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ON SLIGHTLY «o~-CONTINUOUS FUNCTIONS

G.I. CHAE, T. NoIrl AND J.S. Kim

ABSTRACT. In [11] the feeble continmty 15 ntroduced and then
the weak and strong forms of feeble {(or, equivalently a-continuity)
continuity are studied. In this note, we introduce a type of
function called a shghtly o-continuous function and study sev-
eral properties of 1t

1. Introduction

Simnce the concept of feeble continuity is mtroduced in [9], the weak
and strong forms of it are defined and studied here and there. For
example, after a year Mashhour, Hasanein and El-Deeb have defined
a-continuity in [13] and the notion of almost feeble continuity is, in
[12], defined and studied its properties and relations. Among them
feeble continuity and a-continuity are equivalent because it is proved
in {6] that feebly open sets comcide with a-open sets.

We denote topological spaces by X, Y and Z on which no separa-
tion axioms are assumed, and the closure and the interior of a subset
S of X by Clx(S) and Intx(S) (simply, CI(S) and Int(S)), respec-
tively. §1s said to be semi-open [7] if there exists an open set. O such
that O C S C Cl{O) and its complement is called semi-closed. The
mtersection of all semi-closed sets containing § is called the sema-
closure of S and denoted by sCI(S). S C X is said to be a-open
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if § C Int(Cl{Int(S))) and its complement is called a-closed. The
intersection of all a-closed sets containing S is called the a-closure
of S and denoted by aCI(S). It is known in [9] that a feebly open
set, which coincides with an a-open set, is defined as a set if there is
an open set U such that U ¢ § C sCl(U).

Throughout this paper, we also denote the family of all a-open
(resp. semi-open, open and clopen) sets of X by aO{X) (resp.
SO(X), 7(X} and CO(X)), and denote the family of a-open (resp.
semi-open, open and clopen) sets of X contaming z by aO(X,z)}
{(resp. SO(X,z), 7(X,x) and CO(X, z)).

DEFINITION 1.1. A function f: X — Y is called semi-continuous
(s.C.) [8] (resp. almost semi-continuous (a.s.C.) [1], semi #-continuous
(s.8.C.) [1] and weakly semi-continuous (w.s.C.) [1]) if for eachz € X
and each V e (Y, f(z)), there exists U € SO(X,z) such that
FU) CV (resp. f(U) C Int(CL{(V)), f(sCHU)) € CUV) and f(U)}
C Cl{(V))

DEFINITION 1.2. A function f: X — Y is called sl:ghtly semi-
contrnuous (sl.s.C.) [15] {resp. slightly continuous (sl.C.) [4]) if for
each z € X and each V € CO(Y, f(z)), there exists U € SO(X,x)
(resp. U € 7(X,z)) such that f(U) C V.

DEFINITION 1.3 A [unction f : X — Y is called almost continuous
(a.C.) [17] (resp. O-continuous (6.C') [3] and weakly continuous
(w.C.) [T}) if for each x € X and each V € 7(Y, f(z)), there is
U € 7(X, ) such that f{U) C Int(Cl(V)) (resp. f(CL{U)) C CI(V)
and f(U) C CI(V)).

2. Slightly a-continuous functions

DEFINITION 2 1. A function f : X — Y is called slightly o-
continuous (sl.a.C.) if for each z € X and each V € CO(Y, f(z}),
there exists U/ € aO(X, z) such that f(U)} C V.

THEOREM 2.1. For a function f : X — Y, the following are
equivalent :
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(a) f is sla.C.,
(b) f~HV) € aO(X) for each V € CO(Y),
(c) [X — F~HV)] € aO(X) for each V € CO(Y).

Proof (a) = (b) - Let V € CO{Y) and let z € f~}(V). Then
f(z) € V and there 1s U, € aO(X, z) such that f(U;) C V since f is
8l.c..C. Thus we have f~*(V) = J{U; : z € f~(V)} and so f~1(V)
is the union of a-open sets. Hence f~}(V) € aO(X) because aO(X)
is a topology on X The remainders of proof are easy and are thus
omitted O

The following are obtained easily since aO(X) C SO(X) in any
space X.

THEOREM 2.2 Shght continuty nnplies slight a-contmuity
THEOREM 2.3. Shght a-continuity implics slight semi-continuity.

ExXampLE 2.1. Let X = {a,b,c},7 = {0, {a}, {b}, {a,b}, X} and
o = {0,{a},{b,c}, X}. Define a function f : (X,7) — (X,0) by
fla) = f(c) = a and f(b) = b. Then it is easy to prove f is sl.s.C.
However f is not sl.ce C' because f~'({a}) = {a,c} is not a-open in
(X, 7)

THEOREM 2.4 Iff: X - Y isslaC. and A € aO(X), then
the restriction flA 1s sl a.C.

Proof Let V. e CO(Y). Then (flA)"" (V) = AN f~YV) €
aO(X) since aO(X) 15 a topology on X. Therefore; f|A is sl.a.C.O

DEFINITION 2 2 A function f . X — Y is said to be a-trresolute
[10] if for each V € aO(Y), f~1(V) € aO(X), and to be pre-feebly-
open {6} if for each U € aO(X), f(U) € aO(Y)

THEOREM 2.5. If f : X — Y is a-irreolute and g . Y — Z is
sl.a.C., then go f is sl.a.C

Proof Let Ve CO(Z). Then g~} (V) € aO(Y). Since f is a-
irresolute, = (g~ (V)) = (go f)"Y V) € aO(X). Thus go f is
sl.a.C. M|
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THEOREM 2.6. Let f : X — Y be a-irresolute and pre—feé_b1y~
open surjection, and let g : Y — Z be a function. Then go f Is
sl.a.C. if and only if ¢ is sl.a.C.

Proof. Let go f besl.a.C. and V € CO(Z). Then (go f)~1(V) =
T~ g~ (V) € aO(X). Since f is pre-feebly-open, f{f (g7 1(V))) €
aO(Y). Hence g~} (V} € aO(Y). Thus g is sl.a.C. We have its op-
posite from Theorem 2.5. O

The following diagram is obtained from the above and the refer-
ences:

C. = alC. = 08C = wC = s.C = sladl.

4 N J 4 i v
s.C. = asC. = 0sC. = wsC. = slsC.

3. More Characterizations and Comparisions

It is well known that a filterbase B in X is said to be residually
in U C X if there is B € B such that B C U, and a net {s): A € D}
in X is said to be residully in U C X if there is a Ag € D such that
Ap < A implies {sy} € U. We say that a filterbase B in X converges
to z € X 1f B 1s residully in every U € 7{X,z) and a net {s3}xep in.
X converges to x € X if {sx}rep 18 residully in every U € 7(X, ).

In [11] a filterbase having a concept, which is weaker than one
of convergent filterbase, is defined to study more properties of a-
irresolute functions. We defined the following to obtain more char-
acterizations of sl.«.C. function.

DEFINITION 3.1. A filterbase B in X is said to be a-converge
(resp. c-converge) to x € X [11] if B is residully in U for each
U € aO(X,z) (resp. U € CO(X,z)}).

DEFINITION 3.2. Let (D, <) be a directed set. A net {sy: A € D}
in X is said to a-converge (resp. c-converge) to x € X if {six}arep
is residually in U for each U € aO{X, z) (resp. U € CO(X,z)).
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THEOREM 3.1. For a function f : X — Y, the following are
equivalent:

(a) f is sla.C. at z.

(b) If a filterbase B in X is residually in each U € aO(X, z), then
f(B) inY is residually m every V € CO(Y, f(z)).

(c) Ifanet {sx}xep in X is residually n each U € «O(X, z), then
{f(sa)}rep is residually in every V € CO(Y, f(z)).

Proof. (a) = (b) Let (a) be true and V € CO(Y, f(z)) and
U € aO(X,z) such that f(U) C V. Assume a filterbase B in X is
residully in each U € a«O(X,z). Then there is £ € B such that
EcCU Sowe have f(F) C f(U) CV, which proves (b).

(b) = {c¢)' Let (b) be true and V € CO(Y, f(z)). Assume a net
{sx}rep is residually in each U € aO(X, z). Thus there 1s Ag € D
such that Ay < X mmplies s € U. To show {c) let Ey, = {s5 : & < A}
and B = {E;}. Then B is also residually in the U since it is a
filterbase in X which is gencrated by {sx}rep Thus from (b), f(153)
= {f(E)} is residually in V € CO(Y, f(z)), that is, there is an
F(Er,) € f(B) such that f(Eg,) C V and there is thus a ko € D
such that f(sx,) € V and ky < X unphes f(s)) € V because E, =
{sx 1 ko <A} Hence {f{sx)}rep is is residually in V. So (c) holds.

{c) = (a)' Suppose that f is not sl.c.C at z € X. Then there exists
aV € COY, f(x))such that f(U) ¢ V for eachU € aO(X,z). Thus
U¢ f~HV). For each U € aQ(X,p), we have U C Y — f~Y V) =
FTHY =V) SoUNfYY — V) # 0. In order to find a net not -
converging to f(x), we may partially order «O(X, ) by set-inclusion
and also direct it by < as defined by A < B iff B C A for each
A, B € a0(X,z). Let 5 : aO(X.x) — X be a selection function
defined by s(U) = sy €e UnN f~1Y — V) for each U € aO(X, z).
Then {sv}yeao(x,z) 18 & net in X a-converging to z. Since sy €
UNfYY = V) andso f(sy) € flUNFYY - V)] C fU) -V,
we have f(sy) ¢ V for each U € aO(X, z). Thus {f(sv)}veao(x z)
1s not residually in V € CO(Y, f(z)). It contradicts. Thus f is
sl.a.C. O
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CORROLLARY 3.1. For a function f : X — Y, the following are
equivalent:

(a) f is sl.a.C.

(b) For each x € X and each filterbase B in X a-converging to r,
f(B) c-converges to f(z).

(c) For each z € X and each net {sy}xep in X a-converging to
z, {f(sa)}rep c-converges f(z).

DEFINITION 3.3. A space X is called;

(a) a-Hausdor f f {11] (resp. ultra Hausdor f f {written as UTy)
[18]) if every two distinct points of X can be separated by disjoint
a-open (resp. clopen) sets,

(b) ultra normal [18] if each pair of nonempty disjoint closed sets
can be separated by disjoint clopen sets,

(c) mildly compact [18] if every clopen cover of X has a finite
subcover,

(d) quasi H-closed (written as QHC) [16] if every open cover of
X has a finite proximate subcover,

(d) F-closed (written as FC) [2] if every a-open cover of X has
a finite proximate subcover.

DEFINITION 3.4. A space X is called a-normal if each pair of
nonempty disjoint closed sets can be scparated by disjoint «-open
sets.

THEOREM 3.2. If f: X =Y is an sla.C. injection and Y is UTs,
then X is a-HausdorfF.

Proof. Let 1, zo € X and z; # z,. Then there are V;, V) €
CO(Y') such that f(zy) € V1, f(z2) € Vo and Vi NV, = 0 because Y
is UTy. By Theorem 2.1, z, € f~1(V,) € aO(X) for i = 1,2. Since
7YV N (V) = @, X is a-Hausdorff. O

THEOREM 3.3. If f : X - Y is an sl.a.C. and closed injection
and Y is ultra normal, then X is a-normal.
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Proof. Let Fy and F; be any disjoint closed subsets of X. Since
Y is ultra normal, two disjoint closed subsets of Y, f(Fi) and f(F3),
are separated by disjoint clopen sets Vi and Vs, respectively. So
by Theorem 2.1, F, C f~Y(V,), f7YV,) € aO(X) for i = 1,2 and
f71Vi)n f~4{Vi) = @. Thus X is o-normal. O

LEMMA 3.1. QHC spaces coincide with F'C spaces.

Proof. Let X be FC. Then X is also QHC because 7(X) C
aO(X). Conversely, let X be QHC and let G = {U, | U, €
aO(X), € V } such that X C U,ewU:- Then for each € V, U, C
IntClInt(U,) because U, € aO(X). Thus X < [,y IntClint(T,).
Since X is QHC and G* = {IntClint(U,) | ¢ € V} Is an open cover
of X, there exists a finite subset Vo = {21, t2, . , tm} of V such
that X ¢ U::ﬁn Ci{IntClInt(U,,)) Smece ClintClInt{U,,} C CIU,,)
for k=1,2,..,m, we have X C Uﬁ:TCl(U,k). Hence X is FC. O

THEOREM 3.4. If f: X — Y Is an sl.a.C' surjection and X is
quasi H-closed, then Y is mildly compact.

Proof. Let {Vy | Vi € CO(Y), A € V} be a cover of Y. Since
fisslaC, f~H{Vy) € aO(X) for each A € V. Thus {f1(V}) |
A € V}is an a-open cover of X. Since X is quasi H-closed and is
thus I7C from Lemuma 3.1, there 15 a finite subclass ¥V, of ¥V such
that X = |, oo CI(f1(V,)). Since f~1(V,) € aO(X), f~H{Va) C
IntClnt(f~1(V,)) and so CI(f~1{V,)) C ClntClint{f~'(Va)) C
ClIntCl(f~(V4)). Moreover, by Theorem 2.1 f~%(V,) is a-closed
and ClIntCH{f=1(V,)) € f='(V,) Cosequently, we obtain X =
Uaevo CUF 1 (Va)) € Usevyf ™ (Vo). Therefore, Y = ey, Vo
Hence Y 18 mildly compact. it

EXAMPLE 3.1. Let (R,7) and (R,U) be the indiscrete and the
usual space of set of real numbers, respectively Then the identity I
(R, I) — (R,U) is sl.a.C., but not a.C.

THEOREM 3.5. If f : X — Y is sl.a.C. and Y is extremally
disconnccted, then f isa.C.
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Proof. Let x € X and V ¢ (Y, f(z)). Since Y is extremally
disconnected, CI(V) € CO(Y) and by Theorem 2.1 f~Y{CI(V})
is a-open and a-closed in X. Therefore, we have z € f~}V)
C FYCUV)) ¢ IntClnt(F~1(CYV))) < CUntCH f~(CUV))) C
F7HCUV)). Putting U = IntClInt(f~1(Cl(V))), U is an open set of
X,z eUand f(U) C Cl(V) = IntC{V). This shows that f is ¢.C.0
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