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ABSTRACT : In order to control the genetic background noise in QTL mapping, cofactor markers were incorporated in single marker 
analysis (SMACO) and interval mapping (CIM). A simulation was performed to see how effective the cofactors were by the number of 
QTL, the number and the type of markers, and the marker spacing. The results of QTL mapping for the simulated data showed that the 
use of cofactors was slightly effective when detecting a single QTL. On the other hand, a considerable improvement was observed when 
dealing with more than one QTL. Genetic background noise was efficiently absorbed with linked markers rather than unlinked markers. 
Furthermore, the efficiency was different in QTL mapping depending on the type of linked markers. Well-chosen markers in both 
SMACO and CIM made the range of linkage position for a significant QTL narrow and the estimates of QTL effects accurate. Generally, 
3 to 5 cofactors offered accurate results. Over-fitting was a problem with many regressor variables when the heritability was small. 
Various marker spacing from 4 to 20 cM did not change greatly the detection of multiple QTLs, but they were less efficient when the 
marker spacing exceeded 30 cM. Likelihood ratio increased with a large heritability, and the threshold heritability for QTL detection was 
between 0.30 and 0.05. (Asian-Aust. J. Anim Sci 2003. Vol 16, No. 4: 473-480)
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INTRODUCTION

Quantitative trait loci (QTLs) have been identified and 
mapped by associating trait phenotypes with multiple 
markers. Analytical models in conventional methods often 
included single marker effect or flanking marker effects. 
The former method was called the single maker analysis 
(SMA) and the latter was the interval mapping (IM, Lander 
and Botstein, 1989). However, these methods were likely to 
render a low resolution of a QTL due to a QTL effect 
confounded with the effect of another QTL elsewhere in the 
linkage group (Wright and Kong, 1997). In order to reduce 
such bias, Zeng (1993) and Jansen (1993) suggested the use 
of a marker interval and a few other well-chosen single 
markers simultaneously, and the method was called 
composite IM (CIM). Employing additional marker loci 
made the genetic background noise to be absorbed with a 
narrow marker region for a significant QTL, resulting in a 
considerably increased QTL resolution (Zeng, 1994). 
Although CIM has been increasingly used in practical QTL 
mapping in animals and plants (Boyle and Gill, 2001; 
Drake et al., 2001; Robison et al., 2001; Wayne et al., 2001;

Wu et al., 2001, 2002), investigations for optimizing the 
effects of cofactors were still limited (Piepho and Gauch, 
2001; Lee, 2002). The effect of CIM largely depended on 
the choice of cofactors. In this paper, we evaluated 
incorporating cofactors in both IM and SMA of QTL 
mapping through simulation. This improved SMA was 
referred to as the single-marker analysis with cofactors 
(SMACO).

MATERIALS AND METHODS

A general idea on cofactor markers
Suppose a biallelic QTL was located between markers i 

and i+1. There were also some other QTLs elsewhere in the 
linkage. Assume the putative QTL of interest was r1 

recombination units apart from the marker i and r2 apart 
from the marker i+1. The trait value was expressed as 
below;

y = #+fi(M)+孕j (C)+e ⑴

where yk was the observed value for individual k in the 
population,卩 was the mean of observed values, f3) 

was a function of genotype for marker i for SMACO or for 
marker loci i and i + 1 for CIM, and ek was the residual. 
fj (C.) was a function of genotype for a cofactor. Note that 

j 壬 i for SMACO, and j 丰 i, i + 1 for CIM.
Under the assumption of independent and identical 

normal distributions with variance equaled to S for the 
trait values, the general form of likelihood function was
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l=—Ui 交 p(0网 세- 쓰늣비 (2)
(2L 2b」

where p(Q{ ^m_)was the conditional probability of QTL 

genotype l given marker Mt, and 闵 was the mean of trait 
values with the QTL genotype l.

The logarithm of Equation (2) was

1 = LogL = -+ZLog ]z P(Qi \ î )exp -쓰厂争丄 I (3)
2 k=1 [ 1=1 |_ 2b 」

Under the null hypothesis h0:临=丄西=，〃”=，如 the 
log likelihood was

1H0 =-스产眼 S) 一% 쁭芹

2 k=1 2b
(4)

The following likelihood ratio was defined as a test 
statistics for the hypothesis that a QTL is not linked to the 
marker (SMACO) or marker interval (CIM);

lr=2卩-y ]. (5)

The corresponding lod score for the null hypothesis test 
was

lod = L°g(10)L — Log(10) LH0 - (6)

The genetic effect of the putative QTL linked to 
marker(s) was estimated by maximum likelihood.

An example of single marker analysis with cofactors
Since Zeng (1993,994) described CIM as a combination 

of simple IM and multiple linear regression, here we show 
an example for SMACO using backcross progeny. A 
progeny population was derived from backcrossing the F1 
(Aa) with the parent with AA marker genotype. The 
analytical regression model for SMACO with backcross 
progeny was

yik = b0 + b[Xik + £ bjX j + eik ⑺

丿再

where b0 was the intercept of the model, bi was the slope 
of regression for the putative QTL linked to marker i, Xik 

was a dummy variable taking 1 for marker genotype AA 
and -1 for Aa, b was the partial regression coefficient of 

the observation on marker j, X k was the dummy variable 

for cofactor marker j of individual k, taking 1 for the 
cofactor marker genotype AA and -1 for Aa, and eik was 
the residual.

Assuming that eik was normally distributed with mean 

zero and variance a2, the likelihood function for the

SMACO was

L = 1 占 “ 、I (M -，阪)21 
----------------- Nn (1—，)exp< °〉 2 | + rexp 
(2na泸 k=1 L 〔--- 2b

(Jik —，Qq ▼ 

一券-

[쯔T 1 (y2k —，QQ) ] 〃 \ 1 (y2k —，Qq) ]qye끼 一―2注丄：+(1-庆끼-一2^4： (8)

where n1 and n2 were the numbers of individuals having 
marker genotypes AA and Aa, respectively, at the marker 
locus i (N = n + n2). Note that the recessive homozygous 
genotypes (aa) for the marker was missing in the backcross 
progeny, and p(Q^aa) = 0.

The logarithm of Equation (8) was

N ->
l = 一2 Log (2na2)

,/I 、 [ (y1k —卩QQ) ] , [ (y1k —，Q )]+£ 'x—W「케,

坨严rexp|-一房1卜d-次叶一L(9)

Under the null hypothesis H0:临=，或=卩，the log 
likelihood was

N , 2丄
lH0 = —3LogQm )—££ 

2 i=1 k=1

(嫁―时 
2b

(10)

Then the likelihood ratio and the lod score for the null 
hypothesis were obtained as shown in the Equations (5) and 
(6).

Simulation
A simulation study for diploid organisms was performed 

to investigate the properties and utilities of cofactors. 
Typical backcross populations were simulated with QTL 
Cartographer for Windows Version 1.01 (Basten et al., 
1994). From two distinct populations, six males from one 
population and six females from the other population were 
randomly selected and mated, producing six full-sib 
families in the F1 generation. Five daughters from each full- 
sib family were used to cross back to their corresponding 
fathers. Ten individuals were born from each pair, and the 
300 individuals in the backcross generation were genotyped.

A total of six populations were simulated and two 
chromosomes that were both 120 cM in linkage length were 
generated for each population. The input values to simulate 
these populations were presented in Table 1. In all the 
populations, 13 markers were evenly located on both 
chromosomes. For population 1, QTL1 was assigned at 
67cM of chromosome 1, and QTL2 at 35 cM and QTL4 at 
99 cM on chromosome 2. The additive effects for QTL1,
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Table 1. Input values used in the simulation1

1 Trait mean was 15.8 units. No dominance or epistasis was considered.
2 QTL1 was located at 67cM on 나iromosome 1, and QTL2, QTL3 and

Population QTL additive effect2
QTL1 QTL2 QTL3 QTL4

芸 B2 Heritability

1 1.040 0.956 - 1.174 1.000 1.000 0.500
2 - 0.300 0.212 0.321 0.111 1.000 0.100
3 - 0.575 0.344 0.707 0.429 1.000 0.300
4 - 0.851 0.589 1.040 1.000 1.000 0.500
5 - 1.239 0.909 1.624 2.330 1.000 0.700
6 - 2.194 2.057 3.091 9.000 1.000 0.900

QTL4 at 35, 90 and 99cM on chromosome 2.
3 (y2 =Additive variance and 勇=Environmental variance.

QTL2, and QTL4 were 1.040, 0.956, and 1.174, 
respectively, with heritability of 0.5. Dominance and 
epistasis were not considered for the QTLs. This population 
was analyzed using both CIM and SMACO. We examined 
the effect of using various numbers and different types of 
cofactors to control genetic background noise. QTLs were 
searched using SMA with 1 (SMACO_1), 3 (SMACO_3), 5 
(SMACO_5), 7 (SMACO_7), and all other loci 
(SMACO_all) as cofactors. Note that SMACO_all was the 
multiple marker analysis. The CIM was also used with 1 
(CIM_1), 3 (CIM_3), 5 (CIM_5), 7 (CIM_7), and all other 
loci (CIM_all) as cofactors. All the markers on 
chromosomes 1 and 2 were examined in groups such as 
unlinked markers (UL), markers linked to nuisance QTL 
(LNQ), markers not closely linked to nuisance QTL 
(NCLNQ), and flanking markers (FL). The UL were the 
markers in a linkage group other than the one where the 
QTL of interest was located. For example, when QTL2 and 
QTL4 on chromosome 2 were examined, the markers on 
chromosome 1 were regarded as unlinked markers. The 
LNQ referred to the ones located within 25 cM from the 
nuisance QTL, and those located farther than 25 cM from 
the QTL were regarded as NCLNQ. The FL were flanking 
the marker interval examined. Populations 2 to 6 were 
simulated to illustrate the influence of heritability level on 
QTL detection. The locations of QTL2 and QTL4 on 
chromosome 2 in these populations were simulated as in 
population 1, but QTL1 was not simulated. Additionally, 
QTL3 was simulated at 90 cM on chromosome 2, so it was 
only 9 cM apart from QTL4. The additive effects of the 
QTL2, QTL3, and QTL4 varied in the five populations 
while the same amount of environmental variance was used.
The heritability of the five populations ranged from 0.1 to 
0.9.

Additionally, various marker densities were generated 
for population 4 to investigate the influence of marker 
spacings on QTL mapping. The numbers of markers used 
per chromosome were 61, 31, 13, 7, 5, and 4, and they were 
evenly distributed at the two chromosomes. Their 
corresponding marker spacings were 2 cM, 4 cM, 10 cM, 
20 cM, 30 cM, and 40 cM, respectively.

A total of 50 replicates were simulated for each 
population. The simulated data were analyzed by the 
proposed methods, and the calculated LRs were compared 
to genome-wide threshold values at a 0.05 significance 
level. The threshold values were obtained with 1000 
replicates by permutation tests (Churchill and Doerge, 
1994).

RESULTS

Single marker analysis with or without cofactors
In population 1, QTL1 was detected by SMA, 

regardless of including cofactors (Figure 1). Incorporating 
cofactors led the likelihood ratio (LR) to be increased at 
markers closely linked to the QTL except for SMACO_all, 
and to be decreased at markers far from the QTL. The LR 
estimates showed that SMACO_3 worked most effectively. 
Table 2 shows that the estimates of QTL1 effects using 
SMA and SMACO_all differed (p<0.01) from the input 
value. Using SMACO_1, SMACO_3, SMACO_5, and 
SMACO_7 reduced the difference (p<0.05). The estimation 
of the QTL effect was improved by introducing cofactors.

All the SMA with or without cofactors were able to 
discover the two QTLs on chromosome 2 except for 
SMACO_all (Figure 2). Using ordinary SMA, the LR 
estimates at all markers were significant at the 0.05 
genome-wide significance level. Introducing 3 to 7 cofactor 
loci dramatically reduced the genetic background noise.

With multiple QTLs, incorporating cofactors in the 
analytical models also improved the estimation of QTL

Figure 1. Likelihood ratio using SMACO in the search for a 
single QTL on chromosome 1. SMACO_n indicated sin이e-marker 
analysis using n cofactors. The arrow represents the genome-wide 
threshold value at 0.05 significance level.
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Table 2. Estimate of QTL genetic effect in population 1 using 
smaco1，2

QTL1 QTL2 QTL4
Input value 1.040 0.956 1.174
SMA 0.976** ±0.021 1.260** ±0.024 1.501** ±0.030
SAMCO_1 0.984* ±0.020 0.954±0.022 1.337** ±0.029
SMACO_3 0.988* ±0.020 0.924±0.023 1.267** ±0.020
SMACO_5 0.988* ±0.023 0.910±0.025 1.213±0.036
SMACO_7 0.974* ±0.025 0.897±0.033 1.270* ±0.038
SMACO_all 0.887** ±0.034 0.843* ±0.040 1.290** ±0.031
1 SMACO_1, SMACO_3, SMACO_5, SMACO_7 and SMACO_all were 
the single marker analysis with 1, 3, 5, 7, and all other markers as 
cofactors. The standard errors were empirically obtained from 50 
replicates.

2 * p<0.5, ** p<0.01.
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accurate estimates of QTL effects than SMACO. When 
chromosome 1 was analyzed with cofactor(s), LR estimates 
were increased at marker interval flanking or closely linked 
to QTL 1 except for CIM_all, but decreased at other 
intervals (Figure 3). The LR estimates showed that the use 
of three cofactors (CIM_3) worked most effectively as 
shown with SMACO_3. The estimation for the QTL 1 
effect was improved by introducing cofactor(s) (Table 3).

In the analyses of multiple QTLs on chromosome 2, LR 
estimates were significant at all marker intervals in IM 
(Figure 4). Incorporating cofactor markers produced smaller 
LR estimates at unlinked marker intervals (Figure 4). The 
effects for QTL 2 and QTL 4 were overestimated (p<0.01) 
with IM, and the position estimates were different from the 
input values (Table 3). However, they were greatly 
improved by introducing cofactor(s), and especially the 
estimates of the QTL2 and QTL4 effects using CIM_5 did 
not differ (P>0.01) from their input values.
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Types of cofactors
When applying CIM to mapping QTLs on chromosome 

2, the estimates of QTL effects and positions using CIM 
with UL were corresponding to those using IM (Table 4). 
However, estimation of the genetic effects was improved 
using linked markers such as NCLNQ, LNQ, and FL. 
Especially, estimates of genetic effects with LNQ did not 
differ (p>0.05) from their input values. Furthermore, 
incorporating such linked markers dramatically reduced the 
LR estimates at the control marker interval while the LR

0 20 40 60 80 100 120
Linkage position, cM

70

Figure 2. Likelihood ratio using SMACO in the search fOr 
multiple QTLs on chromosome 2. SMACO_n indicated single­
marker analysis using n cofactors as controls. The arrow 
represents the genome-wide threshold value at 0.05 significance 
level.

effects (Table 2). Estimates of QTL2 and QTL4 effects 
using ordinary SMA were largely different (P<0.01) from 
their input values. The overestimation resulted from the 
genetic background noise due to the segregation of the 
linked QTL. Incorporating cofactors dramatically absorbed 
the genetic background noise in estimating QTL effects. 
The estimates of QTL2 and QTL4 effects using SMACO_5 
did not differ (P>0.01) from their input values. However, 
using SMACO_all led to underestimation (P<0.05) of QTL 
with smaller effect and overestimation (P<0.01) of QTL 
with larger effect.

Interval mapping with or without cofactors
The use of CIM in QTL detection produced results 

similar to those obtained by SMACO but offered more

―IM
-■- CIM_1 
f- CIM_3
* CIM_5 
—CIM_7
♦ CIM all

으
흔
 P

O
O

L 긍

-

、

I

0
0 20 40 60 80 100 120

Linkage position, cM

Figure 3. Likelihood ratio using CIM in the search for a single 
QTL on chromosome 1. CIM_n indicated composite interval 
mapping using n cofactors as controls. The arrow represents the 
genome-wide threshold value at 0.05 significance level.
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Table 3. Estimates of QTL genetic effect (GE) and linkage position (LP, cM) in population 1 using CIM1,
QTL 1 QTL 2 QTL 4

GE LP GE LP GE LP
Input value 1.040 67 0.956 35 1.174 99
IM 1.023±0.020 66.57±0.46 1.127** ±0.022 38.29** ±0.64 1.488** ±0.027 97.86** ±0.35
CIM_1 1.036±0.018 37.57±0.43 0.967±0.021 34.29±0.44 1.323** ±0.026 98.29* ±0.35
CIM_3 1.041±0.018 67.41±0.42 0.954±0.021 34.38±0.44 1.248** ±0.020 99.24±0.35
CIM_5 1.044±0.020 67.14±0.44 0.955±0.022 35.48±0.55 1.206±0.027 99.05±0.35
CIM_7 1.042±0.021 67.29±0.46 0.947±0.029 34.81±0.56 1.260** ±0.028 99.05±0.34
CIM_all 1.035±0.026 67.33±0.63 0.923±0.031 34.00±0.57 1.278** ±0.030 98.38* ±0.31
1 CIM_1, CIM_3, CIM_5, CIM_7 and CIM_all were the composite interval mapping with 1, 3, 5, 7, and all other markers as cofactors. The standard 
errors were empirically obtained from 50 replicates.

2 * p<0.5, ** p<0.01.

Figure 4. Likelihood ratio using CIM in the search for multiple 
QTLs on chromosome 2. CIM_n indicated a composite interval 
mapping using n cofactors as controls. The arrow represents the 
genome-wide threshold value at 0.05 significance level.

estimates at the intervals where QTL2 and QTL4 were 
located remained significant (p<0.05).

Heritability level
Populations 2 to 6 with various heritabilities were used 

to investigate how heritability level influenced QTL 
detection with cofactors, and the results with chromosome 
2 using CIM are shown in Figure 5. All analyses failed to 
distinguish the two closely linked QTLs, QTL3 and QTL4, 
and this jointly detected QTL was referred to as QTLJ. 
Larger LR estimates at the QTL regions were obtained with 
a larger heritability. QTL2 and QTLJ were detected from all 
the replicates when the heritability was 0.5 or larger. The 
results using SMACO showed similar patterns (data not 
presented). With a heritability of 0.1, SMACO failed to 

discover one of the two QTLs in 45 out of 50 replicates, and 
it failed in 17 out of 50 replicates with a heritability of 0.3. 
When the heritability was 0.5 or higher, these two QTLs 
were discovered at the significance level of 0.05 in all 
replicates.

Marker spacing
Population 4 was used to examine how marker spacing 

influenced QTL detection with cofactors, and the results 
using CIM are shown in Figure 6. QTL3 and QTL4 were 
detected jointly when the marker spacings ranged from 4 
cM to 40 cM. They were discovered separately only when 
the marker spacing was 2 cM. In attempts to distinguish two 
very closely linked QTLs (less than 5 cM apart), both CIM 
and SMACO failed even when the marker spacing was 
reduced to 1 cM (data are not presented).

The peak of LR estimates for QTL2 was obviously 
discovered when the marker spacing ranged from 2 cM to 
20 cM. It became hardly detectable when the marker 
spacing was 30 cM or larger, and the position began to be 
shifted.

DISCUSSION

Reduction of genetic background noise by cofactors
An ordinary SMA has a theoretical problem of 

producing underestimated QTL estimates (Liu, 1998), and 
so does the SMACO (Table 2). However, the genetic 
background noise attributable to other QTLs was 
dramatically absorbed with well-chosen markers as 
cofactors.

Applying single-QTL methods such as SMA and IM to 
deal with multiple QTLs was challenged by the confounded 
effect of multiple QTLs because segregation of other QTLs 
also contributed to the phenotypic variance. Therefore, both 
SMA and IM could not discern whether significant effects 
at several linked markers are due to a common QTL or to 
several linked QTLs. The presence of multiple QTLs 
introduced serious biases into QTL estimation with these 
approaches. It often led to a confusing situation where all
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Table 4. Estimates of QTL genetic effect (GE) and linkage position (LP, cM) in population 1 using CIM with various types of cofactors: 
no cofactor (NONE), unlinked markers (UL), markers not closely linked to nuisance QTL (NCLNQ), markers linked to nuisance QTL 
(LNQ), and flanking markers (FL)1,2,3

Types of cofactors
LR

30~40 cM (QTL2) 
GE LP LR

90~100 cM (QTL 
GE

4)
LP

60~70 cM
LR

Input value 0.956 35 1.174 99
NONE 65.9±2.3 1.127** ±0.022 38.291252 92.9 ±2.1 1.488** ±0.027 97.86±2.31 54.3±2.0
UL 70.4±2.1 1.130** ±0.019 3&28±283 115.6±2.2 1.483** ±0.024 97.30±2.31 67.4±1.9
NCLNQ 21.0±1.0 0.956±0.028 26.23±1.87 45.9±1.8 1.254* ±0.029 98.75±2.10 5.3±0.6
LNQ 45.2±1.4 0.954±0.018 36.37±1.71 64.4±1.9 1.217±0.026 98.79±2.18 0.4±0.1
FL 7.0±0.8 0.891* ±0.031 37.15±1.87 19.3±0.9 1.266* ±0.030 99.00±2.53 0.9±0.2
1 A control non-QTL interval (60~70 cM) was also examined to reflect false positive results.
2 Four cofactors were used in all analyses except for NONE. Since the QTLs on chromosome 2 were being examined, all the markers located on 
chromosome 1 were regarded as UL. LNQ were those located within 25 cM from the nuisance QTL, and those located greater than 25 cM from the QTL 
were regarded as NCLNQ. FL were flanking the interval being examined. The standard errors were empirically obtained from 50 replicates.

3 * p<0.5, ** p<0.01.

Linkage position, cM

Figure 5. Likelihood ratio from mapping multiple QTLs on 
chromosome 2 simulated with various heritability levels. The 
input values for heritability ranged from 0.1 to 0.9 with an 
increment of 0.2. A forward regression using 5 cofactors was used 
to obtain the results. The arrow represents the genome-wide 
threshold value at 0.05 significance level.

Figure 6. Likelihood ratio from mapping multiple QTLs on 
chromosome 2 simulated with various marker spacing. The results 
were obtained by forward regression using 5 cofactors. MSxx 
indicates marker spacing of xx cM where xx = 2, 4, 10, 20, 30, or 
40. The arrow represents the genome-wide threshold value at 0.05 
significance level.

marker loci were significant. This problem was especially 
serious with SMA. However, this did not mean that SMA 
was not capable of searching for multiple QTLs. The 
current study showed that the accuracy of QTL mapping 
increased by obtaining the linked QTLs separately. Using 
SMACO and CIM, the effect of QTL elsewhere in the 
linkage was efficiently controlled. As a result, LRs 
increased for markers closely linked to a QTL, but 
decreased for markers far from the QTL. The results 
indicated that both CIM and SMACO were powerful in 
dealing with multiple QTLs.

Choice of cofactors
This study indicated that the choice of markers as 

cofactors was of great importance in mapping multiple QTL. 
The genetic background noise was dramatically absorbed 
with linked markers, but not with unlinked markers. This 
study showed that flanking markers could be desirable 
cofactors when the heritability was high. Piepho and Gauch 
(2001) also suggested that the use of flanking markers was 
the best controls because they were very efficient at 
absorbing genetic background noise. Note that precaution 
should be taken with closely linked flanking markers. The 
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flanking markers tended to over-absorb the QTL effect, 
especially those with a small heritability. As a result, the 
effects of weak QTL were underestimated. Another concern 
in CIM and SMACO was the number of cofactors. This 
study showed that 3 to 5 cofactors led to good results in 
mapping multiple QTLs. Note that it was challenged by the 
over-fitting problem when the heritability was low and 
when the number of regressor variables was large. No more 
than 5 markers were recommended for a low heritability.

Heritability level
This study showed that the heritability level influenced 

QTL mapping. A higher level of heritability led to more 
significant LRs and more accurate estimates of QTL effects 
and positions. The accuracy of marker-trait association was 
increased with a large heritability, enhancing the ability to 
detect and map QTLs (Belknap, 1998; Wu, 1999; Kearsey 
and Farquhar, 1998). The current study suggested that 
reliable results in QTL mapping were obtained when 
heritability was 0.3 or larger. This concurred with the 
findings of Williams and Blangero (1999). They 
investigated the asymptotic power of LR test for detecting 
linkage to a QTL and discovered the minimum detectable 
QTL heritability of 0.35. Knowing such a threshold level of 
heritability was important for optimizing the experimental 
design and the sample size for QTL mapping (Weller et al., 
1990; Moreno-Gonzalez, 1993).

Marker spacing
The results from the current study showed that the 

effects of CIM and SMACO in the search for multiple 
QTLs were not different with marker spacings from 4 to 20 
cM. After a study, Darvasi et al. (1993) reported that the 
power of detecting a QTL was virtually the same for a 
marker spacing of 10 cM as that for an infinite number of 
markers and was slightly decreased for marker spacing of 
20 to 50 cM. They also found that reducing marker spacing 
below the resolving power defined as the 95% confidence 
interval map position did not improve by narrowing the 
confidence interval. Similar evidence was presented by 
Piepho (2000) that the power of QTL detection and the 
standard errors of genetic effect estimates were affected 
little by any increase of marker density beyond 10 cM. The 
present study showed that the location of QTL 2 tended to 
be shifted with marker spacings from 30 cM to 40 cM. This 
was in agreement with Martinez and Curnow (1992) and 
Haley and Knott (1992) who reported spurious QTLs in 
their search for the presence of multiple QTLs using IM 
with such large maker spaces. On the other hand, reducing 
marker space to less than 2 cM allowed the two QTLs 
(QTL3 and QTL4) that were 9 cM apart to be discovered 
separately.
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