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AN IDENTITY FOR n-TIME DIFFERENTIABLE
FUNCTIONS AND APPLICATIONS FOR OSTROWSKI
TYPE INEQUALITIES

N. S. BARNETT AND S S. DRAGOMIR

ABSTRACT An identity for n-time differentiable functions of a
real variable in terms of multiple integrals and applications for
Ostrowski type inequalities are given

1. Introduction

The following result 1s known in the Literature as Ostrowski’s 1n-
equality {1).

THEOREM 1. Let f {a,b] — R be a differentiable mapping on
(a,b) with the property that |f' (t)] < M for all t € (a,b). Then

(11) \ af f@) dt' [4 (”Eb__aj”) } (b —a) M,

for all z € [a,b] The constant 5 1s the best possible i the sense that
it cannot be replaced by a smaller constant.

The following Ostrowsk: type result for absolntely continnous func-
tions whose derivatives belong to the Lebesgue spaces L, [a,b] also
holds (see {2], [3] and [4])

THEOREM 2 Let f - [a,b] = R be absolutely contmuous on [a, b}
Then, for all z € [a, b], we have:
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02 |r@-5= [ 1o
, [i + (%‘ﬁ{)zJ (b—a) I/l if f' € Lo [a, 8]

S o d (G = R R R A ]
%+ é‘ = 1) P> 11

]
where [|-||  (r € [1,00]) are the usual Lebesgue norms on L, [a,bl, i.e.,
llgll. = ess sup |g ()]
t€fa,b}

and

lall, - (/|gm|w),reu¢m.

The constants i-, —)1- and 1 5 respectively are sharp in the sense
(p+1)P
presented 1 Theorem 1

In [5], 5.5 Dragomir and S Wang gave a simple proof of the fol-
lowing integral identity intimately connected with the Ostrowski in-
equality (1.1}

LeMMA 1. Let f [a,b] — R be an absolutely continuous mapping
la,b]. Then we have the identity:

(13)  f(t) = fmeh+i—/pm&)mmmm

for all t; € [a, b], where

th —a if h € [0,, t()]
p(t[})tl) = .
ty—b if ) € (tg,h]
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Proof Since we use this identity in proving one of the main results
below, we give here a simple proof as follows.

Integrating by parts, we have

/0 (t1 —a) f'(t1) dty = (to — a) f (to) “/0 f(t)dt
and

b b
/ (b = b) ' (1) dts = (b to) f (t0) — / it dt

to

Summing the above two equalities, we get

to b
[ =g wdn+ [ -6
a to
b
= (=) f )~ [ Fi)dn
and the equality (1.3) is proved a

For related results on this identity, sce [6] and[7].

In this paper, a gencralization of the identity (1 3) 15 provided.
Some related inequahties generahizing Ostrowskl’s result are also pointed
out.

2. The Results

We are now able to state and prove the following generalisation of
the above result for n—time differentiable mappings.
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THEOREM 3 Let f : [e,b] — R be a (n — 1) —time differentiable

mapping (n > 2) on [a,b] with f™~1  [a,b] — R is absolutely contin-
uous on [a,b] Then for all ty € [a, b] we have the identity:

1 b n—1
(2.1) “t"):mf Fydt+ 3 [a,b; £0-1]

1 —
(b —a)

1 b b
+ (b - a)" / ° / p(toatl)"'p(tn-latn) f(n) (tn) dt]_ . dtn,
a a

X

b b
/ .“/ p(tOJtl)p(tl;t2)"'p(tz—»l,tg)dtl.».dtt

where [a,b, f¢~1] is the divided difference of f4~V in the points
{a,b}, ie.,

fOV®) — f47V ()

b—a

[a,b7470] =
and p is as above.

Proof. Let us prove by mathematical induction
For n = 2, we have to prove the identity

b b
22) flt) =g [ S dn+lab s [ plto,t) dn

1

RO

b b
//p(to,tl)p(tl,tz)f@} (t2) dtidt,

Applying (1 3) for the mapping f’'(-) we can write

b b
FO () = a"i‘z [ f*(tQ)dtﬁg—i—a f p(t1,t) f® (ta) dty
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Again using (1 3), we have

b b 1 b
fto) = bi—afa Flt)dt + b—}”(;/a p{to, 1) [m/; f' (2} dt

b
+ gi—a / p(t1, ts) f9 () dtg] dt,
b b
_“‘_/ f(t)dt, + [a, b; f] -—-—L—f p(to,t1) dty
(b— / / p(to, 1) p (ty, t2) fP (t2) dirdis

and the inequality (2.2) 1s proved.

Assume that (2.1) holds for a natural number “n™ and let us prove
it for “n + 17, i e., we have to prove the 1dentity

(23) f(to) = / f () dt1+z a,b; f¢°V]

(b—a)’/ . / p(to, ) p it ta) - - p iy, ) dty . dt,

l rb b
+ W/a /a p(toyts) - p(tno1,tn) P (tn;s tnss)

X'f(n-i-l) (t’n-H.) dt] - dtn+1,
Using Lemma 1, we can state that
1 b
7 (ta) = b—a f A (tnt1) dinp

a

1 b

Ty a f P (tn tns1) SOV () dtnia

a

_ 1t n
= [0 £ 4 = [ bt taet) £ ()
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By mathematical induction hypothesis, we get

1 b n—1
f () = m/ f(t)dt + 2 EXF i
a 3=1

1
(b—a)f

1 b b
+(b—a)"f / p(to,t1) - p (a1, tn)

b
X l[aa b§ f(nnl)] + .b——l"_"(;‘/‘ p(tnatn+l) f(n+l) (tn-i-l) dtm{-l dtl e dtn‘

—L/bf(t)dt +i{abf(“l)]
_b—a . 1 b1 < 1Y,

1
(b—a)

1 b b
+ (b_a)n+1 / o / p(toitl)"‘p(tn—latn)p(tm tnt1)

X f(n+1) (tn+1) dtl cee dtn+1

X

b b
/ “‘/ p(t(]’tl)p(tllt?)"'p(t;_l,ts)dtl...dtt

X

b ]
// p(to,tl)p(tl,tz)“'p(tt-l,t,)dt}_...dt,

and the 1dentity (2 3) 1s thus proved 0

Denote R, (f,to) .=

b b
@%a)*fr/ f p(toytr) P (tae, ta) F™ (82) dty ... dty.

We are interested in pointing out some upper bounds for the absolute
value of R, (f, %), to € [a, b]. The following general result holds.

THEOREM 4. Assume that f is as in Theorem 3. Then one has the
estimate:
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(24) |Rn (f )]

{(b—a)" "2

—-Q 2 a
on—1 [(b 3 ) + (to o —;:Q)?] “f(n)”oo.[a,b] ?

__an 2
<9 %;“_ [(6— to)™ ! + (to — a)™ ”f(n)“p,ab]‘

f f € Ly [a,b];

if f™ ¢ L,(e,b],

sre=1Lp>1,
| (b= a)" 850t — ST £

for any g € [a,b].

Proof. Observe, by Holder’s inequality, that

(2.5) WMLMK

S (b“_ ] f ip toitl)p(tth) tn 1; ||f n) n)|dt1. .dtn

i

<
S —ay
£ oo o fo 1o (ot [P (01, 82)] -

o p (taey, t0)| diy . diy,
(fab c f: lf(n) (fn) |P dt] dtn) 3

1

x (J2 (o ) Pttty dta)’

I, 1.
forp>1,5+-(;—l,

N

sup  {|p(to, t1)||p(t1, t2)} - -
{t1, tn)Efa,b™

Ip (th—1, tn) i}

S R ()] dt . dta,
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1
(b-a)”

(N ooy Jo - o [P (o t) | P (81, 22) -+ [P (tras )l it - - b,

2t :
(=) SOy (o S 1P oyt p (80, ta) |7 s . )
forp>1, 2+ 4=1;

(b=a)"" sup  {lp(to, )l ()l 1B (b ta) 0y
~ (tl; ,Zn)é[a,b]n 1@y

Now, denote

(2.6)
b b
I, (to) '=/ f p(to. t)|[p(t1, t2)| - lp (bn—i, t)l dtr . ditn

- fab"'/: Ip (to, 1)l Ip (t1,22)] - -
x (/b |P(tn_1,tn){dgn) i db

b b 2 2
=/ f Ip (to, t)] [p (12, t2)] -+ ((b—t”'l) ;(t”"l_a) )dtl-- din-1.

Obviously, since

(b—tnh1)2+(tn_1-a)2:(b—a)2+(t _a+b)2< (b - a)®

2 4 2 2
for any t,,_, € [a,b], we deduce by (2.6) that
2
(2.7) L) <=9 1 ) for n>2

2
and

JRY 4 2
(2.8) 5 (t) = L 4(1) +(to— ;b) .
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Using an mductive argument we get that

(b . a)?(n-— 1)

In (tO) S 2,!_1

Iy (t) for n > 2,

giving the following bound

(29) I, (to) < (b — g)’7V {(b — q)? . (to Ca+ b)z} .

Pl 4 2

Using the first part of (2 5) and (2 9), we deduce the first inequality
mn (2 4)
Consider now
(2 10)
"

b
J‘n.,q (ZO) - / / Ip (t{), t1)|q 1p (tl:t2)|q ot |p (tn“"li tn)iq dtl - dtn‘
A
_ / / Ip (to, 1)) |p (£1, 12)°
b
X e (/ p (tn-l,tn)]thn) dty ... dtn-y

b b
. j : / 1D (toy £1)|7 p (£, )17 -
i} aQ

x (b - tn—l)q-"l + (tn—l - a)q+1
g+1

} dt, dt,_,

Obviously, since

(b —tn ) + (thy — @)™ L= a)™!

g+1 - g+1
for each t,_, € [a,b], we deduce by (2.10), that
‘ (b—a)y"!
n,g S - Yn—1,4g ) patl
(2 11) J (t()) q n 1 J (to) 7 > 2
and
(212) T (te) = &2 W)™t (to — o)
i - -

g+1
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Using an induction argument, we conclude that
(2.13)

Jn,q (tO) S [

, forn > 2.

(b . to)q-i-l + (to . a)q+l (b _ a)(q-!-l)(n-l)
g+1 (g+1D)"!

Employing the second inequality in (2.5) and (2.13) we deduce

. {g+1}{n~1)
1 n—1 (b —G,) q
R, (f,t < e (b—a)® —
I i e
(b~ o)™ + (tg — a)"*|* (n)
. . 17,
(b— a)ﬂ—?

(g+1)% [(b6 = 20)™" + (to — )"« S|, oy

and the second mequality in (2.4) is proved
For the last part, observe that

(2 14)
Ka(te) == sup  A{lp{te,t)llp{tr, ta)] - -+ [P (ta-1s ta)[}
(t1, ,tn)(—'[a,b]"
< sup {lplto,t)l}- sup {lp(a-1 )}
(i1, tn)E[ab]™ {tr, tn)€[ed]™
<(b-a)"" sup p (0, 1)
tlE[a,b]
= (b—a)" "max(tg —a,b—to)
16— b
o e

Finally, using the third inequality in (2 5) and (2.14), we deduce
the last 1nequality m (2.4) O
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REMARK 1. In (8], the present authors have pointed out the fol-
lowing inequality when the second derivative 1S bounded

=gt [ sean - 1010 (- 232))

21
2
(O
-2

it il — a2l 2 .
(b— a) tgl Tle-9 (A S

provided fB € L [a,b], and ty € [a,b]. If one uses the general result
incorporated in Theorem 4 for n = 2, then one gets the inequalities

(2 16)

‘f(to)—b—i;fa"f(tl)dtl_i@%{_i@(to_a;b)‘

[958 A9 if F® € Loo[a,0];

{

1
= (q+11)6 [(b B tO)QH + (to o a)qH] ! ||f(2)“p,[a,‘b]’ if f(z) € Lp {a’a b]i

bt o= )1,

\

for each to € {a,b]. We note that the bound provided by (2.15) 1s
better than the first inequality 1n (2 16)

PROBLEM 1. Find sharp upper bounds for

n terms of the Lebesgue norms || f® HP wa P € {1,20].

PROBLEM 2. Consider the same problem for thc general case of
n-—time differentiable functions.
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