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TWO CLASSES OF THE
GENERALIZED RANDERS METRIC

EuN-SEO CHOI AND BYUunG-Doo Kim

ABSTRACT We deal with two metrics of Randers type, which
are characterized by the solution of certain diffcrential equa-
tions respectively Furthermore, we will give the condition for
a Finsler space with such a metric to be a locally Minkowsk:
space or a conformally flat space, respectively

1. Introduction

On a differentiable manifold M we shall consider a Finsler metric
L{a,8) which is a positively homogeneous function of degree one
of a Riemannian metric « and 1-form 8 = b,(z)y*. The structure
(M, L{a, 8)) is called a Finsler space with (o, 8)-metric. Kikuchi [2]
has given the condition that a Randers space with L = o + 3 be
a locally Minkowski space Recently a Finsler space with a special
(@, 8)-metric of Randers type has been studied by some authors ([5],
6]).

The purpose of the present paper is to consider two special («, 3)-
metrics which are given by the solution of certain differential equa-
tions, and to give the condition that a Finsler space with the metric
1s a locally Minkowski space. Moreover, m the last section we study
the conformally flatness of Finsler space with such a metric.
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2. Berwald connection and locally Minkowski space

For the Berwald connection Bl = (G, (z,¥),Gi(z,y),0), the A-
covariant derivative of a vector X*(z,y) is given by

X', =6,X + G X",

where §, = 09, — G;&, 8, = 8/8z7 and 5, = 3/0y". Moreover the
h-curvature tensor H? of BT is given by

(2.1) Hy' sk = Uy (0xGa*y + Gr™G),

where the symbol U, {---} denotes the interchange of 7, £ and
subtraction.

A Finsler space 1s called a Berweld space, if the connection coeffi-
cient G} of BI is a function of position #* alone in any coordinate
system. If a Finsler space has a covering of coordinate neighborhoods
in which g,; does not depend on z, then it is called locally Minkowsk:
({1],[2]). It is well known that a Finsler space 15 a locally Minkowski,
if and only if it is a Berwald space and h-curvature tensor of BT
vanishes.

Let F* = (M™, L) be an n-dimensional Finsler space with a fun-
damental metric function L(e, 3). Throughout the paper our discus-
sion 1s restricted to such a domain of M™ that the 8 does not vanish.
Now we consider the function F(e, ) of two variables, and denote
by the subscripts «, 8 of F' the partial derivatives of F' with respect
to «, B respectively, that 1s,

Fo = 8F/Bc, Fg = OF /3B, Fag = 0*F/0adp, -

If we put ' = L2/2, then the Cartan tensor C\,; = Bkg13/2 is
given by

(2.2) 20,k = (Fop/a)(Kyypk + Kkp, + Kby} + Fgpp D203 Pk,

where Kﬁ] =gy — y’tyj/azr Y = az_';y] and P = bz - (ﬁ/a2)yt~
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A Fumsler space is called C-reducible if the Cartan tensor can be
written 1n the form:

C‘LJ]C = (h‘ijok + hjkcg + thj)/(n + 1), n >3

where h,, = g,,—L1,,l, = 3,L. According to [1], a C-reducible Finsler
space induced to a Randers space and Kropina space.

Let v,*x(x) be Christoffel symbols of the Riemannian metric o
and G," be connection coefficients of BT of L(a, 3). To find the
Berwald connection BT, we put 2G*(= G*g) = oo + 28", where the
subscript 0 means a contraction by y*. Then we have

G'; =y + By,
G,'k = 'k + B,

where B, = 3332 and B,", = 3JB’k. Furthermore, the previous
paper [4] gives the equation:

(23) LQBJk%nyk = aLﬂ(b).z - Bjkzbk)yja

where (,) denotes the covariant differentiation with respect to the
Riemannian connection v, x{z). It 13 obvious that a Finsler space
with L(a, ) is a Berwald space if and only if BJ'C , given by (2.3} is
a function of z alone.

We denote by Rp,,;r a Riemannian curvature tensor with respect
to the v,*; Then h-curvature tensor H? of (2.1) is given by (3]

(2.4)  Hp'yr = Ry"yrx + Uy (Br'yx — Bo 10:Br'y + B Br'i).

From (2 4), consequently we have

THEOREM 2.1. ([3)) A F* = (M™, L(a, 8)) is a locally Minkowski
if and only ifBJk% is a function of x alone and R),",;, of the Riemann-
1an metric o is written as:

(2.5) Ry = —Uury(Br'y e + Ba" 3 Br'i)
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If we put Po = B,* 37y, and Qo = (b, — B;*:bx)y? in (2.3),
we have

(26) LaROO = aLﬁQzO-

If (2.6) gives P,gop = Q,0 = 0 necessarily, then from (2.3) we have
B,k, = 0 and b,, = 0, and (2.5) shows Rp*;x = 0. On the other
hand, if a® = 0 (modf), that is, a,,(z)y'y? contains b,(z)y* as a
factor, then the dimension is equal o two and % vanishes. Hence in
this paper, we assume that 2 # 0 and n > 3.

3. Two classes of generalized Randers metric

Let the function F(«, 8) be a positively homogeneous of degree 2
in o and 3. From the homogeneity of F' we obtain

(3.1) CYFQQQ"'ﬁFQQﬁ - O, aFaﬁa+6IPaﬂB = O) aFﬁﬁa+ﬁFﬁﬁﬁ = 0’
which are rewritten in the form
aF0‘102€1 + ﬁFolagﬁ = 0) 01,03 € {aaﬁ}

If Fggg =0, from (3.1) we have Fggy = Fupa = Faaa = 0. Thus
we can see that Fggg = 0 18 equivalent to Fy, 5,0, = 0, 01,02,03 €
{a, B}

Let us find the solution of Fggg = 0. Integrating this equation by
B we get F = fi(a)f? + f2(a)B + f3(a), where f,(a), i € {1,2,3}
1s differentiable function. On the other side, paying attention to the
homogeneity of F we find L? = c;0? + 2cpa3 + ¢34? by virtue of
F = L?/2. This is the same metric as [5]. If ¢; = ¢; = ¢35 = 1, then
L =a+ 83, that is, L is a Randers metric. From (2.2) we can find a
simple form of C,,x. Therefore we have

PROPOSITION 3.1. Let F(a, 3) be a positively homogeneous func-
tion of degree 2 in o and 3. Then the followings are equivalent to
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each other:

b) F010203 - O) 01,02,03 € {C!, ﬂ})
C) L2 = 01(12 -+ 2C2aﬂ + C3ﬁ2, c1,C2,C3 7é 0, 1.

It is natural to generalize this result in the following way. First,
let us consider a differential equation Fgy 5 =0, where a function F

m+41
is a positively homogeneous of degree m in « and §. Integrating this

equation by 8 continuously and paying attention to the homogeneity
of F, we get

(3.2) Fl(a,f) = cod™ +c1@™ B+ + emfF =D cra™ F85,
k=0

where c¢g, ¢y, . . ., ¢y are constants.

By the similar way in (3.1), for o1,02,...,0m € {¢, 8} if we as-
sume that a function F is a positively homogencous of degree m in «
and 3, then a function Fy,,, o, is positively homogeneous of degree
0 in o and 8. Thus we have

(3*3) aFOl(Jz Tma T 6F<710'2 omfB = 0, 01,02,...,0m € {O"ﬁ}-

Therefore, from (3.3) if Fyy 4 =0, then we obtain
e

m+1

(34) F0102 T4t - Or T1,02y.+.,0m41 € {aa ﬂ}

It is noted that the solution of the equation (3 4) is given by (3.2). In
a Finsler space, since an (e, 8)-metric L(c, ) 18 a positively homo-
geneous of degree 1 in o and /3, it is possible to give an («, 3)-metric
by putting F = L™. Summarizing up the above, we have
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THEOREM 3.1. Let F(a, ) be a positively homogeneous function
of degree m in a and 8. The followings are equivalent to each other:

G,) Fd]_dz Om+1 — 0: T1,02y-+ «y Om+1 € {a)ﬁ}a
(35) - m—k gk \1/m T
b)L(a,ﬁ):(cha grYy/™ F=L™",
k=0
where ¢y, ¢;, - , ¢y are constants.

REMARK. Theorem 3.1 means that a general solution of the dif-
ferential equation F, ,, .., =0, 01,02,...,0m41 € {&, 8}, does
not depend on the choice of the subscript variables a and 3.

Secondly, let us find another class of the generalized Randers met-
ric type. We consider F{«, ), which is a positively homogeneous
function of degree m in o and 3. Paying attention to the homogene-
ity of F', we see that the solution of Fog = 0 is F = cia™ + c28™,
where ¢;, ¢, are constants. Thus we have

THEOREM 3.2. Let F(a, 8} be a positively homogeneous function
of degree m in a and 3. Then the followings are equivalent to each
other:

a) Fap =0,

(36) b) L(Ol,ﬁ) — (C]_Otm +Czﬁm)1/nfz, F = Lm,

where ¢, ¢y are constants.

4. Berwald space and locally Minkowski space

We first deal with a Finsler space with the metric (3.5). Let
F™ = (M™, L) be an n-dimensional Finsler space (> 3} whose metric
function is given by (3.5) Then the partial derivatives with respect
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to a and 3 of a metric (3.5) are given by

mL™ 1Ly = mega™ b + (m— 1ea™ 28+ -+ + 1™

1

m—1

= Z: (m — k)epa™ 170 5%,

k=0

mL™ 'Lg = c;0™ 1 4 2c00™ 2/ 4+ - 4 me, 71

m
= § :kaam—kﬁk—1‘

k=1

From these equations and (2.6), we obtam

(41)

where

a{AP,gg — BQyo) + CPyo — DQyo =0,

s
_ _ m
A = Z?rcm-zra’zr 2677'0 21”, S S ?
=0
- m — 1
B = ;(m — 2r)Cmoar T AT s = 5
: m —1
r=0
- m—1
D= - 9y — g2 grm=2(rtl) o o Ly
Z(m r—1)emegr—1x e § = 5

r=0

where s is a positive integer.
Assume that the Finsler space is a Berwald space, that is, BJk,, is
a function of position only. Since « is irrational in y*, from (4.1) we

get

(4.2)

AR{)O_BQtO:Oa
C Pyo — D Q= 0.
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If we consider a determinant w:

_|A -B
~lc -p|

then w # 0. Thus, from (4.2) we have P,oy = 0 and Q,0 = 0, from
which we conclude Bf, =0and b,, =0.

Conversely if b;, = 0, then the space with an («, 8)-metric is a
Berwald space. Thus we have

THEOREM 4.1. Let F™ be an n-dimensional Finsler space (n > 3)
with the metric (3.5). It is a Berwald space if and only ifb,, = 0,
and then BT = (v;*,,v*.,0).

In the case B,*; =0, from (2 5) we obtain Rp*,x = 0. Summariz-
ing up the above results and using Theorem 2.1, we have

THEOREM 4.2. Let F™ be an n-dimensional Finsler space (n > 3)
with the metric (3.5). It is a locally Minkowski space if and only if
Rhljk == 0 and bj’g = 0-

REMARK. If m =1 in (3.5), then L = coax + ¢1 8 (Randers type).
In this case, the equation (4.1) yields A = 0, B = ¢;, C = ¢y and
D = 0, which imply ¢gPgp~c¢10(0 = 0. Since a is irrational in y, we
have P,o0 = Q.0 = 0. It is noted that the space (M™, L = cpae +¢13)
is locally Minkowski if and only if Ry*,x = 0 and b;, = 0. This is
the same result as Theorem 2.2 of [2].

Next, we consider the metric (3.6). If m = 2, we get L? = cia® +
c23%, which means-that L(a, 8) is a Riemannian metric. Hence we
shall treat the non-Riemannian space afterward and assume that
m # 2. The partial derivatives with respect to a and £ of a metric
(3.6) are given by

(4.3) Lo =(a/L)™ ', Lg = (B/L)™".
Substituting {4.3) into (2.6), we obtain

(4.4) a™ P = o™ 1Qu0.
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Now we shall divide our consideration in two cases of which m is
even or odd.

(I) Case of m = 2h+2, (h is a positive integer) When m = 2h +2,
we have from (4.4)

(4’5) athoo = ¢B2h+1Qt0~

Since o # 0 (mod ), from (4.5) we have B,"y =0 and b, , = 0.

(II) Case of m = 2h — 1, (h is a positive integer) From (2.6) and
(4.3), we find

(4.6) o®Pyg = ahQu, ¥ = 2B 2

The terms a?* P,gp and Q.o of (4.6) are rational in 3*, while « is
irrational in 3*. Thus we have, from (4.6), Pgo = Q.0 = 0, which
implies B,*, = 0 and b,, = 0. Summarizing case (I) and case (II),
we have

THEOREM 4.3. Let F™ be an n-dimensional Finsler space (n > 3)
with the metric (3.6). It is a locally Minkowski space if and only if
Rh‘jk =0 and b_?;i =10

5. Conformal flatness

Let F* = (M™ L) and F" = (M",L) be two Finsler spaces on
the same underlying manifold M™. If we have a function o(z) in
each coordinate neighborhoods of M” such that L(x,y) = e’ L(z, ),
then F™ is called conformal to F™ and the change L — L of metric
is called conformeal. For o(z), a conformal change ([1]) of (a, B)-
metric is expressed as (a, 8) — (&, 3), where & = e’ and 8 = e 8.
A Finsler space is called conformally flat, if it is conformal to a
locally Minkowski space. In the previous papers [2], [3] and [5], the
authors dealt with conformally flat spaces. For an {«, 3)-metric, a
conformally invariant symmetric linear connection M,"; is defined
by (1]

My =7, + 8\ My + 6LM, — M'ayg,
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where M, = {b, £b* ¥ xb,/(n—1)}/b? and M* = a*? M,. We denote

by V and M,* sk the covariant differentiation with respect to M. jik
and the curvature tensor of this connection respectively. A Finsler
space with an {a, 3)-metric is called flat-paraliel, if Ry'jr = 0 and
b.,,j = (.

THEOREM 5.1. ({3]) A Finsler space with («, 3)-metric is confor-
mal to a flat-paralle] Minkowski space if and only if the condition

(5.1) Mty =0,V,M, = V.M,,V,b, = —b,M,

is satisfied.

In an («, 8)-metric, a conformal change preserves the type of met-
ric invariant. From Theorem 4.2 (resp. Theorem 4.3), we can see
that F”* with the metric (3.5) (resp (3.6)) is flat-parallel. Thus
these conditions are also applicable to the metric (3.5)(resp. (3 6)).
Consequently, from Theorem 4.2, Theorem 4.3 and Theorem 5.1 we
have

THEOREM 5.2. Let F™ be an n-dimensional Finsler space (n > 3)
with the metric (3.5) (resp. (3.6)) It is conformally flat if and only
if the condition (5.1) is satisfied.
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