ON TWO-DIMENSIONAL LANDSBERG SPACE OF A CUBIC FINSLER SPACE

Il-Yong Lee and Dong-Gum Jun

Abstract

In the present paper, we are to find the conditions that a cubic Finsler space is a Berwald space and a twodimensional cubic Finsier space is a Landsberg space It is shown that if a two-dimensional cubic Finsler space is a Landsberg space, then it is a Berwald space.

1. Introduction

In the Cartan connection $C \Gamma$, a Finsler space is called Landsberg space if the covariant derivative $C_{h 2\} \mid k}$ of the C-torsion tensor $C_{h \imath \jmath}=\dot{\partial}_{h} \partial_{2} \partial_{j}\left(L^{2} / 4\right)$ satisfies $C_{h \imath j \mid k}(x, y) y^{k}=0$ A Berwald space is characterized by $C_{h \imath \jmath \mid k}=0$. Berwald spaces are specially interesting and important because the connection is linear, and many examples of Berwald spaces have been known But any concrete example of a Landsberg space wheh is not a Berwald space is not known yet. If a Finsler space is a Landsberg space and satisfies some additional conditions, then it is merely a Berwald space [3] On the other hand, in a two-dimensional case, a general Finsler space is a Landsberg space if and only if its main scalar $I(x, y)$ satisfies $I_{12} y^{2}=0\{7]$.

The purpose of the persent paper is devoted to finding a twodimensional Landsberg space with a cubic metric $L^{3}=c_{1} \alpha^{2} \beta+c_{2} \beta^{3}$, where c_{1} and c_{2} are constants. First we find the condition that a

[^0]Finsler space with a cubic metric is a Berwald space (Theorem 3.2). Next we determine the difference vector and the main scalar of F^{2} with the metric above. Finally we derive the condition that a twodimensional Finsler space F^{2} with a cubic metric is a Landsberg space (Theorem 4.1), and we show that if F^{2} with the metric above is a Landsberg space, then it is a Berwald space (Theorem 4.2).

2. Preliminaries

Let $F^{n}=\left(M^{n}, L(\alpha, \beta)\right)$ be an n-dimensional Finsler space with an (α, β)-metric and $R^{n}=\left(M^{n}, \alpha\right)$ the associated Riemannian space, where $\alpha^{2}=a_{\imath \jmath}(x) y^{2} y^{\jmath}$ and $\beta=b_{\imath}(x) y^{2}$. In the following the Riemannian metric α is not supposed to be positvve-definte and we shall restrict our discussions to a domain of (x, y), where β does not vanish. The covariant differentiation in the Levl-Civita connection $\gamma_{j}{ }^{2}{ }_{k}(x)$ of R^{n} is denoted by the semi-colon. Let us list the symbols here for the late use:

$$
\begin{gathered}
2 r_{\imath \jmath}=b_{\imath, j}+b_{3,2}, \quad 2 s_{\imath \jmath}=b_{\imath, \jmath}-b_{\jmath, 2}, \quad r_{j}^{2}=a^{2 t} r_{t \jmath} \\
s_{\jmath}^{2}=a^{2 t} s_{t \jmath}, \quad r_{\imath}=b_{t} r_{i}^{t}, \quad s_{\imath}=b_{t} s_{\imath}^{t}, \quad b^{2}=a^{\imath t} b_{t}, \quad b^{2}=a^{t s} b_{t} b_{s} \\
L_{\alpha}=\partial L / \partial \alpha, \quad L_{\beta}=\partial L / \partial \beta, \quad L_{\alpha \alpha}=\partial L_{\alpha} / \partial \alpha, \quad \text { and } \quad y_{k}=a_{k t} y^{t}
\end{gathered}
$$

The Berwald connection $B \Gamma=\left(G_{j}{ }_{k}, G_{j}{ }_{j}\right)$ of F^{n} plays one of the leading roles in the present paper Denote by $B_{j}{ }^{2} k$ the difference tensor of $G_{j}{ }^{2}{ }_{k}$ from $\gamma_{j}{ }^{2} k$ as follows [8]. •

$$
\begin{equation*}
G_{\jmath}{ }^{2} k(x, y)=\gamma_{\jmath}{ }^{2} k(x)+B_{\jmath}{ }^{2} k(x, y) \tag{2.1}
\end{equation*}
$$

With the subscript 0 , transvection by y^{2}, we have

$$
\begin{equation*}
G_{\jmath}^{2}=\gamma_{0}^{2}{ }_{\jmath}+B_{\jmath}^{2}, \quad 2 G^{2}=\gamma_{0}^{2}{ }_{0}+2 B^{2} \tag{2.2}
\end{equation*}
$$

and then $B^{2}{ }_{3}=\dot{\partial}_{3} B^{2}, B_{3}{ }^{2} k=\dot{\partial}_{k} B^{2}{ }_{3}$, and $\dot{\partial}_{j}=\partial / \partial y^{j}$. On account of [8], the Berwald connection $B \Gamma$ of a Finsler space with
(α, β)-metric $L(\alpha, \beta)$ is given by (2.1) and (2.2), where $B_{j}{ }^{2}{ }_{k}$ are the components of a Finsler tensor of $(1,2)$-type which is determined by

$$
\begin{equation*}
L_{\alpha} B_{j}{ }^{k}{ }_{\mathfrak{\imath}} y^{3} y_{k}=\alpha L_{\beta}\left(b_{3, \mathfrak{\imath}}-B_{3}{ }^{k}{ }_{\imath} b_{k}\right) y^{3} \tag{2.3}
\end{equation*}
$$

According to [8], $B^{2}(x, y)$ is called the difference vector. If $\beta^{2} L_{\alpha}+$ $\alpha \gamma^{2} L_{\alpha \alpha} \neq 0$, where $\gamma^{2}=b^{2} \alpha^{2}-\beta^{2}$, then B^{2} is written as follows:

$$
\begin{equation*}
B^{i}=\frac{E}{\alpha} y^{2}+\frac{\alpha L_{\beta}}{L_{\alpha}} s_{0}-\frac{\alpha L_{\alpha \alpha}}{L_{\alpha}} C^{*}\left(\frac{1}{\alpha} y^{i}-\frac{\alpha}{\beta} b^{2}\right), \tag{2.4}
\end{equation*}
$$

where $E=\beta L_{\beta} C^{*} / L$ and

$$
C^{*}=\left\{\alpha \beta\left(r_{00} L_{\alpha}-2 \alpha s_{0} L_{\beta}\right)\right\} / 2\left(\beta^{2} L_{\alpha}+\alpha \gamma^{2} L_{\alpha \alpha}\right)
$$

Furthermore, by means of [4] we have

$$
\begin{equation*}
\alpha_{l^{2}}=-\frac{L_{\beta}}{L_{\alpha}} \beta_{\imath \imath} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{\mid 2} y^{2}=r_{00}-2 b_{r} B^{r}, \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
b^{2}{ }_{12} y^{2}=2\left(r_{0}+s_{0}\right), \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\gamma^{2}{ }_{\mid 2} y^{2}=2\left(r_{0}+s_{0}\right) \alpha^{2}-2\left(\frac{L_{\beta}}{L_{\alpha}} b^{2} \alpha+\beta\right)\left(r_{00}-2 b_{r} B^{r}\right) \tag{2.8}
\end{equation*}
$$

The following Lemmas have been shown as follows.
Lemma 2 1. ([2]) If $\alpha^{2} \equiv 0(\bmod \beta)$, that is, $a_{27}(x) y^{2} y^{3}$ contams $b_{2}(x) y^{2}$ as a factor, then the dimension n is equal to two and b^{2} vanishes. In this case we have $\delta=d_{\imath}(x) y^{2}$ satisfying $\alpha^{2}=\beta \delta$ and $d_{2} b^{2}=2$.

Lemma 2.2. ([4]) We consider the two-dimensional case.
(1) If $b^{2} \neq 0$, then there exist a sign $\varepsilon= \pm 1$ and $\delta=d_{2}(x) y^{2}$ such that $\alpha^{2}=\beta^{2} / b^{2}+\varepsilon \delta^{2}$ and $d_{2} b^{2}=0$.
(2) If $b^{2}=0$, then there exists $\delta=d_{2}(x) y^{2}$ such that $\alpha^{2}=\beta \delta$ and $d_{2} b^{2}=2$.
If there are two functions $f(x)$ and $g(x)$ satisfying $f \alpha^{2}+g \beta^{2}=0$, then $f=g=0$ is obvious, because $f \neq 0$ implies a contradition $\alpha^{2}=(-g / f) \beta^{2}$.

We shall state one more remark : Throughout the paper, we shall say "homogeneous polynomial(s) in (y^{2}) of degree r " as $h p(r)$ for brevity Thus $\gamma_{0}{ }^{2}$ o are $h p(2)$

3. Berwald spaces

In the present paper, we treat a condition that a Finsler space with a cubic metric is a Berwlad space (cf.[11]). Then the so-called cubuc metric on a differentiable manifold with the local coordinates x^{1} is defined by

$$
\begin{equation*}
L(x, y)=\left(a_{2 \jmath k}(x) y^{2} y^{3} y^{k}\right)^{1 / 3} \quad\left(y^{2}=\dot{x}^{2}\right) \tag{3.1}
\end{equation*}
$$

where $a_{2 j k}(x)$ are components of a symmetric tensor of (0,3)-type, depending on the position x alone, and a Finsler space with a cubic metric is called the cubuc Finsler space. The Finsler metric given by (3.1) was considered by Wegener (1935) [14] and by Kropina [6], and was also studied by M. Matsumoto [9], H. Shimada [13] and S. Numata [9] It is regarded as a direct generalization of Riemannian metric in a sense. We quote from the proposition as follows:

Proposition 31. ([9]) Let F^{n} be a Finsler space with a cubic metric $L(x, y)$.
(1) In case of $n>2$, if L is an (α, β)-metric where α is nondegenerate, then L^{3} can be written in the form $L^{3}=c_{1} \alpha^{2} \beta+$ $c_{2} \beta^{3}$ with two constants c_{1} and c_{2}.
(2) In case of $n=2, L$ is always written in a generalized ($-1 / 3$)Kropina type $L=\alpha^{2 / 3} \beta^{1 / 3}$, where α may be degenerate.

Now the cubic metric $L(\alpha, \beta)$ of Finsler space F^{n} is given by

$$
\begin{equation*}
L^{3}(\alpha, \beta)=c_{1} \alpha^{2} \beta+c_{2} \beta^{3} \tag{3.2}
\end{equation*}
$$

where c_{1} and c_{2} are constants. In this case we have

$$
\begin{gather*}
3 L^{2} L_{\alpha}=2 c_{1} \alpha \beta, \quad 3 L^{2} L_{\beta}=c_{1} \alpha^{2}+3 c_{2} \beta^{2} \\
9 L^{5} L_{\alpha \alpha}=2 c_{1} \beta^{2}\left(3 c_{2} \beta^{2}-c_{1} \alpha^{2}\right), \quad w=2 c_{1}\left(3 c_{2} \beta^{2}-c_{1} \alpha^{2}\right) \tag{33}\\
C^{*}=\frac{3 L^{3}\left\{c_{1} \beta r_{00}-\left(c_{1} \alpha^{2}+3 c_{2} \beta^{2}\right) s_{0}\right\}}{2 c_{1} \alpha \beta\left\{3\left(c_{2} b^{2}+c_{1}\right) \beta^{2}-c_{1} \gamma^{2}\right\}} .
\end{gather*}
$$

Substituting (3.3) into (2.3), we obtain

$$
\begin{equation*}
2 c_{1} \beta B_{3 k z} y^{3} y^{k}=\left(c_{1} \alpha^{2}+3 c_{2} \beta^{2}\right)\left(b_{3_{2}, 2}-B_{j k 2} b^{k}\right) y^{3} \tag{3.4}
\end{equation*}
$$

where $B_{j k i}=a_{k r} B_{3}{ }^{r}{ }_{2}$.
Suppose that the cubic Finsler space F^{n} is a Berwald space, that is, $B_{j}{ }^{2} k=B_{j}{ }^{2}{ }_{k}(x)$ and hence $b_{\imath ; j}$ do not depend on y^{2}. Thus (34) leads to

$$
\begin{align*}
& B_{00_{\imath}}=\left(c_{1} \alpha^{2}+3 c_{2} \beta^{2}\right) p_{\imath} \tag{3.5}\\
& \left(b_{3,2}-B_{\jmath k z} b^{k}\right) y^{3}=2 c_{\mathrm{I}} \beta p_{\imath} \tag{36}
\end{align*}
$$

where we put $p_{2}=p_{2}(x)$. Making use of (3.5), we have

$$
\begin{equation*}
B_{j k \imath}+B_{k j^{2}}=2 p_{\imath}\left(c_{1} a_{j k}+3 c_{2} b_{3} b_{k}\right) \tag{3.7}
\end{equation*}
$$

Since $B_{j k_{2}}$ is symmetric in $(\jmath, i),(3.7)$ gives rise to

$$
\begin{equation*}
B_{3 k_{\imath}}=c_{1}\left(p_{\imath} a_{3 k}+p_{\jmath} a_{k \imath}-p_{k} a_{2 \jmath}\right)+3 c_{2}\left(p_{\imath} b_{\jmath} b_{k}+p_{\jmath} b_{k} b_{\imath}-p_{k} b_{\imath} b_{\jmath}\right) . \tag{3.8}
\end{equation*}
$$

Therefore substitution of (3.8) in (3.6) yields

$$
\begin{equation*}
b_{3,2}=3 a p_{\imath} b_{3}+\left(3 a-2 c_{1}\right) p_{j} b_{\imath}-p_{b}\left(c_{1} a_{\imath \jmath}+3 c_{2} b_{2} b_{j}\right) \tag{3.9}
\end{equation*}
$$

where we put $a=c_{2} b^{2}+c_{1}$ and $p_{b}=p_{k} b^{k}$.

If $\alpha^{2} \equiv 0(\bmod \beta)$, then Lemma 2.1 shows that $n=2, \alpha^{2}=\beta \delta$, $\delta=d_{s}(x) y^{2}, b^{2}=0$ and $b^{2} d_{2}=2$. Thus (3.4) is of the form

$$
\begin{equation*}
2 c_{1} B_{00_{\imath}}=\left(c_{1} \delta+3 c_{2} \beta\right)\left(b_{\jmath, \imath}-B_{j k z} b^{k}\right) y^{3}, \tag{3.10}
\end{equation*}
$$

which leads to

$$
\begin{align*}
& B_{00_{2}}=\left(c_{1} \delta+3 c_{2} \beta\right) u_{12}, \tag{3.11}\\
& \left(b_{3,2}-B_{\jmath k} b^{k}\right) y^{3}=2 c_{1} u_{12}, \tag{3.12}
\end{align*}
$$

where $u_{1 \imath}=q_{\imath} u_{k} y^{k}$ are $h p(1)$ and $q_{\imath}=q_{\imath}(x)$. Then we have

$$
B_{\jmath k \imath}+B_{k \jmath \imath}=q_{\imath}\left(c_{1} d_{\jmath}+3 c_{2} b_{\jmath}\right) u_{k}+q_{\imath}\left(c_{1} d_{k}+3 c_{2} b_{k}\right) u_{\jmath},
$$

which lead to

$$
\begin{aligned}
2 B_{j k \imath}= & c_{1}\left\{q_{\imath}\left(d_{\jmath} u_{k}+d_{k} u_{\jmath}\right)+q_{\jmath}\left(d_{k} u_{\imath}+d_{\imath} u_{k}\right)-q_{k}\left(d_{\imath} u_{\jmath}+d_{\jmath} u_{2}\right)\right\} \\
& +3 c_{2}\left\{q_{\imath}\left(b_{3} u_{k}+b_{k} u_{\jmath}\right)+q_{\jmath}\left(b_{k} u_{2}+b_{\imath} u_{k}\right)-q_{k}\left(b_{\imath} u_{\jmath}+b_{\jmath} u_{\imath}\right)\right\} .
\end{aligned}
$$

Since the dimension is equal to two and $\left(b_{2}, d_{2}\right)$ are independent pairs, we can put $u_{\imath}=h b_{\imath}+k d_{\imath}$ and then $u_{\imath} b^{\imath}=2 k$. Then we have

$$
\begin{align*}
& B_{j k} b^{k} \tag{3.13}\\
& =c_{1}\left[q_{\imath}\left(h b_{3}+2 k d_{j}\right)+q_{3}\left(h b_{2}+2 k d_{2}\right)-\frac{1}{2} q_{b}\left\{h\left(b_{2} d_{3}+b_{3} d_{2}\right)+2 k d_{2} d_{3}\right\}\right] \\
& +3 c_{2}\left[k\left(q_{\imath} b_{3}+q_{3} b_{z}\right)-\frac{1}{2} q_{b}\left\{2 h b_{\imath} b_{3}+k\left(b_{2} d_{3}+b_{3} d_{\imath}\right)\right\}\right]
\end{align*}
$$

where $q_{b}=q_{k} b^{k}$. Substituting (3.13) into (3.12), we have (3.14)

$$
\begin{aligned}
b_{\imath, 3}= & c_{1}\left\{q_{2}\left(3 h b_{3}+4 k d_{3}\right)+q_{3}\left(h b_{\imath}+2 k d_{2}\right)\right\}+3 c_{2} k\left(q_{2} b_{3}+q_{3} b_{2}\right) \\
& -\frac{1}{2} q_{b}\left\{\left(c_{1} h+3 c_{2} k\right)\left(b_{2} d_{3}+b_{3} d_{\imath}\right)+2\left(3 c_{2} h b_{\imath} b_{3}+c_{1} k d_{\imath} d_{j}\right)\right\} .
\end{aligned}
$$

In case of $L^{3}=\alpha^{2} \beta$, substitution of $c_{1}=1$ and $c_{2}=0$ in (3.14) leads to

$$
\left.b_{2,3}=h\left(b_{2} q_{3}+3 b_{3} q_{2}\right)+2 k\left(d_{\imath} q_{3}+2 d_{3} q_{2}\right)-\frac{1}{2} q_{b}\left\{h\left(b_{2} d_{3}+b_{3} d_{2}\right)+2 k d_{\imath} d_{j}\right)\right\}
$$

Summarizing up all the above, we have the following

Theorem 3.2. A cubic Finsler space with $L=c_{1} \alpha^{2} \beta+c_{2} \beta^{3}$, where c_{1} and c_{2} are constants, is a Berwald space if and only if
(1) $\alpha^{2} \not \equiv 0(\bmod \beta): b_{2,3}$ is of the form (3.9), where $a=c_{2} b^{2}+c_{1}$ and $p_{b}=p_{k} b^{k}$.
(2) $\alpha^{2} \equiv 0(\bmod \beta): n=2, b^{2}=0$ and $b_{2,3}$ is of the form (3.14), where $\alpha^{2}=\beta \delta, \delta=d_{2}(x) y^{2}$ and (h, k) are functions of $\left(x^{2}\right)$.

4. Two-dimensional Landsberg spaces

Now we are to find the necessary and sufficient conditions that a two-dimensional Finsler space with a cubic metric (32) is a Landsberg space (cf.[10]).

Because the difference vector B^{2} and the main scalar εI^{2} play the leading roles, we have to determine the difference vector B^{2}. The difference vector B^{2} of the Finsler space has been first given by [12]. Here, by means of (2.4) and reference of (33), we have

$$
\begin{equation*}
2 B^{2}=\frac{2 A}{\Omega}\left\{y^{2}+\frac{\left(3 c_{2} \beta^{2}-c_{1} \alpha^{2}\right)}{2 c_{1} \beta} b^{2}\right\}+\frac{\left(c_{1} \alpha^{2}+3 c_{2} \beta^{2}\right)}{c_{1} \beta} s_{0}^{2}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=c_{1} \beta r_{00}-\left(c_{1} \alpha^{2}+3 c_{2} \beta^{2}\right) s_{0} \\
& \Omega=3 a \beta^{2}-c_{1} \gamma^{2}
\end{aligned}
$$

It follows from (41) that

$$
\begin{equation*}
r_{00}-2 b_{r} B^{r}=\frac{2 \beta A}{\Omega} \tag{4.2}
\end{equation*}
$$

Now we deal with the necessary and sufficient conditions that a two-dımensional Finsler space F^{2} with a cubic metric (3.2) is a Landsberg space. It is well known that in the two-dimensional case, a general Finsler space is a Landsberg space of and only if its main scalar $I_{\mid z} y^{2}=0$. Owing to [1], [5], the main scalar I of a twodimensional Finsler space F^{2} with a cubic metric (3.2) and (3.3) is obtained as follows.

$$
\begin{equation*}
\varepsilon I^{2}=\frac{c_{1} \gamma^{2} Z^{2}}{2 \Omega^{3}} \tag{4.3}
\end{equation*}
$$

where $Z=9 a \beta^{2}+c_{1} \gamma^{2}$.
Before discussing our problem, we have to check the assumption $\Omega \neq 0$ ans $c_{1} \neq 0$ in the two-dimensional case becsuse Ω appears in the denominators in (4.1), (4.2) and (4.3), and c_{1} also appears (4.1). Lemma 2.2 shows that $\Omega=0$ if and only if $c_{1}=0$ and $b^{2}=0, c_{1}=0$ and $c_{2}=0$, namely, the space is $L^{3}=c_{2} \beta^{3}$ and $b^{2}=0, L=0$. Consequentiy, $\Omega \neq 0, c_{1} c_{2} \neq 0$ and $b^{2} \neq 0$ are a proper assumption in the present section.

The covariant differentiation of (4.3) yields

$$
\begin{equation*}
\varepsilon I_{\mid 2}^{2}=\frac{c_{1} Z}{2 \Omega^{4}}\left(\Omega Z \gamma_{\mid 2}^{2}+2 \gamma^{2} \Omega Z_{\mid 2}-3 \gamma^{2} Z \Omega_{\left.\right|_{2}}\right) \tag{4.4}
\end{equation*}
$$

Transvecting (4.4) by y^{2}, we get
$\varepsilon I_{\mid 2}^{2} y^{2}=\frac{27 c_{1} b^{2} \beta\left(c_{1} \alpha^{2}+c_{2} \beta^{2}\right) Z}{2 \Omega^{4}}\left(a \beta \gamma_{\mid 2}^{2} y^{2}-2 a \gamma^{2} \beta_{\mid \imath} y^{2}-c_{2} \beta \gamma^{2} b^{2}{ }_{\mid \imath} y^{2}\right)$.
Consequently, the cubic Finsler space is a Landsberg space if and only if

$$
27 c_{1} b^{2} \beta\left(c_{1} \alpha^{2}+c_{2} \beta^{2}\right) Z\left(a \beta \gamma_{\mid 2}^{2} y^{2}-2 a \gamma^{2} \beta_{\mid 2} y^{2}-c_{2} \beta \gamma^{2} b_{1_{2}}^{2} y^{2}\right)=0
$$

which imply

$$
\left(c_{1} \alpha^{2}+c_{2} \beta^{2}\right) Z\left(a \beta \gamma_{\mid 2}^{2} y^{2}-2 a \gamma^{2} \beta_{\mid \imath} y^{2}-c_{2} \beta \gamma^{2} b_{\mid \imath}^{2} y^{2}\right)=0
$$

because of $c_{1} \neq 0$ and $b^{2} \neq 0$. Thus the following three cases should be considered to find the condition:
$\left(1^{\circ}\right) c_{1} \alpha^{2}+c_{2} \beta^{2}=0:$ Lemma 2.2 shows a contradiction immediately, that is, we obtain $c_{1} \neq 0$ and $c_{2} \neq 0$.
$\left(2^{\circ}\right) Z=9 a \beta^{2}+c_{1} \gamma^{2}=0$: This implies $c_{1}=0$ and $c_{2}=0$, which is a contradiction by Lemma 22 , that is, $Z \neq 0$.
(3) $a \beta \gamma^{2}{ }_{\mid 2} y^{2}-2 a \gamma^{2} \beta_{\mid 2} y^{2}-c_{2} \beta \gamma^{2} b^{2}{ }_{\mid 2} y^{2}=0$: By means of (2.6), (2.7) and (2.8) this equation is written as

$$
2 c_{1} \beta\left(r_{0}+s_{0}\right)-3 a b^{2}\left(r_{00}-2 b_{r} B^{r}\right)=0
$$

Substituting (4.2) in the above, we obtain

$$
\begin{align*}
\beta\left[c_{1}(3 a\right. & \left.\left.+c_{1}\right) \beta r_{0}+\left\{3\left(3 a-2 c_{1}\right) a+c_{1}^{2}\right\} \beta s_{0}-3 c_{1} a b^{2} r_{00}\right\} \tag{4.6}\\
& +c_{1} b^{2} \alpha^{2}\left\{\left(3 a-c_{1}\right) s_{0}-c_{1} r_{0}\right\}=0
\end{align*}
$$

First, this gives a condition $c_{1} b^{2} \alpha^{2}\left\{\left(3 a-c_{1}\right) s_{0}-c_{1} r_{0}\right\}=0(\bmod \beta)$. Since $b^{2} \neq 0$ may be supposed in this case, Lemma 2.1 shows $\alpha^{2} \neq 0$ $(\bmod \beta)$ and so there exists a function $g(x)$ satisfying

$$
\begin{equation*}
\left(3 a-c_{1}\right) s_{0}-c_{1} r_{0}=g \beta \tag{4.7}
\end{equation*}
$$

Then (46) is reduced to

$$
\left[c_{1}\left(3 a+c_{1}\right) r_{0}+\left\{3\left(3 a-2 c_{1}\right) a+c_{1}^{2}\right\} s_{0}\right] \beta+c_{1} b^{2}\left(g \alpha^{2}-3 a r_{00}\right)=0
$$

This implies that there exists a 1 -form $\mu=m_{\imath}(x) y^{2}$ such that

$$
\begin{equation*}
3 a r_{00}=g \alpha^{2}-\beta \mu \tag{4.8}
\end{equation*}
$$

and the above is reduced to

$$
c_{1}\left(3 a+c_{1}\right) r_{0}+\left\{3\left(3 a-2 c_{1}\right) a+c_{1}^{2}\right\} s_{0}+c_{1} b^{2} \mu=0
$$

Thus the above and (47) yield

$$
\begin{align*}
& s_{0}=\frac{\left(3 a+c_{1}\right) g \beta-c_{1} b^{2} \mu}{6 a\left(3 a-c_{1}\right)} \tag{4.9}\\
& r_{0}=-\frac{\left\{\left(3 a-c_{1}\right) g \beta+c_{1} b^{2} \mu\right\}}{6 c_{1} a} \tag{4.10}
\end{align*}
$$

Consequently, (4.8), (4.9) and (4.10) are attained from (4.6). Since (4.8) is written in the form

$$
6 a r_{2 j}=2 g a_{\imath \jmath}-\left(b_{\imath} m_{\jmath}+b_{j} m_{2}\right)
$$

the transvection by $b^{2} y^{3}$ yields

$$
\begin{equation*}
6 a r_{0}=2 g \beta-\left(b^{2} \mu+m_{b} \beta\right) \tag{4.11}
\end{equation*}
$$

where $m_{b}=m_{k} b^{k}$.
Comparing (4.11) with (4.10), we have

$$
c_{1} m_{b}=\left(3 a+c_{3}\right) g
$$

Thus we get the condition in the form

$$
\begin{align*}
& r_{00}=\frac{c_{1} m_{b}}{3 a\left(3 a+c_{1}\right)} \alpha^{2}-\frac{1}{3 a} \beta \mu \\
& s_{0}=\frac{c_{1}\left(m_{b} \beta-b^{2} \mu\right)}{6 a\left(3 a-c_{1}\right)}
\end{align*}
$$

Eliminating μ from (4.8) and (4.9), we have

$$
\begin{equation*}
r_{00}=\frac{c_{1} f}{3 a\left(3 a+c_{1}\right)} \alpha^{2}-\frac{f}{3 b^{2} a} \beta^{2}+\frac{2\left(3 a-c_{1}\right)}{c_{1} b^{2}} \beta s_{0} \tag{4.12}
\end{equation*}
$$

where $f(x)=m_{b}$.
Thus we have the following
Theorem 4.1. The necessary and sufficient condition for a twodimensional cubic Finsler space with $c_{1} c_{2} \neq 0$ and $b^{2} \neq 0$ to be a Landsberg space is that (4.12) is satisfied.

Now we shall prove the reduction theorem:
Theorem 4.2. Let F^{2} be a two-dimensional cubic Finsler space with $c_{1} c_{2} \neq 0$ and $b^{2} \neq 0$. If F^{2} is a Landsberg space, then F^{2} is a Berwald space.

Proof. The condition that (3.9) be a Berwald space may be rewritten in the form

$$
\begin{align*}
& \text { (1) } r_{\imath \jmath}=\left(3 a-c_{1}\right)\left(b_{\imath} p_{3}+b_{\jmath} p_{\imath}\right)-p_{b}\left(c_{1} a_{\imath \jmath}+3 c_{2} b_{\imath} b_{j}\right) \\
& \text { (2) } s_{\imath \jmath}=c_{1}\left(b_{\imath} p_{j}-b_{\jmath} p_{\imath}\right) \tag{4.13}
\end{align*}
$$

Now let F^{2} be a Landsberg space, that is, suppose that (4.12) holds. Then the system of linear equations

$$
b^{1} p_{1}+b^{2} p_{2}=-\frac{f}{3 a\left(3 a+c_{1}\right)}, \quad-b_{2} p_{1}+b_{1} p_{2}=\frac{s_{12}}{c_{1}}
$$

for (p_{1}, p_{2}), where f is the one in (4.12), determines uniqne solution (p_{1}, p_{2}) because of $c_{1} b^{2} \neq 0$. The above are written as

$$
f+3 a\left(3 a+c_{1}\right) p_{b}=0, \quad s_{\imath j}=c_{1}\left(b_{2} p_{j}-b_{3} p_{\imath}\right) .
$$

The latter is nothong but (2) of (4.13). Then we obtain $s_{0}=c_{1}\left(b^{2} \phi-\right.$ $\left.p_{b} \beta\right), \phi=p_{\imath}(x) y^{2}$, and (4.12) is now written in the form

$$
r_{00}=2\left(3 a-c_{1}\right) \beta \phi-p_{b}\left(c_{1} \alpha^{2}+3 c_{2} \beta^{2}\right),
$$

which is nothing but (1) of (4.13). Thus the proof is completed.

REFERENCES

[1] P L Antonelh, R S Ingarden and M Matsumoto, The theory of sprays and Finsler spaces with applacations an physics and brology, Kluwer, 1993
[2] S Bácsó and M Matsumoto, Projective changes between Finsler spaces with (α, β)-metric, Tensor, N. S 55 (1994), 252-257
[3] S Bácsó and M Matsumoto, Reductıon theorems of certaın Landsberg spaces to Berwald spaces, Publ Math, Debrecen, 48 (1996), 357-366
[4] M Hashiguchı, S Hōjō and M Matsumoto, Landsberg spaces of dimension two with (α, β)-metrac, Tensor, N S 57 (1996), 145-153.
[5] M Kitayama, M Azumia and M Matsumoto, On Finsler spaces with (α, β). metric Regularity, geodeszes and main scalars, J Hokkado Univ. of Educatron 46 (1995), 1-10
[6] V K Kropma, Proyective two-dimensıonal Finsler spaces with speczal metric, (Russian), Trudy Sem Vektor Tenzor Anal 11 (1961), 277--292
[7] M Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaisersha Press, Sakkawa, Ōtsu, Japan, 1986
[8] M. Matsumoto, The Berwald connection of a Finsler space with an (α, β). metric, Tensor, N S 50 (1991), 18-21
[9] M Matsımoto and S Numata, On Finsler space with a cubic metric, Tensor, N S. 56 (1995), 142-148
[10] H S Park and ! Y Lee, On the Landsberg spaces of dimension two with a special (α, β)-metric, J Korean Math Soc 37 (2000), no 1, 73-84
[11] H S Park, I Y Lee and C K Park, Finsler space with the general approxmate Matsumoto merac, Indian J. pure and appl Math 34 (2003), no. 1, 59-77
[12] C Shibata, H Shimada, M Azuma and H Yasuda, On Finsler spaces with Randers' mertuc, Tensor, N S , 31 (1977), 219-226
[13] H Shimada, On Finsler spaces with the metric $L^{m}=a_{1_{1} 1_{2}} \quad q_{m} y^{2_{1}} y^{2_{2}} \cdots y^{\imath_{m}}$, Tensor, N S 33 (1979), 365-372.
[14] J. M Wegener, Untersuchungen der zwer-unaं drezdimensional Finslerschen Ra ume mat der Grundform $L=\sqrt[3]{a_{2 k l} x^{\prime i} x^{t} x^{\prime l}}$, Konnnkl Akad Wetensch, Amsterdem, Proc 38 (1935), 949-955

Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail: iylee@star.ks.ac.kr
Department of Mathematics
SoonChunHyang University
Asan 337-830, Korea
E-mail: jundk@sch.ac.kr

[^0]: Received November 6, 2003
 2000 Mathematics Subject Classification 53B40
 Key words and phrases. Berwald space, Cartan connection, difference vector, Finsler space, Landsberg space, man scalar

