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1.  Introduction

In modern manufacturing, it is the usual case that 
orders in large variations of specifications come with 
small quantities. In order to handle this situation, we 
often make production facilities flexible to process 
orders with different specifications at the same time. 
Some orders with similar specifications can be grouped 
to a lot for production.

When making from orders of charges to slabs in 
steel industry, it is required not to treat charges of 
quite different specifications at the same time. The 
characteristics of charges are often described in terms 
of their width and thickness. In order to minimize the 
different kinds of specifications, the two dimensional 
space of width and thickness are divided into set of 
disjoint classes to one of which a charge may belong. 
Each class is defined by two interval regions of width 
and thickness. For instance, a class ([910, 940), [600, 
650)) is for the charges with widths in the range of 
[910, 940) and thickness in the range of [600, 650). 

Let W 1,W 2,…,Wk, (T 1,T 2,…,Tl ) be the partition of 
(0,+∞) in the dimension of width (thickness), 

respectively. Then, we can designate each class or 
each specification of charges by (Wi,Tj). In the 
following Figure 1(a), the order quantities for charges 
are represented in tabular form. As we can see in the 
figure, similar classes position in their neighborhood 
to each other whereas somewhat different classes in 
dimensions are dispersed at a distance. The similarity 
between a class (Wi 1 ,Tj 1) and another class (Wi 2 ,Tj 2) 
is measured by rectlinear distance, i.e., 
| i 2- i 1|+| j 2- j 1|. In the construction of lot with size 

of five charges, due to the limitation of facilities, 
charges from quite different classes cannot be grouped 
into a lot but charges of classes with some similarities, 
for instance, with the rectlinear distance between them 
at most two, can be grouped. 

We generalize the situation of slab making in steel 
industry and formally model our problem by a graph. 
A graph is a pair G=(V,E), where V is a finite set of 
nodes and E has as elements sets of two nodes in V 
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Figure. 1.  (a) Orders in tabula form and (b) the corresponding graph.
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called  edges. Each node v corresponds to an order 
specification and its weight w(v) denotes the order 
quantity on hand for the specification. Then, orders of 
charges in Figure 1 can be described by the graph 
(grid) in Figure 1(b), where each node v ij represents 
class or specification (Wi,Tj ) and its weight is the 
number in the circle. We suppose that nodes are 
arranged in conservation of similarities as in Figure 
1(b) so that the similarity between two nodes are 
measured by the distance between them. The distance 
of two nodes u and v is one if {u,v}∈E. In general, 
the distance between u and v is the distance of the 
shortest path from u  to v.

Then, orders with specifications u and v can be 
grouped if the distance is no greater than the allowable 
distance limit of d. A  lot type is any subset θ of V. If 
the cardinality of θ is one, it is called homogeneous 
otherwise called heterogeneous. A heterogeneous lot 
type θ is feasible if the distance of any two nodes in θ 
is at most d. Then, given a lot size λ (a positive 
integer), a lot with respect to the type θ is the order 
quantities corresponding to the nodes (specifications) 
in θ. A lot is feasible if its type θ is feasible and the 
total sum of the order quantities from the nodes in θ is 
exactly λ. The objective function is to maximize the 
number of lots, whether homogeneous or heterogene- 
ous, with size λ. We call our problem maximum lot 
grouping problem or maximum grouping problem in 
short. Notice that if λ=2, d=1, and every w(v)=1, 
v∈V, our problem is the same as maximum matching 
problem, for which optimal algorithms are provided 
(Micali & Vazirani, 1980; Papadimitriou & Steiglitz, 
1988). 

In this paper, we consider the hardness of the 
maximum grouping problem. The most key factor 
determining the problem's intractability would be 
distance limit more than anything else of other 
parameters of lot size and weight. Firstly, we will 
show that the problem with d=2 is NP-Complete 
even when the graph G is bipartite, λ=3 and every 
w(v)=0 or w(v)=1 for v∈V. Next, we deal with the 
case of d=1. The problem with d=1 is proved to be 
NP-Complete in general. And it is still hard even 

though the graph G is bipartite, λ=3, and every 
w(v)=1,2 or 3 for v∈V. In the next section, a 
mathematical formulation is given to describe the 
problem explicitly and in section 3, the hardness of the 
maximum grouping problem is proved. Finally, 
conclusion follows in section 4.

2.  Problem  Definition

In order to provide clear definitions of parameters 
and variables for our problem, we present a list of 
notations in the following:

-V : the set of nodes which represent order speci- 
fications.

-E : the set of edges which represent similarity 
structures between specifications.

-w(v) : the weight or the order quantity on the 
specification v∈V. w(v) can take any 
positive integer.

- λ : the size of lot.
- d : the maximum allowable distance limit.
- θ : a feasible lot type, i.e., a set of nodes whose 

distance between them is at most d, θ⊆V.
- Θ : the set of all the feasible lot types. Note that 

the distance limit constraint of d is represen- 
ted by Θ.

- x θ(v) : for a feasible lot type θ⊆V, its lot is deno- 
  ted by x θ where x θ(v) is the quantity from 
   the node v∈θ. Note that ∑

v∈θ
x θ(v)=λ.

- y θ : the binary variable to identify whether a lot 
has been constructed or not for a feasible lot 
type θ ⊆V.

- yv : the number of homogeneous lots for v.

We further understand the meaning of each parameter 
by the slab making illustration in the previous section 
for the case that V={v ij|i=1,2,3,j=1,2,3} and 
edges are defined as shown in Figure 1(b). For d=2 
and λ=5, the set θ={v 11,v 12,v 21,v 22} is a feasible lot 
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type since all the distances between them are at most 
2. Suppose that we make a lot of type θ. Then, a 
possible contents of it could be x θ(v 11 )=1,x θ(v 12 )=
2,x θ(v 21 )=2  and x θ(v 22 )=0.

The following lemma presents a useful result which 
allows us to make as many homogeneous lots as 
possible from heterogeneous lots.

Lemma 1
Given two heterogeneous feasible lots, x θ and x θ̂, 

with respect to the same type θ, |θ|≥2, we can make 
two feasible contracted lots x θ' and x θ'', θ',θ''⊆θ, 
where θ'⊂θ or θ''⊂θ.

Proof.
Let θ= v 1,…,v k, k≥2. Let v i be the first node 

such that ∑
i- 1

j=1
( x θ(v j)+x θ̂( vj ))<λ  and ∑

i

j=1
( x θ(v j )+

x θ̂( vj ))≥λ.
Then, we make a lot x θ' where θ'={v 1,…,v i} and 
x θ(v j )=x θ(v j )+x θ̂( vj ) for j=1,…,i-1, 

x θ'(v i )= λ- ∑
i- 1

j=1
( x θ(v j)+x θ̂( vj)).

Next, we will construct another lot x θ''. First, consi- 
der the case of x θ(v i )+x θ̂( vi )-x θ'(v i )>0. In this 
case, we let θ''={v i,…,v k} and construct x θ'' with 
x θ''(v i )=x θ(v i )+x θ̂( vi )-x θ'(v i ) and x θ''(v j )=

x θ(v j )+x θ̂( vj ) for j= i+,…,k. Next, consider the 
case of x θ(v i )+x θ̂( vi )-x θ'(v i )=0. Similarly, we 
let θ''={v i+1,…,v k} and x θ''(v j )= x θ(v j )+x θ̂( vj ) 
for j= i+1,…,k. Then, we can see that θ'⊂θ or 

θ''⊂θ with ∑
v∈θ'
x θ'(v)= ∑

v∈θ''
x θ''(v)=λ. Hence, x θ' 

and x θ'', are feasible contracted lots with respect to 
type θ. 

In most case of the real manufacturing, it is 
suggested that we make homogeneous lots as many as 
possible rather than heterogeneous ones. Applying 
Lemma 1 continuously to all heterogeneous lots, we 
can finally get the desired solution that no more than 
one lot is constructed for each heterogeneous type 
(though several lots are possibly constructed for each 
homogeneous type). In addition, from the lemma, we 
can assure that there always exists an optimal solution  
such that no more than one heterogeneous lot can be 
constructed for each heterogeneous type. Hence, it is 
enough to use a binary integer variable for each 
heterogeneous type to describe the amount of lot 
constructions. Let θ be a set of feasible heterogeneous 
types. Then, for a type θ∈Θ, we use the binary 
variable yθ to identify whether a lot has been 

constructed or not. Note that for a heterogeneous type 

θ, we have y θ=1 iff ∑
v∈θ
x θ(v)=λ. The number of 

homogeneous lots for θ={v} is just denoted by y v. 
Then, keeping in mind that the distance limit is 
assured by the set Θ, we can formulate our problem as 
the following integer programming problem :

Maximize ∑
v∈V
yv+ ∑

θ∈Θ
y θ

 Subject to

λy θ- ∑
v∈θ
x θ(v)=0     θ∈Θ  

λyv- ∑
θ:v∈θ

x θ(v)≤w(v)   v∈V

 x θ(v)≥0, x θ(v) : integer for v∈θ, θ∈Θ

           yv≥0,y v : integer for   v∈V

         y θ=0 or 1       for          θ∈Θ

3.  The H ardness of M axim um  Lot 
    G rouping Problem

We will show that the maximum grouping problem is 
NP-Complete, which further means that polynomial 
optimal algorithms cannot exist unless P=NP. Even in 
the restricted cases that a lot size, a distance limit and 
weights have small values or the graph is bipartite, the 
problem will be proven to be NP-Complete. To this 
purpose, we investigate the computational complexity 
of decision versions of the maximum grouping 
problem.

Theorem 2 
For the maximum lot grouping problem G=(V,E) 

with d=2,λ=3 and each weight 0 or 1, the question 
of deciding if there exists number of ⌊ ∑v∈Vw(v)/λ⌋ 
feasible lots is NP-Complete.

We prove this result by showing that the known 
NP-Complete problem 3-dimensional matching can be 
transformed to the maximum grouping problem.

3-Dimensional Matching (3DM)
Instance : Disjoint sets A={a 1,…,an}, B={b 1,…,bn}, 
C={c 1,…,c n} and a family
F={T 1,…,Tm} of triples with |T i∩A|= |T i∩B|=

      |Ti∩C|=1 for i=1,…,m. 
Question : Does F contain a matching, that is, a 

subfamily F' for which |F'|=n and ∪ Ti∈F'Ti

=A∪B∪C ?
For the sets A,B,C and F, we define corresponding 
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Figure 2.  (a) A 3DM instance and (b) the corresponding graph.

node sets V A,V B,V C
 and V F

 as follows :

V A={v a 1,…,v a n},  V B={v b 1,…,v b n},   
V C={v c 1,…,v c n},  V F={v T 1

,…,v T m
}.

Proof of Theorem 2
Given an instance of the above 3DM problem, we 

construct an instance of the maximum lot grouping 
problem G=(V,E) with lot size λ=3, distance limit 
d=2. The node set V  is given as follows:

V=V A∪V B∪V C∪V F

Edges exist only when there is a corresponding triple 
in F : edges are constructed between the nodes v T i

 and 
v a j, v b k or v c l, that is, three edges {v Ti, v aj }, {v Ti,v bk} 
and {v T i

, v c l} are constructed if T i={a j, b k, c l} is 
in the family F. Now, we consider the weight of each 
node. We let w(v a j)=1 (w(v b k)=1,w(v c l)=1) for 
each a j∈A ( bk∈B, c l∈C ), respectively. And for 
each T i∈F, let w(v Ti) =0. In Figure 2, the graph 
corresponding to an instance of 3DM is illustrated (the 
weight of each node is the number in the circle).  Note 
that n=⌊ ∑v∈Vw(v)/λ⌋.

It is quite simple to show that there is number of n 
feasible lots if and only if there is a 3-dimensional 
matching. Suppose there is a matching F'. For each 
T i={a j, b k, c l}∈F', make a lot from the weights on 
the nodes v a j, v b k and v c l, i.e., a lot x θ (with y θ=1) 
for the type θ={v T i

, v a j, v b k, v c l} where x θ(v Ti )=0, 
x θ(v a j )=x θ(v b k )=x θ(v c l )=1. Note that the distan- 
ce between any two nodes of θ is at most two and the 
size of x θ is three. Thus, x θ is a feasible lot. Since 
there are n triples in the matching, we can make the n 
corresponding lots.

Conversely, suppose that there are n lots in G. As 
the lot size λ is three and each node has weight at 
most one, in the n lots there are no homogeneous 
ones. Note that, in V, for any two nodes u,v with 
distance at most two, there must exist a triple 
Ti={aj, bk, c l}∈F such that u,v∈{v Ti, v aj, v bk, v cl}. 
Then, recalling the distance limit constraint d=2, we 
see that any feasible lot type θ must be a subset of 
nodes corresponding to a triple, say, Ti , that is, 
θ⊆{v T i

, v a j, v b k, v c l}. Let x θ (with y θ=1) be a 
feasible lot where θ⊆{v T i

, v a j, v b k, v c l}. Since the 
lot size is three and the weight of vTi is zero, θ is 
{ v a j, v b k, v c l} or {v T i

, v a j, v b k, v c l}. Thus, for the 
lot x θ, we have x θ(v a j )=x θ(v b k )=x θ(v c l )=1 or 
x θ(v a j )=x θ(v b k )=x θ(v c l )=1, x θ(v T i

)=0. In ei- 
ther case, we see that for each lot x θ , there exists 
exactly one corresponding triple Ti . Now, we choose 
n triples corresponding to the n lots. Note that each 
node v a j(v b k, v c l) has weight one. Thus, its weight 
or order quantity cannot be used in more than one lot, 
which means that the corresponding element 
a j (b k, c l) does not belong to more than one triple of 
the chosen n  triples. Therefore, we conclude the set 
of n triples is a matching. 

Consider again the graph G=(V,E) corresponding 
to a 3DM in Theorem 2. Let X=V A∪V B∪V C

 and 
Y=V F

. Then, note that the node set V is partitioned 
into two disjoint sets X, Y and no edge exists 
between any two nodes in X and between any two 
nodes in Y, but edges exist between nodes in X and 
nodes in Y. Hence, G is a bipartite and thus the 
following result directly follows.

(b)
(a)



On the Hardness of the Maximum Lot Grouping Problem 257

Corollary 3
For the maximum lot grouping problem G=(V,E) 

with d=2,λ=3 and each weight 0 or 1, the question 
of deciding if there exists number of ⌊ ∑v∈Vw(v)/λ⌋
feasible lots is NP-Complete even when G is bipartite.

Notice that when the distance limit d is one, one can 
find maximum number of lots using the maximum 
cardinality matching algorithm if λ=2, and every 
w(v)=1, v∈V(Micali & Vazirani, 1980; Papadimi- 
triou & Steiglitz, 1988). However, as  we shall see in 
the following theorem, the maximum grouping 
problem is still hard in general even though the 
distance limit is one. The proof of the following 
theorem is almost similar to that of Theorem 3.7 in 
(Garey & Johnson, 1979). We will transform our 
problem to 3DM as has been done in Theorem 2.

Theorem 4
For the maximum lot grouping problem G=(V,E) 

with d=1,λ=3 and each weight 1, 2 or 3, the 
question of deciding if there exists number of 

⌊ ∑v∈Vw(v)/λ⌋ feasible lots is NP-Complete.

Proof
For the 3-dimensional matching problem, we construct 

an instance of the maximum grouping problem 
G=(V,E) with lot size λ=3. The nodes and edges 
in the graph G will be specified from the triples. For 
each triple, T i={a j, b k, c l}, we construct a graph 
with edge set E i ( |E i |=6) as shown in Figure 3, 
where the weight of each node is the number in the 
circle. 
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Figure 3. The graph for the triple Ti={aj,bk,c l}. 

Then, the node set V and edge set E of  are given as 
follows:

V= (V A∪V B∪V C)∪
m
i=1 {u ij |1≤j≤4},

E=∪ m
i=1E i.

Note that the total sum of weights of V is
    ∑

v∈V
w(v)= |V A∪V B∪V C|+9|F| = 3(n+3m)

and ⌊ ∑v∈Vw(v)/λ⌋=n+3m.

We want to show that there is n+3m feasible lots if 
and only if there is a 3-dimensional matching. Suppose 
there is a matching F' from F for A,B and C . From 
this matching we can find number n+3m lots from 
G, as described in the following : 
if T i={a j, b k, c l} is in the subfamily F', then the 
corresponding lots (three heterogeneous lots and one 
homogeneous lot) are given by

y e i1=1 (x e i1 (v a j ) =1, x e i1(u i1 )=2),

y e i3=1 (x e i3 (v b k )=1, x e i3(u i2 )=2),

y e i5=1 (x e i5 (v cl )=1, x e i5(u i3 ) =2),

y u i4=1

otherwise if T i
 is not in the subfamily F', then the 

corresponding lots (three heterogeneous lots) are given 
by 

y e i2=1 (x e i2 (u i1 )=2, x e i2(u i4 )=1),

y e i4=1 (x e i4 (u i2 )=2, x e i4(u i4 )=1),

y e i6=1 (x e i6 (u i3 )=2, x e i6(u i4 )=1).

Conversely, suppose that there is a solution with 

n+3m lots, that is, ∑
v∈V
y v+ ∑

θ∈Θ
y θ=n+3m. Then, 

the corresponding matching is given by choosing those 
T i∈F such that y u i4=1.

We consider again the maximum grouping problem 
G=(V,E) corresponding to a 3DM in Theorem 4. 
Let X and Y be defined as follows:

X=V A∪V B∪V C∪ T i∈F{u i 4},

Y=∪ T i∈F{u i 1, u i 2, u i 3}.

Then, note that the node set V is partitioned into 
two disjoint sets X, Y and no edge exists between any 
two nodes in X and between any two nodes in Y,  but 
edges exist between nodes in X and nodes in Y and 
thus the following result directly follows.

Corollary 5
For the maximum lot grouping problem G=(V,E) 

with d=1,λ=3 and each weight 1, 2 or 3, the 



258 Hark-Chin Hwang

- 258 -

question of deciding if there exists number of 

⌊ ∑v∈Vw(v)/λ⌋ feasible lots is NP-Complete even 
when G  is bipartite.

4.  Conclusion

In this paper, we introduced the maximum lot grouping 
problem and modeled it by graph. The similarities 
between nodes have been represented by the distances 
between them and the constraint of lot grouping 
between nodes of specifications is imposed by 
distance limit. For the distance limit of two, the 
problem was shown to be NP-Complete even when the 
graph is bipartite, the lot size is three and each weight 
is 0 or 1. Next, we considered the case that the 
distance limit is one. Also in this case, the problem 
was proved to be still NP-Complete even when the 
graph is bipartite, the lot size is three and each weight 
is 1, 2 or 3. 

It is open question whether an optimal algorithm 
exists for the case that d=1 and the graph is grid. In 
general, we need to develop efficient approximation 
algorithms for maximum grouping problem.

Modeling the constraint on lot grouping by clique 
size (not by distance limit), we have another interesting 

research topic. It might be natural to represent the 
constraint by just establishing edges between any two 
nodes of similar specifications and then by setting 
maximum limit on the number of different nodes when 
constructing a lot, i.e., the maximum clique size limit 
for constructing heterogeneous lots. The further research 
would be to show the hardness and devise approxima- 
tion algorithms for the revised model.
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