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TWO CLASSES OF THE
GENERALIZED RANDERS METRIC

Eun-Seo Choi and Byung-Doo Kim

Abstract We deal with two metrics of Randers type, which 
are characterized by the solution of certain differential equa­
tions respectively Furthermore, we will give the condition for 
a Fmsler space with such a metric to be a locally Minkowski 
space or a conformally flat space, respectively

1. Introduction

On a differentiable manifold M we shall consider a Finsler metric 
L(a, /3) which is a positively homogeneous function of degree one 
of a Riemannian metric a and 1-form 0 = 寸. The structure 
(M, Z(a/3)) is called a Finsler space with (a: ^)-metric. Kikuchi [2] 
has given the condition that a Randers space with £ = a + 0 be 
a locally Minkowski space Recently a Finsler space with a special 
(a, /3)-metric of Randers type has been studied by some authors ([5], 
[6]).

The purpose of the present paper is to consider two special (% /3)- 
metrics which are given by the solution of certain differential equa­
tions, and to give the condition that a Finsler space with the metric 
is a locally Minkowski space. Moreover, m the last section we study 
the conformally flatness of Finsler space with such a metric.
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2. Berwald connection and locally Minkowski space

For 난le Berwald connection BT = (G盘g),0), 난le h- 
covariant derivative of a vector X",g) is given by

X、G技

where 63 = d3 — G；初)d3 = d/dx^ and dr = d/dyr. Moreover the 
Zi-curvature tensor H2 of BY is given by

(2.1) 版项; = 〃(仆)( 義 G爲 +G"j 시?Q,

where the symbol 〃(比){…} denotes the interchange of k and 
subtraction.

A Finsler space is called a Berwald space, if the connection coeffi­
cient GjZ of BY is a function of position x% alone in any coordinate 
system. If a Finsler space has a covering of coordinate neighborhoods 
in which g曷 does not depend on then it is called locally Mznkowskt 
(卩丄⑵).It is well known that a Finsler space is a locally Minkowski, 
if and only if it is a Berwald space and /z-curvature tensor of BP 
vanishes.

Let Fn = (Mn, L) be an n-dimensional Finsler space with a fun­
damental metric function L(a, (3). Throughout the paper our discus­
sion is restricted to such a domain of Mn that the 0 does not vanish. 
Now we consider the function 0) of two variables, and denote 
by the subscripts of F the partial derivatives of F with respect 
to a, /? respectively, that is,

Fa = dF/da. = dF/d/3, Faf3 = d2F/dad(3, - •.

If we put F = £2/2, then the Cartan tensor 血=&四叫/2 is 
given by

(2.2) 2C”k = + Kjkpz + Kklp3) + 电华球■的，

where 孩丿=al3 -切幼/a% 切=a^y3 and R =饥一(月/。8)仇.
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A Fmsler space is called C-reducible if the Cartan tensor can be 
written m the form:

为=(h貿Ck + + hki，C3)/(n 4-1), n 2 3

where hl3 = g，、一나，卩魅 = dzL. According to [1], a C-reducible Finsler 
space induced to a Randers space and Kropina space.

Let be Christo任el symbols of the Riemannian metric a
and be connection coefficients of BP of L(a^ /?). To find the 
Berwald connection we put 2G"(= G%) — 7oxo + 2BT, where the 
subscript 0 means a contraction by yz. Then we have

G3Zk = 77\ + 虹

where Bl3 = and B；Furthermore, the previous 
paper [4] gives the equation:

(2.3) LaBj%y3yk = od비*。시，- 財*、)?已

where (,) denotes the covariant differentiation with respect to the 
Riemannian connection It is obvious that a Finsler space
with L(% j3) is a Berwald space if and only if B3k3 given by (2.3) is 
a function of x alone.

We denote by 氏九电芯 a Riemannian curvature tensor with respect 
to the ih，Then /z-curvature tensor H2 of (2.1) is given by [3]

(2.4) Uh jk = Rh jk + 니(仆)(햐"仆 — kdrBh 3 + Bh「jB，「k)・

From (2 4), consequently we have

Theorem 2.1. ([3]) A Fn = (Afn, L(cn, /?)) is a locally Minkowski 
if and only if B3 气 is a function of x alone and Rh3k of the Riemann- 
ian metric a is written as:

(2.5) Rh 3k = T(jk；)(Bh\,k + Bh
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If we put Ro。= B3kzy3yk and Ql0 二二(垢-的、風、)寸 in (2.3), 
we have

(2.6) LqP认—

If (2.6) gives Roo = 0。= 0 necessarily, then from (2.3) we have 
B3kz = 0 and b”，= 0, and (2.5) 아lows Rh jk = 0. On the other 
hand, if ct2 = 0 (mod/3\ that is, al3(x)yzy3 contains 饥(⑦)矿 as a 
factor, then the dimension is equal io two and 62 vanishes. Hence in 
this paper, we assume that 62 7^ 0 and n > 3.

3. Two classes of generalized Handers metric

Let the function 歹(a/3) be a positively homogeneous of degree 2 
in a and (3. From the homogeneity of F we obtain

(3.1) = 0,(迁物沁+(3虬邓0 = 0, aF邸a+(3F©朋—0,

which are rewritten in the form

+ 泪、"=0,€ {a”8}

If F紬3 = 0, from (3.1) we have = Fa/3a = Faaa = 0. Thus 
we can see that 碎仞3 = 0 is equivalent to Faia2a3 = 0, ai, (7*2,<^3 C 
{M}

Let us find the solution of F伊邛=0. Integrating this equation by 
6 we get F = h(a)伊 + f2(a)/3 + /3(«), where A (a), i G (1,2,3} 
is differentiable function. On the other side, paying attention to the 
homogeneity of F we find L2 = c±a2 + Zcg波 + 3伊 by virtue of 
F = £2/2. This is 난le same metric as [5]. If 力 = ⑴ == L then 
L = a + (3^ that is, L is a Randers metric. From (2.2) we can find a 
simple form of ("卩砂 Therefore we have

Proposition 3.1. Let F(a, (3) be a positively homogeneous func­
tion of degree 2 in a and (3. Then the followings are equivalent to
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each other:

q) Cijk = + Kjk,
b) Enbg = 0, bl, b2, <T3 e {a, 8},
c) L2 = Cid；2 + 2c?이3 + c3(32, ci, c2,c3 尹 0,1.

It is natural to generalize this result in the following way. First, 
let us consider a differential equation F邸 — 0? where a function F

m+l
is a positively homogeneous of degree m in a and (3, Integrating this 
equation by /3 continuously and paying attention to the homogeneity 
of F, we get

m
(3.2) F(a, 0、) = coam + C1am~l/3 + • • • + cm/3k = f 气

k=0

where , cm are constants.
By the similar way m (3.1), for 九，•…,(7m 6 (a, /3} if we as­

sume that a function F is a positively homogeneous of degree m in a 
and /?, then a function Fai(72 am is positively homogeneous of degree 
0 in a and (3. Thus we have

(3.3) crma + 고6m。= 0? “1,(丁2)• • • j 6m € {a, 丿8}・

Therefore, from (3.3) if = 0, then we obtain
J、一‘

(3.4) Fbig a“+i =°，C「2, • • • ? ^m+l € /3}・

It is noted that the solution of the equation (3 4) is given by (3.2). In 
a Finsler space, since an (or, ^)-metric L(a, is a positively homo­
geneous of degree 1 in a and /?, it is possible to give an (or,丿幻-metric 
by putting F = Lm. Summarizing up the above, we have
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Theorem 3.1. Let F(a,们 be a positively homogeneous function 
of degree m in a and 0. The followings are equivalent to each other:

Q)E°W2 ct m-|-i = 0,•…)。牝，+1 € {叫(3},
(3 5) m
E •丿 6) L(a,们=(£；ckam~k/3k )四，F = Lm, 

fc=0

where co, Ci, • — , cm are constants.

Remark. Theorem 3.1 means that a general solution of the dif- 
花rential equation Faia2 am+1 = 0, ai,o-2, - •. ,am+i € {a〃3}, does 
not depend on the choice of the subscript variables a and /?.

Secondly, let us find another class of the generalized Randers met­
ric type. We consider F(% &、),which is a positively homogeneous 
function of degree m in a and /3. Paying attention to the homogene­
ity of F, we see that the solution of Fap = 0 is F = ciam + %卵七 

whe호e ci, 勿 are constants. Thus we have

Theorem 3.2. Let F(m, /?) be a positively homogeneous function 
of degree m in a and [3. Then the followings are equivalent to each 
other:

(3 6) 力 Fa/3 = 0,

'■ ' b)乙(a,/3) = (CiQm+c/m)l/m, F =时,

where ci,阪 are constants.

4. Berwald space and locally Minkowski space

We first deal with a Finsler space with the metric (3.5). Let 
Fn = (Mn, L) be an n-dimensional Finsler space (> 3) whose metric 
function is given by (3.5) Then the partial derivatives with respect 
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to a and /3 of a metric (3.5) are given by

mLrrb~1La = mcoa71^1 + (m ~ l)ciam~2/3 +-----F
m —1

=謨m-gm*铲,
k=0

mL^Lp = cid + 2c2am-2(3 + • . • + g” 伊宀

m
= ^kckam-k(3k-1.

Zc=l 一

From these equations and (2.6), we obtain

(4 1) a(4jRoo — B0O)+ CPtoo — DQiq = 0, 

where

w4 = E 術牝一2rQ眼-纽m-2r, s < ^- 
r=0

B = - 2r)cm_2rO!2rZ5m_2r_1, s =
尸=〔)

c = 立(2r + 1)&12—户烈一2-1, s = 끄二

尸=0
D = '方、伉 - 次 - 珈冷一2一心冷+1)舟—2(中), $ < 끄二 

„ 厶
厂=0

where s is a positive integer.
Assume that the Finsler space is a Berwald space, that is, B3kz is 

a function of position only. Since a is irrational in y' from (4.1) we 
get

,) 4 Roo — B Qzq = 0,
C PiQQ — D QiQ = 0.
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If we consider a determinant 3：

A -B 
3= c -D 5

then 3 尹 0. Thus, from (4.2) we have P^q = 0 and Qzq = 0, from 
which we conclude B3kz = 0 and b”，= 0.

Conversely if bj^ = 0, then the space with an (a, ^)-metric is a 
Berwald space. Thus we have

Theorem 4.1. Let Fn be an n-dimensional Finsler space (n > 3) 
with the metric (3.5). It is a Berwald space if and only if b負 = 0, 
and then BT =(为气点o%,0).

In the case B3ki = 0, from (2 5) we obtain Rhjk = 0. Summariz­
ing up the above results and using Theorem 2.1, we have

Theorem 4.2. Let Fn be an n-dimensional Finsler space (n > 3) 
with the metric (3.5). It is a locally Minkowski space if and only if 
■Rh jk = 0 and bj,3 — 0.

Remark. If m = 1 in (3.5), then L = eg + c±(3 (Randers type). 
In this case, the equation (4.1) yields A = Q, B = c^, C = Co and 
Z) = 0, which imply coRoo —ciaQzo = 0. Since a is irrational in y} we 
have f^oo = Qto = 0. It is noted that the space (Afn, L = coa + ci/3) 
is locally Minkowski if and only if Rh 3k = 0 and bJjZ = 0. This is 
the same result as Theorem 22 of [2].

Next, we consider the metric (3.6). If m — 2, we get L2 = cia2 + 
C2/32, which means that L(a, /3) is a Riemannian. metric. Hence we 
shall treat the non-Riemannian space afterward and assume that 
m 2. The partial derivatives with 호espect to a and of a metric
(3.6) are given by

(4.3) La = eid广'、03 =

Substituting (4.3) into (2.6), we obtain

(4.4) am-rPMQ =必
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Now we shall divide our consideration in two cases of which m is 
even or odd.

(I) Case of m = 2九+ 2, (h is a positive integer) When m — 2/i + 2, 
we have from (4.4)

(4.5) a 가方。。= 月가中00.

Since q 弟 0 (mod /3), from (4.5) we have = 0 and 饥/=0.

(H) Case of m = 2/i — 1, {h is a positive integer) From (2.6) and
(4.3),  we find 一

(4.6) a”妇％o = apQ心 p = a2/32h~2.

The terms Q아and of (4.6) are rational in y\ while a is 
irrational in yl. Thus we have, from (4.6), Roo — Qio = 0, which 
implies Bjkz = 0 and = 0. Summarizing case (I) and case (II), 
we have

Theorem 4.3. Let Fn be an n-dimensional Finsler space (n > 3) 
with the metric (3.6). It is a locally Minkowski space if and only if 
Rh> jk ~~~ 0 and bj 了& = 0

5. Conformal flatness

Let Fn = (Mn, L) and Fn = (Mn, Z) be two Finsler spaces on 
the same underlying manifold Mn. If we have a function in 
each coordinate neighborhoods of Mn such that L{x^ y) = eaL[xj y), 
then Fn is called conformal to Fn and the change L L of metric 
is called conformal. For a conformal change ([1]) of (a,/3)- 
metric is expressed as (a,/3)—> (血8), where a = eaa and B = 
A Finsler space is called conformally flat^ if it is conformal to a 
locally Minkowski space. In the previous papers [2], [3] and [5], the 
authors dealt with conformally flat spaces. For an (a, /3)-metric, a 
conformally invariant symmetric linear connection MJ% is defined 
by [i]

M3\ = 7/fc + 莅艸 + 61M3 - M^jk,
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where M3 = {⑶*砂一b*1)}/甘 and A" = a^3M3. We denote 
Tn .

by V and the covariant differentiation with respect to 
and the curvature tensor of this connection respectively. A Finsler 
space with an (o<, /?)-metric is called flat-parallel, if Rhjk = 0 and 
b/ = 0-

Theorem 5.1. ([3]) A Finsler space with (a/3)-metric is confor­
mal to a Hat-parallel Minkowski space if and only if the condition

rrt m m
(5.1) = 0, = —bzMy

is satisfied.

In an (c& 仞-metric, a conformal change preserves the type of met­
ric invariant. From Theorem 4.2 (resp. Theorem 4.3), we can see 
that Fn with 사le metric (3.5) (resp (3.6)) is flat-parallel. Thus 
these conditions are also applicable to the metric (3.5)(resp. (3 6)). 
Consequently, from Theorem 4.2, Theorem 4.3 and Theorem 5.1 we 
have

Theorem 5.2. Let Fn be an n-dimensional Finsler space (n > 3) 
with the metric (3.5) (resp. (3.6)) It is conformally flat if and only 
if the condition (5.1) is satisfied.

REFERENCES

[1] P. L Antonelli, R Ingarden and M Matsumoto, The theory of sprays and 
Finsler spaces with applications in physics and biology^ Kluwer Acad publ , 
Netherlands, 1993.

[2] S Kikuchi, On the condition that a space with (a, ^-metric be locally Mmko- 
wskzan, Tensor, N S 33 (1979), 242-246.

[3] M Matsumoto, A special class of locally Minkowski space with (a,/3)-metric 
and conformally flat Kropma spaces, Tensor, N S 56 (1991), 202-207

[4] M. Matsumoto, Theory of Finsler spaces with (a,^-metric, Rep Math 
Phys 31 (1992), 43-83

[5] H. S. Park and E. S Choi, On a Finsler space with a special (a,^)-meZrzc, 
Tensor, N.S 56 (1995), 142-148



TWO CLASSES OF THE GENERALIZED RANDERS METRIC 271

[6] H S Park and I Y Lee, On the Landsberg spaces of dimension two with a 
special (a,/3)-meirzcJ J Korean Math Soc 37 (2000), 73-84.

Department of Mathematics
Yeungnam University
Kyungsan, 712-749, Korea
E-mail: eschoi©yu.ac.kr

Department of Mathematics
Kyungil University
Kyungsan, 712-701, Korea
E-mail bdkim@kiu.ac kr

mailto:bdkim@kiu.ac

