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Evaluation of Cofactor Markers for Controlling Genetic Background Noise
in QTL Mapping**

Chaeyoung Lee* and Xiaolin Wu'!
Laboratory of Statistical Genetics, Institute of Environment & Life Science. Hallym University
Chuncheon, Kangwon-do 200-702. Korea

ABSTRACT : In order to control the genetic background noise in QTL mapping, cofactor markers were incorporated in single marker
analysis (SMACO) and interval mapping (CIM). A simulation was performed to see how effective the cofactors were by the number of
QTL, the number and the tvpe of markers, and the marker spacing. The results of QTL mapping for the simulated data showed that the
use of cofactors was slightlv effective when detecting a single QTL. On the other hand, a considerable improvement was observed when
dealing with more than one QTL. Genetic background noise was efficiently absorbed with linked markers rather than unlinked markers.
Furthemmore, the efficiency was different in QTL mappmg depending on the type of linked markers. Well-chosen markers in both
SMACO and CIM made the range of linkage position for a signiticant QTL narrow and the estimates of QTL effects accurate. Generally,
3 to 5 cofactors offered accurate results. Over-fitting was a problem with many regressor variables when the heritability was small.
Various marker spacing from 4 to 20 ¢M did not change greatly the detection of multiple QTLs. but they were less efficient when the
marker spacing exceeded 30 ¢M. Likelihood ratio increased with a large heritability, and the threshold heritabality for QTL detection was

between 0.30 and 0.05. (dsian-dust J. Anin. Sci. 2003. 1ol 16, No. 4 : 473-480)
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INTRODUCTION

Quantitative trait loci (QTLs) have been identified and
mapped by associating trait phenotypes with multiple
markers. Analvtical models in conventional methods often
included single marker effect or flanking marker effects.
The former method was called the single maker analysis
(SMA) and the latter was the interval mapping (IM. Lander
and Botstein. 1989). However. these methods were likely to
render a low resolution of a QTL due to a QTL effect
confounded with the effect of another QTL elsewhere in the
linkage group (Wright and Kong, 1997). In order to reduce
such bias. Zeng (1993) and Jansen (1993) suggested the use
of a marker interval and a few other well-chosen single
markers simultaneously. and the method was called
composite IM (CIM). Emploving additional marker loci
made the genetic background noise to be absorbed with a
narrow marker region for a significant QTL. resulting in a
considerably increased QTL resolution (Zeng. 1994).
Although CIM has been increasingly used in practical QTL
mapping in animals and plants (Bovle and Gill. 2001;
Drake et al.. 2001: Robison et al.. 2001: Wayne et al.. 2001
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Wu et al.. 2001, 2002). investigations for optimizing the
effects of cofactors were still limited (Piepho and Gauch,
2001: Lee, 2002). The effect of CIM largely depended on
the choice of cofactors. In this paper. we evaluated
incorporating cofactors in both IM and SMA of QTL
mapping through simulation. This improved SMA was
referred to as the single-marker analysis with cofactors
(SMACO).

MATERIALS AND METHODS

A general idea on cofactor markers

Suppose a biallelic QTL was located between markers 1
and i+1. There were also some other QTLs elsewhere in the
linkage. Assume the putative QTL of interest was
recombination units apart from the marker 1 and r» apart
from the marker i+1. The trait value was expressed as
below:

Vo= pt LAY f(Chve (1)

where . was the observed value for individual k in the

population. 4 was the mean of observed values, rauy)

was a function of genotype for marker 1 for SMACO or for
marker loci i and 1+ 1 for CIM. and o, was the residual.

f(C) was a function of genotype for a cofactor. Note that
j=i for SMACQ.and j=ii+1 forCIM.

Under the assumption of independent and identical
normal distributions with variance equaled to &* for the
trait values, the general form of likelihood function was
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The logarithim of Equation (2) was
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Under the null hypothesis Hyttgy = Hay = fy, = H - the

log likelihood was
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The following likelihood ratio was defined as a test
statistics for the hvpothesis that a QTL is not linked to the
marker (SMACOQ) or marker interval (CIM):

LrR=2[1-1,] &)
The corresponding lod score for the null hvpothesis test
was
fod =Log,,, L-Log, ., Ly, (6)
The genetic effect of the putative QTL linked to
marker(s) was estimated by maximum likelihood.

An example of single marker analysis with cofactors

Since Zeng (1993.994) described CIM as a combination
of simple IM and multiple linear regression, here we show
an example for SMACO using backcross progeny. A
progeny population was derived from backcrossing the F1
(Aa) with the parent with AA marker genotype. The
analvtical regression model for SMACO with backcross
progeny was

Ve=b b Y. +2 BN, +e, N

where p was the intercept of the model. 5 was the slope
of regression for the putative QTL linked to marker 1, ',
was a dummy variable taking 1 for marker genotvpe AA
and -1 for Aa. b, Was the partial regression coefficient of
the observation on marker j, v , was the dummy variable

for cofactor marker j of individual k. taking 1 for the
cofactor marker genotype AA and -1 for Aa. and ¢, was

the residual.

Assuming that ¢, was normally distributed with mean

zero and variance - . the likelihood function for the
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where » and », were the numbers of individuals having

marker genotypes AA and Aa. respectively. at the marker
locus i (N =#, +#,). Note that the recessive homozygous

genotypes (aa) for the marker was missing in the backecross
progeny. and 2@ |aa)=0-
The logarithm of Equation (8) was
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likelihood was
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Then the likelihood ratio and the lod score for the null
hypothesis were obtained as shown in the Equations ¢5) and

(©).

Simulation

A simulation study for diploid organisms was performed
to investigate the properties and utilities of cofactors.
Typical backcross populations were simulated with QTL
Cartographer for Windows Version 1.01 (Basten et al.
1994). From two distinct populations, six males from one
population and six females from the other population were
randomly selected and mated, producing six full-sib
families in the F1 generation. Five daughters from each full-
sib family were used to cross back to their corresponding
fathers. Ten individuals were born from each pair, and the
300 individuals in the backcross generation were genotyped.

A total of six populations were simulated and two
chromosomes that were both 120 ¢M in linkage length were
generated for each population. The input values to simulate
these populations were presenied in Table 1. In all the
populations. 13 markers were evenly located on both
chromosomes. For population . QTLLl was assigned at
67cM of chromosome 1, and QTL2 at 35 ¢M and QTL4 at
99 ¢M on clromosome 2. The additive effects for QTLI1.
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Table 1. Input values used in the simulation’
QTL additive eftect” 23

Population QTLI OTLZ QTL3 OTLd o,  o; Hertability
1 1.040 0.936 - 1.174 1000 1.000  0.300
2 - (0300 0212 0.321 0.111 1.000  0.100
3 - 0375 0344 0.707 0429 1.000  0.300
4 - 0851 0.58% 1040 1.000 1.000  0.500
3 - 1239 0909 1.624 2.330 1.o00  0.700
6 - 2,194 2057 3.091 9.000 1000 0.900

" Trait mean was 15.8 units. No dominance or epistasis was considered.
* QTL1 was located at 67cM on chromosome 1, and QTL2, QTL3 and
(QTL4 at 33, 20 and 99cM on chromosome 2.

! o-: =Additive variance and o =Envirommental variance.

QTL2. and QTL4 were 1.040. 09536, and 1.174.
respectively. with heritability of 0.3. Dominance and
epistasis were not considered for the QTLs. Tlus population
was analyzed using both CIM and SMACO. We examined
the effect of using various numbers and different tvpes of
cofactors to control genetic background noise. QTLs were
searched using SMA with 1 (SMACO _1). 3 (SMACO 3),3
(SMACO 3). 7 (SMACO_7), and all other loci
(SMACO_all) as cofactors. Note that SMACO_all was the
multiple marker analysis. The CIM was also used with 1
(CIM_1), 3 (CIM_3). 5 (CIM_3). 7 (CIM_7), and all other
loct (CIM_all) as cofactors. All the markers on
chromosomes 1 and 2 were exanuned m groups such as
unhinked markers (UL), markers lmmked to nusance QTL
(LNQ). markers not closely linked to nmsance QTL
(NCLNQ). and flanking markers (FL). The UL were the
markers 1n a linkage group other than the one where the
QTL of interest was located. For example. when QTL2 and
QTL4 on chromosome 2 were exanuned, the markers on
chromosome 1 were regarded as unlinked markers. The
LNQ referred to the ones located within 25 ¢M from the
nuisance QTL, and those located farther than 23 ¢M from
the QTL were regarded as NCLNQ. The FL were flanking
the marker interval examuned. Populations 2 to 6 were
simulated to 1llustrate the influence of hentability level on
QTL detection. The locations of QTL2 and QTL4 on
chromosome 2 1n these populations were simulated as n
population 1, but QTL1 was not simulated. Additionally,
QTL3 was sunulated at 90 ¢M on chromosome 2. so 1t was
only 9 cM apart from QTL4. The additive effects of the
QTL2, QTL3, and QTL4 varied n the five populations
while the same amount of environmental vanance was used.
The hentability of the five populations ranged from 0.1 to
09.

Additionally. vanous marker densities were generated
for population 4 to mvestigate the influence of marker
spacings on QTL mapping. The numbers of markers used
per chromosome were 61, 31. 13. 7. 5. and 4. and they were
evenly distnbuted at the two chromosomes. Their
corresponding marker spacings were 2 ¢cM. 4 ¢cM. 10 cM.
20 ¢M. 30 cM. and 40 cM. respectively.
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A total of 350 replicates were simulated for each
population. The simulated data were analyzed by the
proposed methods. and the calculated LRs were compared
to genome-wide threshold values at a 0.05 sigmficance
level. The threshold wvalues were obtained with 1000
replicates by permutation tests (Churchull and Doerge.
1994).

RESULTS

Single marker analysis with or without cofactors

In population 1. QTL1 was detected by SMA.
regardless of including cofactors (Figure 1). Incorporating
cofactors led the likelihood ratio (LR) to be increased at
markers closely linked to the QTL except for SMACQ _all.
and to be decreased at markers far from the QTL. The LR
estimates showed that SMACO_3 worked most effectively.
Table 2 shows that the estimates of QTL1 effects using
SMA and SMACOQO_all differed (p<0.01) from the input
value. Using SMACO_L. SMACO_3. SMACQO_5. and
SMACO_7 reduced the difference (p<0.05). The estimation
of the QTL effect was improved by introducing cofactors.

All the SMA with or without cofactors were able to
discover the two QTLs on clromosome 2 except for
SMACO_all (Figure 2). Using ordinary SMA. the LR
estimates at all markers were sigmficant at the 0.05
genome-wide significance level. Introducing 3 to 7 cofactor
loci dramatically reduced the genetic background noise.

With multiple QTLs, incorporating cofactors in the
analytical models also mmproved the estimation of QTL
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Figure 1. Likelihood ratio using SMACO in the search for a

single QTL on chromosome 1. SMACO n indicated single-marker
analysis using n cotactors. 1he arrow represents the genome-wide
threshold value at 0.03 significance level.
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Table 2. Estimate of QTL genetic ettect in population 1 using
SMACO'

QTLI QTI.2 QTT.4
Input value 1.040 0.936 1.174
SMA 0.976%*H).021  1.260F*£0.024  1.301%*H).030
SAMCO_1 0.984*+0.020 0.95440.022 1.337*%%+0.029
SMACO_3 0.988*+0.020 0.92440.023 1.267*%%+0.020
SMACO_5 0.988*£0.023  (.910x0.025  1.213H).036
SMACO_7 0.974*x0.023 08975033 1.270%+0.038
SMACO_all  0.887**+0.034 0.843*+0.040 1.290**+0.031

USMACO_1, SMACO 3. SMACO_5, SMACO_7 and SMACO _all were
the single marker analysis with 1. 3, 5, 7. and all other markers as
cofactors. The standard errors were empirically obtained from 30
replicates,

T2 pan.S, = pa(.0].
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Figure 2. Likelthood ratio usmmg SMACO 1n the search for
multiple QTLs on chromesome 2. SMACO_n indicated smgle-
marker analvsis usmg n cotactors as controls. The amrow
represents the genome-wide threshold value at 0.03 significance
level,

effects (Table 2). Estimates of QTL2 and QTL4 effects
using ordinary SMA were largely different (P<0.01) from
their input values. The overestimation resulted from the
genetic background noise due to the segregation of the
linked QTL. Incorporating cofactors dramatically absorbed
the genetic background noise in estimating QTL effects.
The estimates of QTL2 and QTL4 effects using SMACO 3
did not differ (P>0.01) from their input values. However,
using SMACO_all led to underestimation (P<0.05) of QTL
with smaller effect and overestimation (P<0.01) of QTL
with larger effect.

Interval mapping with or without cofactors
The use of CIM in QTL detection produced results
similar to those obtained by SMACO but offered more
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accurate estimates of QTL effects than SMACO. When
chromosome 1 was analyvzed with cofactor(s). LR estimates
were increased at marker interval flanking or closely linked
to QTL 1 except for CIM all. but decreased at other
intervals (Figure 3). The LR estimates showed that the use
of three cofactors (CIM_3) worked most effectively as
shown with SMACQO 3. The estimation for the QTL 1
effect was improved by introducing cofactor(s) (Table 3).

In the analyses of multiple QTLs on chromosome 2. LR
estimates were significant at all marker intervals in IM
(Figure 4). Incorporating cotactor markers produced smaller
LR estimates at unlinked marker intervals (Figure 4). The
effects for QTL 2 and QTL 4 were overestimated (p<0.01)
with IM. and the position estimates were different from the
input values (Table 3). However. they were greatly
improved by introducing cofactor(s), and especially the
estimates of the QTL2 and QTL4 effects using CIM_5 did
not differ (P>0.01) from their input values.

Types of cofactors

When applying CIM to mapping QTLs on chromosome
2. the estimates of QTL effects and positions using CIM
with UL were corresponding to those using IM (Table 4).
However. estimation of the genetic effects was improved
using linked markers such as NCLNQ. LNQ. and FL.
Especially. estimates of genetic effects with LNQ did not
differ (p>0.05) from their input values. Furthermore,
incorporating such linked markers dramatically reduced the
LR estimates at the control marker interval while the LR
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Figure 3. Likelihood ratio usmg CIM 1n the search for a single
QTL on chromosome 1. CIM_n idicated composite mterval
mapping usig n cofactors as controls. The arrow represents the
genome-wide threshold value at 0.03 signmificance level,
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Table 3. Estimates of QTL genetic effect (GE) and linkage position (LP, ¢M) in population 1 using CIM'~

QTL 1 QTL 2 QTL 4

GE LP GE LP GE LP
Input value 1.040 67 0.936 35 1.174 99
M 1.023£0.020 66.3710.46 [127**+0.022  38.29**H).64 1. 488%%+0.027  97.86**+0.35
CIM_1 1.036+0.018 37.5740.43 0.967+0.021 34.29+0.44 1.323**+0.026  98.29%40.35
CIM_3 1.041£0.018 67412042 (0.9340.021 34.38+0.44 1.248**H).020  99.2440.35
CIM_5 1.044+0.020 67.1440.44 0.95540.022 35.48+0.55 1.206+0.027 99.05£0.35
CIM_7 1.042+0.021 67.2940.46 (.947£0.029 34.81£0.36 1.260%*£).028  99.05+0.34
CIM_all 1.035+0.026 67.3340.63 0.92340.031 34.00+0.57 1.278**+).030  98.38*+0.3]

"'CIM_1., CIM 3, CIM_5, CIM_7 and CIM_all were the composite interval mapping with 1. 3. 5. 7. and all other markers as cofactors. The standard

errors were empirically obtaimed tfrom 50 replicates.
THp0.5 F* pa0.01.

100 ¢

Likelihood mtio

100

0 20 40 60 80
Linkage position, cM

120

Figure 4. Likelihood ratie using CIM in the search for multiple
QTLs on chiomosome 2. CIM n indicated a composite interval
mapping using n cofactors as controls. The arrow represents the
genome-wide threshold value at (.03 significance level,

estimates at the intervals where QTL2 and QTL4 were
located remained significant (p<0.03).

Heritability level
Populations 2 to 6 with various heritabilities were used

to investigate how heritability level influenced QTL

detection with cofactors, and the results with chromosome
2 using CIM are shown in Figure 3. All analvses failed to
distinguish the two closely linked QTLs. QTL3 and QTL4.
and this jointly detected QTL was referred to as QTLJ.

Larger LR estimates at the QTL regions were obtained with

a larger heritability. QTL2 and QTLJ were detected from all
the replicates when the heritability was 0.3 or larger. The
results using SMACO showed similar patterns (data not
presented). With a heritability of 0.1. SMACO failed to

discover one of the two QTLs in 45 out of 50 replicates. and
it failed in 17 out of 30 replicates with a heritability of 0.3.
When the heritability was 0.3 or higher, these two QTLs
were discovered at the significance level of 0.05 in all
replicates.

Marker spacing

Population 4 was used to examine how marker spacing
influenced QTL detection with cofactors. and the results
using CIM are shown in Figure 6. QTL3 and QTL4 were
detected jointly when the marker spacings ranged from 4
cM to 40 cM. They were discovered separately only when
the marker spacing was 2 ¢M. In attempts to distinguish two
very closely linked QTLs (less than 3 ¢M apart), both CIM
and SMACO failed even when the marker spacing was
reduced to 1 ¢M (data are not presented).

The peak of LR estimates for QTL2 was obviously
discovered when the marker spacing ranged from 2 ¢M to
20 ¢cM. It became hardly detectable when the marker
spacing was 30 ¢M or larger, and the position began to be
shifted.

DISCUSSION

Reduction of genetic background noise by cofactors

An ordinary SMA has a theoretical problem of
producing underestimated QTL estimates (Liu, 1998), and
so does the SMACO (Table 2). However. the genetic

background mnoise attributable to other QTLs was
dramatically absorbed with well-chosen markers as
cofactors.

Applving single-QTL methods such as SMA and IM to
deal with multiple QTLs was challenged by the confounded
effect of multiple QTLs because segregation of other QTLs
also contributed to the phenotypic variance. Therefore, both
SMA and IM could not discern whether significant effects
at several linked markers are due to a common QTL or to
several linked QTLs. The presence of multiple QTLs
introduced serious biases into QTL estimation with these
approaches. It often led to a confusing situation where all
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Table 4. Estimates of QTL genetic effect (GE) and linkage position (LP, ¢M) in population 1 using CIM with various types of cofactors:
no cotactor (NONE), unlinked markers (UL), markers not closely linked to nuisance QTL (NCLNQ), markers linked to nuisance QTL

(LNQ), and flanking markers (FL)"**

Trpes of cofactors 30~40 cM (QTL2) 90~100 ¢cM (QTLH) 60~70 cM
’ LR GE LP LR GE LP LR

Input value 0.956 33 1.174 99

NONE 63,9823 LI27#%).022  38.29£2.32 929121 1.488%*0.027 97.86£2.31 343820
UL 70.442.1 LI30#*+).019  38.28+2.83 115.642.2 1.483**+0.024 97.3042.31 674419
NCLNQ 21.0£1.0 0.956+0.028 26.23+] .87 45.9+1.8 1.254*+0.029  98.75+2.10 5.340.6
LNQ 45.2x14 0.954£0.018 36.37£1.71 64.4x1.9 1.217£0.026 98.79£2.18 0420.1
FL 7.0£0.8 0.891*£0.031  37.15£1.87 19.320.9 1.266*0.030  99.00£2.53 0.9£0.2

A control non-QTL interval (60--70 cM) was also examined to reflect false positive results.

* Four cofactors were used in all analvses except for NONE. Since the QTLs on chromosome 2 were being examined. all the markers located on
chromosome 1 were regarded as 'L, LNQ were those located within 25 cM from the nuisance QTL. and those located greater than 23 oM from the QTL
were regarded as NCLN(Q). FL were flanking the interval being examined. The standard errors were empirically olnained from 30 replicates.
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Figure 3. Likelihcod ratio from mapping multiple QTLs on
chromosome 2 simulated with various heritability levels. The
mput values for hertability ranged from 0.1 to 0.9 with an
increment of (1.2, A forward regression using 3 cofactors was used
to obtain the results. The arrow represents the genome-wide
threshold value at 0.05 significance level.

marker loci were significant. This problem was especially
serious with SMA. However, this did not mean that SMA
was not capable of searching for multiple QTLs. The
current study showed that the accuracy of QTL mapping
increased by obtaining the linked QTLs separately. Using
SMACO and CIM. the effect of QTL elsewhere in the
linkage was efficiently controlled. As a result, LRs
increased for markers closely linked to a QTL, but
decreased for markers far from the QTL. The results
indicated that both CIM and SMACO were powerful in
dealing with multiple QTLs.

100

Likelihood ratio

60
Linkage position, cM

30 100 120

Figure 6. Likelihood ratio from mapping multiple QTLs on
chromosome 2 simulated with various marker spacing. The results
were obtained by forward regression using 3 cofactors. MSxx
indicates marker spacing of xx ¢M where xx = 2_4, 10, 20, 30, or
40. The arrow represents the genome-wide threshold value at 0.05
signiticance level.

Choice of cofactors

This study indicated that the choice of markers as
cofactors was of great importance in mapping multiple QTL.
The genetic background noise was dramatically absorbed
with linked markers. but not with unlinked markers. This
study showed that flanking markers could be desirable
cofactors when the heritability was high. Piepho and Gauch
(2001) also suggested that the use of flanking markers was
the best controls because they were very efficient at
absorbing genetic background noise. Note that precaution
should be taken with closely linked flanking markers. The
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flanking markers tended to over-absorb the QTL effect,
especially those with a small heritability. As a result. the
effects of weak QTL were underestimated. Another concern
in CIM and SMACO was the number of cofactors. This
studv showed that 3 to 5 cofactors led to good results in
mapping multiple QTLs. Note that it was challenged by the
over-fitting problem when the heritability was low and
when the number of regressor variables was large. No more
than 3 markers were recommended for a low heritability.

Heritability level

This study showed that the heritability level influenced
QTL mapping. A higher level of heritability led to more
significant LRs and more accurate estimates of QTL effects
and positions. The accuracy of marker-trait association was
increased with a large heritability. enhancing the ability to
detect and map QTLs (Belknap. 1998 Wu. 1999: Kearsey
and Farquhar, 1998). The cument study suggested that
reliable results in QTL mapping were obtained when
heritability was 0.3 or larger This concurred with the
findings of Williams and Blangero (1999). They
investigated the asvmptotic power of LR test for detecting
linkage to a QTL and discovered the minimum detectable
QTL herntability of 0.35. Knowing such a threshold level of
heritability was important for optimizing the experimental
design and the sample size for QTL mapping (Weller et al..
1990; Moreno-Gonzalez, 1993).

Marker spacing

The results from the current study showed that the
effects of CIM and SMACO in the search for multiple
QTLs were not different with marker spacings from 4 to 20
cM. After a study, Darvasi et al. (1993) reported that the
power of detecting a QTL was virtually the same for a
marker spacing of 10 ¢cM as that for an infinite number of
markers and was slightly decreased for marker spacing of
20 to 50 cM. They also found that reducing marker spacing
below the resolving power defined as the 93% confidence
interval map position did not improve by narrowing the
confidence interval. Similar evidence was presented by
Piepho (2000) that the power of QTL detection and the
standard errors of genetic effect estimates were affected
little by any increase of marker density beyond 10 cM. The
present study showed that the location of QTL 2 tended to
be shifted with marker spacings from 30 ¢cM to 40 ¢cM. This
was in agreement with Martinez and Curnow (1992) and
Haley and Knott (1992) who reported spurious QTLs in
their search for the presence of multiple QTLs using M
with such large maker spaces. On the other hand, reducing
marker space to less than 2 ¢cM allowed the two QTLs
(QTL3 and QTLY4) that were 9 ¢M apart to be discovered
separately.
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