \jmath}^{k}(1 \leq \imath \leq a-1,1 \leq \jmath \leq b-1,1 \leq k \leq n)>,
\end{array}
$$

where

$$
\begin{align*}
& x_{2 k}=x_{1}^{k-1} x_{2+1} x_{1}^{-(k-1)}, y_{y_{k}}=x_{1}^{k-1} y_{j} x_{1}^{-(k-1)}, z_{k}=x_{1}^{k-1} \ell_{1} x_{1}^{-(k-1)}, \tag{10}\\
& x_{1}^{n}=1, x_{1}^{k} \neq 1 \text { for all } k=1, \cdots, n-1,
\end{align*}
$$

and

$$
\begin{align*}
& r_{k}=x_{1}^{k-1} r x_{1}^{-(k-1)}, s_{k}=x_{1}^{k-1} s x_{1}^{-(k-1)}, \\
& r_{12}^{k}=x_{1}^{k-1} r_{12} x_{1}^{-(k-1)}, r_{23}^{k}=x_{1}^{k-1} r_{23} x_{1}^{-(k-1)}, \tag{11}
\end{align*}
$$

or equivalently, for each $k=1, \cdots, n$,

$$
\begin{align*}
& r_{k}=z_{k+1} y_{1 k+1}^{\lambda_{12}} y_{1 k}^{-\lambda_{12}} z_{k}^{-1}, \\
& s_{k}=z_{k} y_{1 k}^{\lambda_{12}}\left(y_{3_{1}+1 k} y_{1 k} y_{j_{2}+1 k} y_{1 k} \cdot y_{j_{r}+1 k} y_{j_{r+1} k}^{-1} \cdots\right. \\
& \left.y_{1 k}^{-1} y_{3 a \sim k}^{-1} y_{1 k}^{-1} y_{J_{k} k}^{-1}\right)^{-1}, \\
& r_{11}^{k}=y_{1 k}^{-1} y_{j_{1}+1 k}^{-1} y_{j_{1}+1 k+1} y_{1 k+1} x_{1 k}^{-1}, \\
& r_{12}^{k}=y_{1 k}^{-1} y_{y_{2}+1 k}^{-1} x_{1 k} y_{y_{2}+1 k+1} y_{1 k+1} x_{2 k}^{-1}, \\
& r_{1 r}^{k}=y_{1 k}^{-1} y_{J_{r}+1 k}^{-1} x_{r-1 k} y_{J_{r+1}+1} y_{1 k+1} x_{r k}^{-1} \text {, } \tag{12}\\
& r_{1 r+1}^{k}=y_{J_{r+1} k} y_{1 k} x_{r 1} y_{1 k+1}^{-1} y_{J_{r+1} k+1}^{-1} x_{r+1 k}^{-1}, \\
& r_{1 a-1}^{k}=y_{\jmath_{a-k} k} y_{1 k} x_{a-2 k} y_{1 k+1}^{-1} y_{j_{a-1} k+1}^{-1} x_{a-1 k}^{-1}
\end{align*}
$$

$$
\begin{align*}
& r_{2 \jmath_{r}}^{k}=y_{\jmath_{r} k} y_{1 k} y_{1 k+1}^{-1} y_{\jmath_{r}+1 k+1}^{-1} \\
& r_{2 j_{r+1}+1}^{k}=y_{\jmath_{r+1}+1 k+1} y_{1 k+1} y_{1 k}^{-1} y_{\jmath_{r+1} k}^{-1} \tag{13}\\
& \vdots \\
& r_{2 \jmath_{a-1}+1}^{k}=y_{\jmath_{a-1}+1 k+1} y_{1 k+1} y_{1 k}^{-1} y_{\jmath_{a-1} k}^{-1} \\
& r_{2 q}^{k}=\left(w_{q k}\right)^{\epsilon_{q k}} y_{q k} y_{1 k}\left(w_{q k}\right)^{-\epsilon_{q k}} y_{1 k}^{-1} y_{q+1 k}^{-1}
\end{align*}
$$

We shall introduce some notations for the following theorem. Let $P_{1}=\left(M_{11}, \cdots, M_{m 1}\right), P_{2}=\left(M_{12}, \cdots, M_{m 2}\right), \cdots, P_{n}=\left(M_{1 n}, \cdots\right.$, $M_{m n}$) be n points in $\mathrm{M}(2, \mathbb{C})^{m}$, where m is an integer ≥ 1 and $M_{\imath j} \in$ $\mathrm{M}(2, \mathbb{C})$ Then $\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ denotes the point $\left(M_{11}, \cdots, M_{m 1}, M_{12}\right.$, $\left.\cdots, M_{m 2}, \cdots, M_{1 n}, \cdots, M_{m n}\right)$ in $\mathrm{M}(2, \mathbb{C})^{m n}$. For a matrix $N \in \mathrm{M}(2, \mathbb{C})$ and an integer $k, N^{k} P_{3} N^{-k}(1 \leq \jmath \leq n)$ denotes the point $\left(N^{k} M_{13} N^{-k}\right.$, $\left.\cdots, N^{k} M_{m \jmath} N^{-k}\right)$ in $\mathrm{M}(2, \mathbb{C})^{m}$

TheOrem 4 1. Let $L_{1}=K_{1} \cup K_{2}$ be an oriented link in S^{3} such that K_{1} is unknotted and $\lambda_{12}=l k\left(K_{1}, K_{2}\right) \neq 0$ and let \mathcal{P} be the presentation of $G=\pi_{1}\left(S^{3}-L_{1}\right)$ as given in (1). For any integer $n \geq 2$, let \tilde{L} be an n-periodic link in S^{3} with the quotient link L_{1} and let $\mathcal{R}(\tilde{L}, \tilde{P})$ be the $\mathrm{SL}(2, \mathbb{C})$-representation variety of \tilde{L} associated to the presentation $\tilde{\mathcal{P}}$ in (9) Then a point $P=\left(P_{1}, P_{2}, \cdots, P_{n}\right) \in$ $\mathrm{M}(2, \mathbb{C})^{(a+b) n}$ lies in $\mathcal{R}(\tilde{L}, \tilde{P})$ if and only if $P_{1} \in V\left(\mathcal{U}_{4}(\mathcal{P})\right)$ and for each $k=2, \cdots, n, P_{k}=M^{k-1} P_{1} M^{-(k-1)}$ for some matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $\left(M, P_{1}\right) \in \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$.

Proof Let

$$
\begin{gather*}
P_{1}=\left(A_{11}, \cdots, A_{a-11}, B_{11}, \cdots, B_{b 1}, C_{1}\right) \\
P_{2}=\left(A_{12}, \cdots, A_{a-12}, B_{12}, \cdots, B_{b 2}, C_{2}\right), \tag{14}\\
\vdots \\
P_{n}=\left(A_{1 n}, \cdots, A_{a-1 n}, B_{1 n}, \cdots, B_{b n}, C_{n}\right) .
\end{gather*}
$$

Suppose that $P=\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ is a point of $\mathcal{R}(\tilde{L}, \tilde{P})$, i.e., the mapping defined by $x_{\imath k} \mapsto A_{2 k}, y_{\jmath k} \mapsto B_{\jmath k}, z_{k} \mapsto C_{k}$ is a representation
of $\tilde{G} \mathrm{~m} \operatorname{SL}(2, \mathbb{C})$. Then

$$
\begin{align*}
& \operatorname{det}\left(A_{2 k}\right)=1, \operatorname{det}\left(B_{3 k}\right)=1, \operatorname{det}\left(C_{k}\right)=1, \tag{15}\\
& R_{k}(P)-I=O, S_{k}(P)-I=O \tag{16}\\
& R_{1 \imath}^{k}(P)-I=O, R_{2 j}^{k}(P)-I=O \tag{17}
\end{align*}
$$

for all $1 \leq \imath \leq a-1,1 \leq \jmath \leq b$ and $1 \leq k \leq n$.
By (10), it follows that for all $2, \jmath$ and $k, \bar{A}_{2 k}=M^{k-1} A_{21} M^{-(k-1)}, B_{j k}=$ $M^{k-1} B_{j 1} M^{-(k-1)}, C_{k}=M^{k-1} C_{1} M^{-(k-1)}$ for some matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $M^{n}=I$, i.e, for each $k=1, \cdots, n$,

$$
\begin{equation*}
P_{k}=M^{k-1} P_{1} M^{-(k-1)}=M P_{k-1} M^{-1} \tag{18}
\end{equation*}
$$

From (12) and (13), it follows that for each $k=1, \cdot, n$, the relators r_{k}, s_{k}, r_{12}^{k} and $r_{2 j}^{k}$ in $\tilde{\mathcal{P}}$ consist of the generators $x_{2 k}, x_{2 k+1}, y_{j k}, y_{j k+1}, z_{k}$ or z_{k+1}, where $1 \leq \imath \leq a-1$ and $1 \leq \jmath \leq b$. So all entries of the matrices $R_{k}(P), S_{k}(P), R_{12}^{k}(P)$ and $R_{2,}^{k}(P)$ are polynomals with indeterm1nants which are the entries of the matrices $A_{2 k}, A_{2 k+1}, B_{j k}, B_{j k+1}, C_{k}$ and C_{k+1} Hence we obtain that for each $k=1, \cdots, n$,

$$
\begin{array}{ll}
R_{k}(P)=r_{k}\left(P_{1}, P_{2}, \cdots, P_{n}\right)=r_{k}\left(P_{k}, P_{k+1}\right), \\
S_{k}(P)=s_{k}\left(P_{1}, P_{2}, \cdots,\right. & \left.P_{n}\right)=s_{k}\left(P_{k}, P_{k+1}\right), \\
R_{12}^{k}(P)=r_{12}^{k}\left(P_{1}, P_{2,} \cdot\right. & \left., P_{n}\right)=r_{12}^{k}\left(P_{k}, P_{k+1}\right), \tag{19}\\
R_{2 j}^{k}(P)=r_{2 j}^{k}\left(P_{1}, P_{2},\right. & \left., P_{n}\right)=r_{2 j}^{k}\left(P_{k}, P_{k+1}\right)
\end{array}
$$

By (10), we have that $x_{\imath 1}=x_{2+1}, y_{21}=y_{3}, z_{1}=\ell_{1}$, where x_{2+1}, y_{2} and ℓ_{1} are the generators of the presentation \mathcal{P} in (1) and so it follows from (2), (12) and (13) that

$$
\begin{align*}
& r_{1}\left(P_{1}, P_{2}\right)=r_{1}\left(P_{1}, M P_{1} M^{-1}\right)=r\left(M, P_{1}\right), \\
& s_{1}\left(P_{1}, P_{2}\right)=s_{1}\left(P_{1}, M P_{1} M^{-1}\right)=s\left(M, P_{1}\right), \\
& r_{12}^{1}\left(P_{1}, P_{2}\right)=r_{12}^{1}\left(P_{1}, M P_{1} M^{-1}\right)=r_{12}\left(M, P_{1}\right), \tag{20}\\
& r_{2 \jmath}^{1}\left(P_{1}, P_{2}\right)=r_{2 \jmath}^{1}\left(P_{1}, M P_{1} M^{-1}\right)=r_{23}\left(M, P_{1}\right),
\end{align*}
$$

where $r, s, r_{1_{2}}$ and r_{23} are the relators of the presentation \mathcal{P} of $G=$ $\pi_{1}\left(S^{3}-L_{1}\right) \mathrm{m}$ (1) By (16), (17) and (19), it follows that $r\left(M, P_{1}\right)=$ $I, s\left(M, P_{1}\right)=I, r_{12}\left(M, P_{1}\right)=I, r_{2 j}\left(M, P_{1}\right)=I$ and hence $P_{1} \in$ $V\left(\mathcal{U}_{4}(\mathcal{P})\right)$ and $\left(M, P_{1}\right) \in \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$

Conversely, let $P=\left(F_{1}, M P_{1} M^{-1}, \cdots, M^{n-1} P_{1} M^{-(n-1)}\right)$ be a point of $\mathrm{M}(2, \mathbb{C})^{(a+b) n}$ satisfying the conditions Since $P_{1} \in V\left(\mathcal{U}_{4}(\mathcal{P})\right)$ and the ideal $\mathcal{U}_{4}(\mathcal{P})$ contans all polynomials in $(4), P_{1} \in \mathrm{SL}(2, \mathbb{C})^{a+b}$ and so $M^{k-1} P_{1} M^{-(k-1)}$
$\in \mathrm{SL}(2, \mathbb{C})^{a+b}$ for all $k=2, \cdots, n$ Hence $P \in \mathrm{SL}(2, \mathbb{C})^{(a+b) n}$. Since $\left(M, P_{1}\right) \in \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$, it follows from (19) and (20) that $R_{1}(P)=$ $I, S_{1}(P)=I, R_{12}^{1}(P)=I, R_{2 f}^{1}(P)=I$. Then by (12), (13) and (19), we obtain that for each $k=2, \cdots, n$,

$$
\begin{aligned}
R_{k}(P) & =r_{k}\left(P_{k}, P_{k+1}\right) \\
& =r_{k}\left(M^{k-1} P_{1} M^{-(k-1)}, M^{k-1} P_{2} M^{-(k-1)}\right) \\
& =M^{k-1} r_{1}\left(P_{1}, P_{2}\right) M^{-(k-1)} \\
& =M^{k-1} R_{1}(P) M^{-(k-1)} \\
& =I
\end{aligned}
$$

Similarly, $S_{k}(P)=I, R_{12}^{k}(P)=I$ and $R_{2 \jmath}^{k}(P)=I$ for all i, j and $k=2, \cdots, n$ Therefore $P \in \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$. This completes the proof.

Let $\eta_{\sim}: \tilde{G} \rightarrow \mathrm{SL}(2, \mathbb{C})$ be a representation of $\tilde{G} \mathrm{in} \mathrm{SL}(2, \mathbb{C})$ and let $\Theta: \tilde{G} \rightarrow \tilde{G}$ denote the n-periodic automorphism of \tilde{G} defined by $\Theta\left(x_{\imath k}\right)=x_{\imath k+1}, \Theta\left(y_{\jmath k}\right)=y_{\jmath k+1}$ and $\Theta\left(z_{k}\right)=z_{k+1}$. Then it is immediate that $\eta \circ \Theta$ is also a representation of $\bar{G} \mathrm{in} \mathrm{SL}(2, \mathbb{C})$

TheOrem 4.2. Let $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$ denote the set of all points $P=\left(P_{1}, P_{2}\right.$, $\left.\cdots, P_{n}\right)$ in $\mathcal{R}(\tilde{L}, \tilde{P})$ such that $\eta_{P} \circ \Theta=\eta_{P}$, where η_{P} denotes the representation of \tilde{G} corresponding to the point P. Then
(1) $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$ is an affine algebraic subset of $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$
(2) $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})=\left\{\left(P_{1}, P_{1}, \cdots, P_{1}\right) \in R(\tilde{L}, \tilde{P}) \mid \exists M \in G L(2, \mathbb{C})\right.$ s.t. $\left.\left(M, P_{1}\right) \in \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right), M P_{1}=P_{1} M\right\}$.

Proof. (1) Let $P=\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ be a point of $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$, where $P_{1}, P_{2}, \cdots, P_{n}$ are points of $\mathrm{M}(2, \mathbb{C})^{a+b}$ as given in (14). Since $P=$ $\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ lies in $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}), P$ satisfies the matrix equations in (15) and (17). It is clear that $\eta_{P} \circ \Theta=\eta_{P}$ if and only if

$$
\begin{equation*}
A_{\imath k+1}-A_{\imath k}=O, B_{\jmath k+1}-B_{\jmath k}=O, C_{k+1}-C_{k}=O \tag{21}
\end{equation*}
$$

for all $1 \leq \imath \leq a-1,1 \leq \jmath \leq b$ and $k=1,2, \cdots, n$ This shows that P is a zero of the polynomials in (15) and the polynomals which are the entries of the left hand side matrix of the equations in (17) and (21).
(2) Let $P=\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ be a point of $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ such that $\eta_{P} \circ \Theta=\eta_{P}$, where $P_{1}, P_{2}, \cdots, P_{n}$ are points of $\mathrm{M}(2, \mathbb{C})^{a+b}$ as given in (14). By Theorem $41, P_{1} \in \mathcal{V}\left(\mathcal{U}_{4}(P)\right)$ and for each $k=2,3, \cdots, n$, $P_{k}=M^{k-1} P_{1} M^{-(k-1)}$ for some matrix $M \in G L(2, \mathbb{C})$ such that $\left(M, P_{1}\right) \in \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$. Since $\eta_{P} \circ \Theta=\eta_{P}$, it follows that $A_{2 k+1}=$ $A_{2 k}, B_{3 k+1}=B_{j k}, C_{k+1}=C_{k}$ and so $M A_{2 k} M^{-1}=A_{2 k}, M B_{j k} M^{-1}=$ $B_{j k}, M C_{k} M^{-1}=C_{k}$ for all $k=1,2, \cdots, n-1$ Therefore $P_{1}=$ $M P_{1} M^{-1}$ Conversely, if $P=\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ is a pomt of $\mathcal{R}(\tilde{L}, \tilde{P})$ such that $P_{1}=P_{2}=\cdot=P_{n}$, then it is clear that the corresponding representation η_{P} satisfies that $\eta_{P} \circ \Theta=\eta_{P}$. This completes the proof

Let n be an integer ≥ 2 and set $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{n}\right)$. For each $k=$ $0,1, \cdots, n-1$, we define $\mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$ to be the subset of $\mathbb{C}^{4 n(a+b)}$ given by $\mathcal{R}_{k}(\tilde{I}, \tilde{\mathcal{P}})=$

$$
\left\{\left(P, M P M^{-1}, \cdots, M^{n-1} P M^{-(n-1)}\right) \in \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}) \mid \operatorname{det}(M)=\zeta^{k}\right\}
$$

and define $\phi_{k} \quad V_{k}\left(L_{1}, \mathcal{P}\right) \rightarrow \mathrm{M}(2, \mathbb{C})^{n(a+b)}\left(=\mathbb{C}^{1 n(a+b)}\right)$ to be the mapping given by

$$
\phi_{k}((M, P))=\left(P, M P M^{-1}, \cdots, M^{n-1} P M^{-(n-1)}\right)
$$

for all $(M, P) \in \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$
Lemma 43 (1) For each $k=0,1, \cdots, n-1, \phi_{k}$ is a regilar map from $\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$ onto $\mathcal{R}_{k}(\vec{L}, \tilde{\mathcal{P}})$, i.e, $\phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)=\mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$
(2) $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})=\bigcup_{k=0}^{n-1} \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$
(3) $\phi_{0}\left(\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)\right) \subset \mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$.

Proof. (1) Let $M=\left(\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right), P=\left(M_{2}, \cdots, M_{a+b}\right) \in \mathrm{M}(2, \mathbb{C})^{a+b-1}$, where $M_{\imath}=\left(\begin{array}{cc}X_{4(\imath-1)+1} & X_{4(\imath-1)+2} \\ X_{4(\imath-1)+3} & X_{42}\end{array}\right)$ for each $\imath=2, \cdots, a+b$.

Suppose that $(M, P) \in \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$. By Theorem 4.1, $\phi_{k}((M, P))=$ $\left(P, M P M^{-1}, \cdots, M^{n-1} P M^{-(n-1)}\right) \in \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$. Since $\operatorname{det}(M)=\zeta^{k}$, it follows that $\phi_{k}((M, P)) \in \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$. It is easy to see that $\phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)$ $=\mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$.

Now since $M^{-1}=\zeta^{-k}\left(\begin{array}{cc}X_{4} & -X_{2} \\ -X_{3} & X_{1}\end{array}\right)$, we have the following equations: for each $1 \leq m \leq n-1,2 \leq \imath \leq a+b, M^{m} M_{2} M^{-m}=\cdots$

$$
\frac{1}{\zeta^{k m}}\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right)^{m}\left(\begin{array}{cc}
X_{4(\imath-1)+1} & X_{4(\imath-1)+2} \\
X_{4(2-1)+3} & X_{42}
\end{array}\right)\left(\begin{array}{cc}
X_{4} & -X_{2} \\
-X_{3} & X_{1}
\end{array}\right)^{m} .
$$

This shows that all entries of the matrix $M^{m} M_{2} M^{-m}$ are polynomials in $X_{1}, X_{2}, X_{3}, X_{4}, X_{4(2-1)+1}, X_{4(\imath-1)+2}, X_{4(2-1)+3}$ and X_{42}. Therefore each ϕ_{k} is a regular map.
(2) Let $P=\left(P_{1}, \cdots, P_{n}\right)$ be a point of $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ By Theorem 4.1, $P_{1} \in V\left(\mathcal{U}_{4}(\mathcal{P})\right)$ and there exists a matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $M^{n}=I$ and $P=\left(P_{1}, M P_{1} M^{-1}, \cdots, M^{n-1} P_{1} M^{-(n-1)}\right)$ Since $M^{n}=$ $I, \operatorname{det}(M)^{n}=1$. So $\operatorname{det}(M)$ must be a n-th root of unity, i e., $\operatorname{det}(M)=$ ζ^{k} for some $k(0 \leq k \leq n-1)$ Thus $P \in \mathcal{R}_{k}(\tilde{L}, \tilde{P})$ for some $k(0 \leq k \leq$ $n-1$)
(3) Let $P=\left(A_{1}, A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)$ be a pont of $\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)$. By (7), $A_{1}=I$. Set $P_{1}=\pi_{4}(P)=\left(A_{2}, \cdots, A_{a}, B_{1}, \cdots, B_{b}, C_{1}\right)$. Note that $\phi_{0}(P)=\left(P_{1}, \cdots, P_{1}\right)$. By (4) of Proposition 3.2, $P=\left(I, P_{1}\right) \in$ $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right) \subset \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$. By (2) of Theorem 4.2, $\phi_{0}(P) \in \mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$

Now let $P=\left(P_{1}, \cdots, P_{1}\right)$ be a point of $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})$. By (2) of Theorem 4.2, there exists a matrix $M \in \mathrm{GL}(2, \mathbb{C})$ such that $\left(M, P_{1}\right) \in$ $\mathcal{V}_{\jmath}\left(L_{1}, \mathcal{P}\right) \subset \mathcal{R}_{n}\left(L_{1}, \mathcal{P}\right)$ and $M P_{1}=P_{1} M$ for some $0 \leq \jmath \leq n-1$. For each $k=0,1, \cdots, n-1$, let $M_{k}=\zeta^{\frac{k-2}{2}} M$. Then $\operatorname{det}\left(M_{k}\right)=\zeta^{k}$. Since $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$, by Theorem $42 P_{1} \in \mathcal{V}\left(\mathcal{U}_{4}(\mathcal{P})\right)$. It follows from (2) that (M_{k}, P_{1}) satisfies the matrix equations in (4), (5), and (6) and so $\left(M_{k}, P_{1}\right) \in \mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)$ for each k. Note that $M_{k} P_{1}=P_{1} M_{k}$ for all k. Now $P=\left(P_{1}, \cdots, P_{1}\right)=\phi_{k}\left(M_{k}, P_{1}\right) \in \phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)=\mathcal{R}_{k}\left(L_{1}, \mathcal{P}\right)$ for
all $k=0,1, \cdots, n-1$. Hence $P \in \bigcap_{k=0}^{n-1} \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$. Therefore $\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset$ $\bigcap_{k=0}^{n-1} \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$ This completes the proof.

In view of (1) in Lemma 4.3, for each $k=0,1, \cdots, n-1$, we obtain an affine algebraic subset $\overline{\phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)}$ of $\mathbb{C}^{4 n(a+b)}$. In the rest of this paper we denote it by $\tilde{\mathcal{V}}_{k}$ for simplicity, that is, $\tilde{\mathcal{V}}_{k}=\overline{\phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)}=$ $\overline{R_{k}(\tilde{L}, \tilde{\mathcal{P}})}, 0 \leq k \leq n-1$ Then we have the following theorem.

ThEOREM 4.4. (1) $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})=\bigcup_{k=0}^{n-1} \tilde{\mathcal{V}}_{k}$
(2) $\overline{\phi_{0}\left(\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)\right)} \subset \mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \tilde{\mathcal{V}}_{k}$

Proof. (1) By Lemma 43 , we obtam that $\mathcal{R}_{k}\left(\tilde{I}_{,}, \tilde{\mathcal{P}}\right)=\phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right) \subset$ $\tilde{\mathcal{V}}_{k}$ and

$$
\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})=\bigcup_{k=0}^{n-1} \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcup_{k=0}^{n-1} \tilde{\mathcal{V}}_{k}
$$

Note that $\mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}}) \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ and $\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ is an affine algebraic subset of $\mathbb{C}^{4 n(a+b)}$. Since \tilde{V}_{k} is the smallest algebrace subset of $\mathbb{C}^{4 n(a+b)}$ containing $\phi_{k}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)=\mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}})$, we have that $\tilde{\mathcal{V}}_{k} \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$ for all $k=0,1, \cdots, n-1$. Therefore $\bigcup_{k=0}^{n-1} \tilde{\mathcal{V}}_{k} \subset \mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})$.
(2) By (3) of Lemma 4.3,

$$
\overline{\phi_{0}\left(\mathcal{R}\left(K_{2}, \mathcal{P}_{*}\right)\right)} \subset \mathcal{F}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n \cdots 1} \mathcal{R}_{k}(\tilde{L}, \tilde{\mathcal{P}}) \subset \bigcap_{k=0}^{n-1} \tilde{\mathcal{V}}_{k}
$$

This completes the proof.
Corollary 4.5. (1)

$$
\operatorname{dim}\left(\overline{\phi_{0}\left(\mathcal{R}\left(K_{2}, \overline{\mathcal{P}}_{*}\right)\right)}\right) \leq \operatorname{dim}(\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})) \leq \operatorname{dim}(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}))
$$

$$
\begin{align*}
\operatorname{dim}(\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})) & \leq \operatorname{dim}(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})) \leq \operatorname{dim}\left(\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)\right) \tag{2}\\
& \leq \operatorname{dim}\left(\mathcal{R}\left(L_{1}, \mathcal{P}\right)\right)
\end{align*}
$$

Proof. (1) follows from Theorem 4.2 and Theorem 4.4.
(2) Since $\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right) \subset \mathcal{R}\left(L_{1}, \mathcal{P}\right), \operatorname{dim}\left(\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)\right) \leq \operatorname{dim}\left(\mathcal{R}\left(L_{1}, \mathcal{P}\right)\right)$. By Theorem 4.2, $\operatorname{dim}(\mathcal{F}(\tilde{L}, \tilde{\mathcal{P}})) \leq \operatorname{dim}(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}}))$ and, by Theorem 4.4, $\operatorname{dim}(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})) \leq \max \left\{\operatorname{dim}\left(\tilde{\mathcal{V}}_{0}\right), \operatorname{dim}\left(\tilde{\mathcal{V}}_{1}\right), \cdots, \operatorname{dim}\left(\tilde{\mathcal{V}}_{n-1}\right)\right\}$. Since $\phi_{k}:$ $\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right) \rightarrow \tilde{\mathcal{V}}_{k}$ is a dominating map, $\operatorname{dim}\left(\tilde{\mathcal{V}}_{k}\right) \leq \operatorname{dim}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right.$) for each $k=0,1, \cdots, n-1$. By (3) of Proposition 32, $\operatorname{dim}\left(\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)\right)=$ $\operatorname{dim}\left(\mathcal{V}_{k}\left(L_{1}, \mathcal{P}\right)\right)$ for all $k=1, \cdots, n-1$. Hence $\operatorname{dim}\left(\tilde{\mathcal{V}}_{k}\right) \leq \operatorname{dim}\left(\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)\right)$ for all $k=0,1, \cdots, n-1$. Therefore $\operatorname{dim}(\mathcal{R}(\tilde{L}, \tilde{\mathcal{P}})) \leq \operatorname{dim}\left(\mathcal{V}_{0}\left(L_{1}, \mathcal{P}\right)\right)$. This completes the proof.

REFERENCES

[1] E. J Brody, The topological classlfication of the lens spaces, Ann Math 71(1960), 163-176
[2] G Burde, $\mathrm{SU}(2)$-representation spaces for two-bridge knot groups, Math Ann 173(1990), 103-119.
[3] G Burde and Z Zeschang, Knots, Walter de Gruyter, 1985
[4] M Culler and P B Shalen, Varieties of group representations and splittings of 3-manifolds, Ann of Math. 117(1983), 109-146
[5] H M. Hilden, M T. Lozano and J M Montesinos-Amilibia, On the chacter vanety of periodic knots and links, Math Proc Camb Phil Soc 129(2000), 477-490
[6] M Heusener and J Kroll, Deforming abelian SU(2)-representations of knot groups, Comment Math. Helv 73(1998), 480-498
[7] E Klassen, Representations of knot groups in SU(2), Trans Amer Math Soc 326(1991), 795-828
[8] S Y Lee, \mathbb{Z}_{n}-equivariant Goeritz matrices for perıodic links, Osaka J Math 40(2003), 393-408
[9] J Morgan and H Bass The Smith conjecture, Academic Press, Inc, 1984
[10] D Mumford, Algebraic Geometry I Complex Projective Varieties, Grundlehren der mathematischen Wissenschaften 221, Springer 1976.
[11] K Murasugı, On periodic knots, Comment Math Helv. 46(1971), 162-174
[12] K Murasugı, On symmetry of knots, Tsukuba J Math 4(1980), 331-347
[13] R Riley, Parabolic representations of knot groups, I, II, Proc London Math Soc. (3) 24(1972), 217-242, 31(1975), 61-72
[14] R Riley, Nonabelian representations of 2-bridge knot groups, Quart J. Math. Oxford (2), 35(1984), 191-208
[15] R Ruley, Algebra for Heckoid groups, Trans Amer Math Soc 334(1992), 389-409

Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail sangyoul@pusan.ac.kr

[^0]: Received December 18, 2003
 2000 Mathematics Subject Classification. 57 M 25
 Key words and phrases affine algebraic set, $\mathrm{SL}(2, \mathbb{C})$-representation variety, dimension, periodic knot, periodic link.

 This work was supported by grant No (2000-1-10100-010-1) from the Basic Research Program of the Korea Science \& Engineering Foundation

