East Asian Math J 19 (2003), No 2, pp 241-249

ON SLIGHTLY α -CONTINUOUS FUNCTIONS

G.I. CHAE, T. NOIRI AND J.S. KIM

ABSTRACT. In [11] the feeble continuity is introduced and then the weak and strong forms of feeble (or, equivalently α -continuity) continuity are studied. In this note, we introduce a type of function called a slightly α -continuous function and study several properties of it

1. Introduction

Since the concept of feeble continuity is introduced in [9], the weak and strong forms of it are defined and studied here and there. For example, after a year Mashhour, Hasanem and El-Deeb have defined α -continuity in [13] and the notion of almost feeble continuity is, in [12], defined and studied its properties and relations. Among them feeble continuity and α -continuity are equivalent because it is proved in [6] that feebly open sets coincide with α -open sets.

We denote topological spaces by X, Y and Z on which no separation axioms are assumed, and the closure and the interior of a subset S of X by $\operatorname{Cl}_X(S)$ and $\operatorname{Int}_X(S)$ (simply, $\operatorname{Cl}(S)$ and $\operatorname{Int}(S)$), respectively. S is said to be *semi-open* [7] if there exists an open set O such that $O \subset S \subset \operatorname{Cl}(O)$ and its complement is called *semi-closed*. The intersection of all semi-closed sets containing S is called the *semiclosure* of S and denoted by sCl(S). $S \subset X$ is said to be α -open

Received September 30, 2003

²⁰⁰⁰ Mathematics Subject Classification 54C05, 54A20, 54D65

Key words and phrases α -open, slightly α -continuity, α -convergent, α -Hausdorff, α -normal

This work was supported by 2002 Research Fund of the University of Ulsan

if $S \subset \text{Int}(\text{Cl}(\text{Int}(S)))$ and its complement is called α -closed. The intersection of all α -closed sets containing S is called the α -closure of S and denoted by $\alpha Cl(S)$. It is known in [9] that a feebly open set, which coincides with an α -open set, is defined as a set if there is an open set U such that $U \subset S \subset sCl(U)$.

Throughout this paper, we also denote the family of all α -open (resp. semi-open, open and clopen) sets of X by $\alpha O(X)$ (resp. $SO(X), \tau(X)$ and CO(X)), and denote the family of α -open (resp. semi-open, open and clopen) sets of X containing x by $\alpha O(X, x)$ (resp. $SO(X, x), \tau(X, x)$ and CO(X, x)).

DEFINITION 1.1. A function $f: X \to Y$ is called semi-continuous (s.C.) [8] (resp. almost semi-continuous (a.s.C.) [1], semi θ -continuous $(s.\theta.C.)$ [1] and weakly semi-continuous (w.s.C.) [1]) if for each $x \in X$ and each $V \in \tau(Y, f(x))$, there exists $U \in SO(X, x)$ such that $f(U) \subset V$ (resp. $f(U) \subset Int(Cl(V)), f(sCl(U)) \subset Cl(V)$ and $f(U) \subset Cl(V)$)

DEFINITION 1.2. A function $f: X \to Y$ is called *slightly semi*continuous (sl.s.C.) [15] (resp. *slightly continuous* (sl.C.) [4]) if for each $x \in X$ and each $V \in CO(Y, f(x))$, there exists $U \in SO(X, x)$ (resp. $U \in \tau(X, x)$) such that $f(U) \subset V$.

DEFINITION 1.3 A function $f: X \to Y$ is called almost continuous (a.C.) [17] (resp. θ -continuous $(\theta.C.)$ [3] and weakly continuous (w.C.) [7]) if for each $x \in X$ and each $V \in \tau(Y, f(x))$, there is $U \in \tau(X, x)$ such that $f(U) \subset \operatorname{Int}(\operatorname{Cl}(V))$ (resp. $f(\operatorname{Cl}(U)) \subset \operatorname{Cl}(V)$ and $f(U) \subset \operatorname{Cl}(V)$).

2. Slightly α -continuous functions

DEFINITION 2.1. A function $f : X \to Y$ is called *slightly* α continuous (*sl.* α .*C.*) if for each $x \in X$ and each $V \in CO(Y, f(x))$, there exists $U \in \alpha O(X, x)$ such that $f(U) \subset V$.

THEOREM 2.1. For a function $f : X \to Y$, the following are equivalent:

(a) f is $sl.\alpha.C.$, (b) $f^{-1}(V) \in \alpha O(X)$ for each $V \in CO(Y)$, (c) $[X - f^{-1}(V)] \in \alpha O(X)$ for each $V \in CO(Y)$.

Proof (a) \Rightarrow (b) · Let $V \in CO(Y)$ and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and there is $U_x \in \alpha O(X, x)$ such that $f(U_x) \subset V$ since f is $sl.\alpha.C$. Thus we have $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$ and so $f^{-1}(V)$ is the union of α -open sets. Hence $f^{-1}(V) \in \alpha O(X)$ because $\alpha O(X)$ is a topology on X The remainders of proof are easy and are thus omitted

The following are obtained easily since $\alpha O(X) \subset SO(X)$ in any space X.

THEOREM 2.2 Slight continuity implies slight α -continuity

THEOREM 2.3. Slight α -continuity implies slight semi-continuity.

EXAMPLE 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b, c\}, X\}$. Define a function $f : (X, \tau) \to (X, \sigma)$ by f(a) = f(c) = a and f(b) = b. Then it is easy to prove f is sl.s.C. However f is not $sl.\alpha C$ because $f^{-1}(\{a\}) = \{a, c\}$ is not α -open in (X, τ)

THEOREM 2.4 If $f : X \to Y$ is $sl \alpha C$, and $A \in \alpha O(X)$, then the restriction f|A is $sl \alpha C$.

Proof Let $V \in CO(Y)$. Then $(f|A)^{-1}(V) = A \cap f^{-1}(V) \in \alpha O(X)$ since $\alpha O(X)$ is a topology on X. Therefore, f|A is $sl.\alpha.C.\Box$

DEFINITION 2.2 A function $f: X \to Y$ is said to be α -irresolute [10] if for each $V \in \alpha O(Y)$, $f^{-1}(V) \in \alpha O(X)$, and to be pre-feeblyopen [6] if for each $U \in \alpha O(X)$, $f(U) \in \alpha O(Y)$

THEOREM 2.5. If $f: X \to Y$ is α -irreduce and $g: Y \to Z$ is $sl.\alpha.C.$, then $g \circ f$ is $sl.\alpha.C$

Proof Let $V \in CO(Z)$. Then $g^{-1}(V) \in \alpha O(Y)$. Since f is α -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in \alpha O(X)$. Thus $g \circ f$ is $sl.\alpha.C$.

THEOREM 2.6. Let $f : X \to Y$ be α -irresolute and pre-feeblyopen surjection, and let $g : Y \to Z$ be a function. Then $g \circ f$ is $sl.\alpha.C.$ if and only if g is $sl.\alpha.C.$

Proof. Let $g \circ f$ be sl. α .C. and $V \in CO(Z)$. Then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \in \alpha O(X)$. Since f is pre-feebly-open, $f(f^{-1}(g^{-1}(V))) \in \alpha O(Y)$. Hence $g^{-1}(V) \in \alpha O(Y)$. Thus g is $sl.\alpha.C$. We have its opposite from Theorem 2.5.

The following diagram is obtained from the above and the references:

3. More Characterizations and Comparisions

It is well known that a filterbase \mathcal{B} in X is said to be *residually* in $U \subset X$ if there is $B \in \mathcal{B}$ such that $B \subset U$, and a net $\{s_{\lambda} : \lambda \in D\}$ in X is said to be *residully* in $U \subset X$ if there is a $\lambda_0 \in D$ such that $\lambda_0 \leq \lambda$ implies $\{s_{\lambda}\} \in U$. We say that a filterbase \mathcal{B} in X converges to $x \in X$ if \mathcal{B} is residully in every $U \in \tau(X, x)$ and a net $\{s_{\lambda}\}_{\lambda \in D}$ in X converges to $x \in X$ if $\{s_{\lambda}\}_{\lambda \in D}$ is residully in every $U \in \tau(X, x)$.

In [11] a filterbase having a concept, which is weaker than one of convergent filterbase, is defined to study more properties of α -irresolute functions. We defined the following to obtain more characterizations of $sl.\alpha.C.$ function.

DEFINITION 3.1. A filterbase \mathcal{B} in X is said to be α -converge (resp. c-converge) to $x \in X$ [11] if \mathcal{B} is residully in U for each $U \in \alpha O(X, x)$ (resp. $U \in CO(X, x)$).

DEFINITION 3.2. Let (D, \leq) be a directed set. A net $\{s_{\lambda} : \lambda \in D\}$ in X is said to α -converge (resp. c-converge) to $x \in X$ if $\{s_{\lambda}\}_{\lambda \in D}$ is residually in U for each $U \in \alpha O(X, x)$ (resp. $U \in CO(X, x)$). THEOREM 3.1. For a function $f : X \to Y$, the following are equivalent:

(a) f is sl. α . C. at x.

(b) If a filterbase \mathcal{B} in X is residually in each $U \in \alpha O(X, x)$, then $f(\mathcal{B})$ in Y is residually in every $V \in CO(Y, f(x))$.

(c) If a net $\{s_{\lambda}\}_{\lambda \in D}$ in X is residually in each $U \in \alpha O(X, x)$, then $\{f(s_{\lambda})\}_{\lambda \in D}$ is residually in every $V \in CO(Y, f(x))$.

Proof. (a) \Rightarrow (b) Let (a) be true and $V \in CO(Y, f(x))$ and $U \in \alpha O(X, x)$ such that $f(U) \subset V$. Assume a filterbase \mathcal{B} in X is residully in each $U \in \alpha O(X, x)$. Then there is $E \in \mathcal{B}$ such that $E \subset U$ So we have $f(E) \subset f(U) \subset V$, which proves (b).

(b) \Rightarrow (c) Let (b) be true and $V \in CO(Y, f(x))$. Assume a net $\{s_{\lambda}\}_{\lambda \in D}$ is residually in each $U \in \alpha O(X, x)$. Thus there is $\lambda_0 \in D$ such that $\lambda_0 \leq \lambda$ implies $s_{\lambda} \in U$. To show (c) let $E_k = \{s_{\lambda} : k \leq \lambda\}$ and $\mathcal{B} = \{E_k\}$. Then \mathcal{B} is also residually in the U since it is a filterbase in X which is generated by $\{s_{\lambda}\}_{\lambda \in D}$ Thus from (b), $f(\mathcal{B}) = \{f(E_k)\}$ is residually in $V \in CO(Y, f(x))$, that is, there is an $f(E_{k_0}) \in f(\mathcal{B})$ such that $f(E_{k_0}) \subset V$ and there is thus a $k_0 \in D$ such that $f(s_{k_0}) \in V$ and $k_0 \leq \lambda$ implies $f(s_{\lambda}) \in V$ because $E_{k_0} = \{s_{\lambda} : k_0 \leq \lambda\}$ Hence $\{f(s_{\lambda})\}_{\lambda \in D}$ is is residually in V. So (c) holds.

(c) \Rightarrow (a) Suppose that f is not $sl.\alpha.C$ at $x \in X$. Then there exists a $V \in CO(Y, f(x))$ such that $f(U) \notin V$ for each $U \in \alpha O(X, x)$. Thus $U \notin f^{-1}(V)$. For each $U \in \alpha O(X, p)$, we have $U \subset Y - f^{-1}(V) =$ $f^{-1}(Y - V)$ So $U \cap f^{-1}(Y - V) \neq \emptyset$. In order to find a net not α converging to f(x), we may partially order $\alpha O(X, x)$ by set-inclusion and also direct it by \leq as defined by $A \leq B$ iff $B \subset A$ for each $A, B \in \alpha O(X, x)$. Let $s : \alpha O(X, x) \rightarrow X$ be a selection function defined by $s(U) \equiv s_U \in U \cap f^{-1}(Y - V)$ for each $U \in \alpha O(X, x)$. Then $\{s_U\}_{U \in \alpha O(X, x)}$ is a net in X α -converging to x. Since $s_U \in$ $U \cap f^{-1}(Y - V)$ and so $f(s_U) \in f[U \cap f^{-1}(Y - V)] \subset f(U) - V$, we have $f(s_U) \notin V$ for each $U \in \alpha O(X, x)$. Thus $\{f(s_U)\}_{U \in \alpha O(X, x)}$ is not residually in $V \in CO(Y, f(x))$. It contradicts. Thus f is $sl.\alpha.C.$ CORROLLARY 3.1. For a function $f : X \to Y$, the following are equivalent:

(a) f is $sl.\alpha.C.$

(b) For each $x \in X$ and each filterbase \mathcal{B} in X α -converging to x, $f(\mathcal{B})$ c-converges to f(x).

(c) For each $x \in X$ and each net $\{s_{\lambda}\}_{\lambda \in D}$ in X α -converging to $x, \{f(s_{\lambda})\}_{\lambda \in D}$ c-converges f(x).

DEFINITION 3.3. A space X is called;

(a) α -Hausdorff [11] (resp. ultra Hausdorff (written as UT_2) [18]) if every two distinct points of X can be separated by disjoint α -open (resp. clopen) sets,

(b) ultra normal [18] if each pair of nonempty disjoint closed sets can be separated by disjoint clopen sets,

(c) mildly compact [18] if every clopen cover of X has a finite subcover,

(d) quasi H-closed (written as QHC) [16] if every open cover of X has a finite proximate subcover,

(d) *F*-closed (written as *FC*) [2] if every α -open cover of X has a finite proximate subcover.

DEFINITION 3.4. A space X is called α -normal if each pair of nonempty disjoint closed sets can be separated by disjoint α -open sets.

THEOREM 3.2. If $f : X \to Y$ is an sl. α .C. injection and Y is UT_2 , then X is α -Hausdorff.

Proof. Let $x_1, x_2 \in X$ and $x_1 \neq x_2$. Then there are $V_1, V_2 \in CO(Y)$ such that $f(x_1) \in V_1, f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$ because Y is UT_2 . By Theorem 2.1, $x_i \in f^{-1}(V_i) \in \alpha O(X)$ for i = 1, 2. Since $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$, X is α -Hausdorff.

THEOREM 3.3. If $f : X \to Y$ is an sl. α .C. and closed injection and Y is ultra normal, then X is α -normal. Proof. Let F_1 and F_2 be any disjoint closed subsets of X. Since Y is ultra normal, two disjoint closed subsets of Y, $f(F_1)$ and $f(F_2)$, are separated by disjoint clopen sets V_1 and V_2 , respectively. So by Theorem 2.1, $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in \alpha O(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_1) = \emptyset$. Thus X is α -normal. \Box

LEMMA 3.1. QHC spaces coincide with FC spaces.

Proof. Let X be FC. Then X is also QHC because $\tau(X) \subset \alpha O(X)$. Conversely, let X be QHC and let $\mathcal{G} = \{U_i \mid U_i \in \alpha O(X), i \in \nabla\}$ such that $X \subset \bigcup_{i \in \nabla} U_i$. Then for each $i \in \nabla, U_i \subset \operatorname{IntClInt}(U_i)$ because $U_i \in \alpha O(X)$. Thus $X \subset \bigcup_{i \in \nabla} \operatorname{IntClInt}(U_i)$. Since X is QHC and $\mathcal{G}^* = \{\operatorname{IntClInt}(U_i) \mid i \in \nabla\}$ is an open cover of X, there exists a finite subset $\nabla_0 = \{i_1, i_2, \ldots, i_m\}$ of ∇ such that $X \subset \bigcup_{k=1}^{k=m} \operatorname{Cl}(\operatorname{IntClInt}(U_{i_k}))$ Since ClIntClInt $(U_{i_k}) \subset \operatorname{Cl}(U_{i_k})$ for $k = 1, 2, \ldots, m$, we have $X \subset \bigcup_{k=1}^{k=m} \operatorname{Cl}(U_{i_k})$. Hence X is FC. \Box

THEOREM 3.4. If $f: X \to Y$ is an $sl.\alpha.C$ surjection and X is quasi H-closed, then Y is mildly compact.

Proof. Let $\{V_{\lambda} \mid V_{\lambda} \in CO(Y), \lambda \in \nabla\}$ be a cover of Y. Since f is $sl \alpha.C., f^{-1}(V_{\lambda}) \in \alpha O(X)$ for each $\lambda \in \nabla$. Thus $\{f^{-1}(V_{\lambda}) \mid \lambda \in \nabla\}$ is an α -open cover of X. Since X is quasi H-closed and is thus FC from Lemma 3.1, there is a finite subclass ∇_{\circ} of ∇ such that $X = \bigcup_{\alpha \in \nabla_{\circ}} \operatorname{Cl}(f^{-1}(V_{\alpha}))$. Since $f^{-1}(V_{\alpha}) \in \alpha O(X), f^{-1}(V_{\alpha}) \subset \operatorname{IntClInt}(f^{-1}(V_{\alpha}))$ and so $\operatorname{Cl}(f^{-1}(V_{\alpha})) \subset \operatorname{ClIntClInt}(f^{-1}(V_{\alpha}))$. Moreover, by Theorem 2.1 $f^{-1}(V_{\alpha})$ is α -closed and $\operatorname{ClIntCl}(f^{-1}(V_{\alpha})) \subset f^{-1}(V_{\alpha})$ Cosequently, we obtain $X = \bigcup_{\alpha \in \nabla_{\circ}} \operatorname{Cl}(f^{-1}(V_{\alpha})) \subset \bigcup_{\alpha \in \nabla_{\circ}} f^{-1}(V_{\alpha})$. Therefore, $Y = \bigcup_{\alpha \in \nabla_{\circ}} V_{\alpha}$. Hence Y is mildly compact.

EXAMPLE 3.1. Let (R, \mathcal{I}) and (R, \mathcal{U}) be the indiscrete and the usual space of set of real numbers, respectively Then the identity I : $(R, \mathcal{I}) \to (R, \mathcal{U})$ is $sl.\alpha.C.$, but not a.C.

THEOREM 3.5. If $f : X \to Y$ is $sl.\alpha.C.$ and Y is extremally disconnected, then f is a.C.

Proof. Let $x \in X$ and $V \in \tau(Y, f(x))$. Since Y is extremally disconnected, $Cl(V) \in CO(Y)$ and by Theorem 2.1 $f^{-1}(Cl(V))$ is α -open and α -closed in X. Therefore, we have $x \in f^{-1}(V)$ $\subset f^{-1}(Cl(V)) \subset IntClInt(f^{-1}(Cl(V))) \subset ClIntCl(f^{-1}(Cl(V))) \subset$ $f^{-1}(Cl(V))$. Putting $U = IntClInt(f^{-1}(Cl(V))), U$ is an open set of X, $x \in U$ and $f(U) \subset Cl(V) = IntCl(V)$. This shows that f is $a.C.\Box$

REFERENCES

- Arya, S P and Bhamini, M B, Some weaker forms of semi-continuous functions, Ganita 33 (1982), 124 - 134
- [2] Chae, G.I and Lee, DW, F-closed spaces, Kyungpook Math. J. 27(2) (1987), 127-134.
- [3] Fomin, S., Extensions of topological spaces, Ann of Math 44 (1943), 471 -480
- [4] Jain, R.C., The Role of Regularly Open Sets in General Topology, Ph.D. Thesis, Meerut Univ, Institute of advanced studies, Meerut-India (1980)
- [5] Jankovic, D S and Reilly, I L, On Semi Separation Prperties, Indian J. Pure Appl Math. 16(9) (1985), 957-964
- [6] Lee, H W., Chae, G I and Lee, D W, Feebly irresolute functions, Sunshin Women's University Report 21 (1985), 273-280
- [7] Levine, N , A decomposition of continuity in topological spaces, Amer. Math Monthly 68 (1961), 44 - 46
- [8] Levine, N, Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly 70 (1963), 36-41
- [9] Maheshwari, S N and Tapi, U.P., Notes on some applications on feebly open sets, Madhya Bharti J. University of Saugar (1979)
- [10] Maheshwari, S N and Thakur, S S, On α-irresolute mappings, Tamkang J Math 11 (1979), 209-214
- [11] Maheshwari, S N, Chae, G I and Thakur, S.S, On α -convergent filters, U I.T Report 12(2) (1981), 297-300
- [12] Maheshwari, S N, Chae, G I and Jam, P.C., Almost feebly continuous functions, U.I T Report 13(1) (1982), 195-197
- [13] Mashhour, A.S., Hasanein, I A. and El-Deeb, S.N., α-continuous and α-open mappings, Acta Math. Hung., 41 (1983), 213-218
- [14] Nom, T., On semi-continuous mappings, Atti Accad Naz Lincei Rend. Cl. Sci. Fis Mat. Natur (8)54 (1973), 210-214
- [15] Nour, T M., Slightly semi-continuous functions, Bull. Calcutta Math. Soc. 87 (1995), 187–190.

- [16] Porter, J and Thomas, J., On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170
- [17] Singal, M K and Singal, A R., Almost continuous mappings, Yokohama Math J 16 (1968), 63-73
- [18] Staum, R, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50 (1974), 169–185

Department of Mathematics The University of Ulsan Ulsan 680-749, Korea

Department of Mathematics Yatsushiro College of Technology Yatsushiro, Kumamoto 866–8501, Japan

Teacher of ShungShin High School Ulsan, Korea