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1.  Introduction

When scheduling jobs on machines, we are often 
confronted with a situation where each job is not 
equally important and machines have different 
capabilities to each other. An important job might 
be originated from a customer of high priority, or 
impending requirements that could not be resolved 
within previous production period, etc. Likewise, 
no two machines are of the same but a machine 
can produce products of high quality and lower 
defects to another one.

Formally, we are given a set of machines
M={1,…,m} where machine i is thought to have 
better capability than machine i+1. On the m 
machines, we shall schedule n jobs, J={1,…,n}. 
Each job j has processing time p j and has a 
range of machines, called consecutively eligible 
set, Ej⊆M, only one of which the job can be 

assigned to. Ej is consecutively eligible set in the 
sense that if Ej={ i 1,…,i r}, then the machines 
can be ordered so that i k+1= i k+1,k=1,…,r-1. 
An important job is likely to have the first 
machine i 1 closer to the best capable machine 1 
and wider range of eligible machines. The objective 
of our problem is to find a schedule with 
minimum makespan, in which each job is assigned 
to a machine in its consecutively eligible set. 
Machine scheduling problems are often classified 
using the three-field representation α|β|γ of Graham 
et al. (1979) where α describes machine environ- 
ment, β sets restrictions on job processing and γ 
defines objective function. Then, we can denote 
our problem by P|Ej|C max

using the representation.
In order to better understand our problem, we 

consider more general problem than ours, called 
parallel machine scheduling problem with eligibility 
denoted by P|Ej|C max

. In this problem, the eligi- 
ble set Ej⊆M need not be consecutive. We for- 



2-Approximation Algorithm for Parallel Machine Scheduling with Consecutive Eligibility 191

mulate the problem P|Ej|C max
 as the following 

integer linear program:

Minimize C
Subject to

∑
i∈Ej
x ij=1  for  j=1,…,n

∑
j:i∈Ej

p jx ij≤C for  i=1,…,m

x ij∈{0,1}.

The problem P|Ej|C max
 can be applied to the 

health care industry. The processing flexibility of 
each operating room depends on the equipments it 
has. Hospitals want to fit in the rooms as many 
cases (patients) as possible, while considering the 
type of facilities needed for each case (Vairaktara- 
kis and Cai, 2001). Thus, each case cannot be 
handled in all the operating rooms but some 
subset of them. Here, operating rooms represent 
the machines and the cases represent the jobs. 
Vairaktarakis and Cai developed a branch-and- 
bound procedure for the problem. In semiconductor 
manufacturing, machine capabilities in workcenters 
are different: machines in a wafer test workcenter 
cannot process all the jobs but pre-specified type 
of jobs (Centeno and Armacost, 1997). Sometimes, 
machine eligible set for each type of jobs is 
consecutive and thus the problem P|Ej|C max

 applies 
to in this case.

When every Ej=M for all jobs j, it is the classical 
parallel machine scheduling problem denoted by 
P||C max

. We note that P||C max
 is a special case of our 

problem P|Ej|C max
. The classical parallel machine 

scheduling problem is NP-Complete (Garey and 
Johnson, 1979), so that it is unlikely that there exists 
efficient algorithms to find a schedule with optimum 
makespan. As a result, the focus of the theoretical 
research concerning parallel machine scheduling 
problem has been the analysis of the worst-case 
performances of various heuristic methods. Polyno- 
mial time algorithms that always produce schedules 
with makespan at most (1+ε) times optimum are 
called (1+ε)-approximation algorithms. A family of 
algorithms {A ε : ε > 0} is called polynomial time 
approximation scheme (PTAS), if each A ε is (1+ε)
-approximation algorithm. If each (1+ε)-algorithm 
in a family runs in polynomial of 1/ε as well as 
problem size, the family is called fully polynomial 
time approximation scheme (FPTAS).

Consider first the problem P||C max
 for m=2 or 

P2||C max
. The decision version of this problem is 

partition problem, which is NP-Complete in the 
ordinary sense. Thus, there exists exact (pseudo- 
polynomial time) algorithm using dynamic progra- 
mming(Garey and Johnson, 1979). Furthermore, we 
can generate fast a schedule with makespan at 
most (1+ε) times optimum by deploying FPTAS's 
for knapsack problems (Ibarra and Kim, 1975; 
Kellerer and Pferschy, 1999). Recently, 12/11
-approximation algorithm with running time of 
O(n) was developed (He et al., 2000). Though 
there are many efficient algorithms for P2||C max

, 
it does not seem to be so in the case of P||C max

 
as the problem is proven to be NP-Complete in 
the strong sense. Hence, it does not exist any 
FPTAS for this problem unless P≠NP. It was 
shown that LPT (Longest Processing Time first) 
and MULTIFIT algorithm yield schedules with 
makespan no more than 4/3-1/3m (Graham, 
1969) and 13/11 times optimum (Friesen, 1984; 
Yue, 1990), respectively. Hochbaum and Shmoys 
(1987, 1997) devised a PTAS for this problem 
though it runs not so fast in practice.

To the problem of P|Ej|C max
, a greedy LS (List 

Scheduling) algorithm is applied and the perfor- 
mance ratio is proved to be log22m (Azar et al., 
1995). However, in general, it has been known 
that there cannot even exist PTAS for P|Ej|C max

 
unless P≠NP from the research of Lenstra et al. 
(1990). That is, they showed that no (1+ε)
-approximation algorithm can exist for all ε< 1/2. 
Moreover, they presented an LP-based algorithm 
with worst-case performance ratio two on the most 
general case of unrelated parallel machine schedul- 
ing problem. Thus, using the algorithm we can 
generate schedule whose makespan is at most 
twice optimum for the problems P|Ej|C max

 and 
P|Ej|C max

.
For the problem P|Ej|C max

, it is still an open 
question whether a PTAS exists or not. Though 
the LP-based algorithm is 2-approximate for 
P|Ej|C max

, its running time is not polynomial of 
the parameters of n and m but of the problem 
size. In other words, it is not a strongly 
polynomial time algorithm. Recently, Hwang(2002) 
presented strongly polynomial algorithm MFFH 
(Multi First Fit preferred in Horizon) similar to 
the binary search algorithm MULTIFIT (Coffman 
et al., 1978). However, the statement was not 
proved that MFFH always generates a schedule of 
twice optimum in Hwang (2002). In addition, it 
has been unknown until now whether the worst- 
case performance ratio of MFFH is strictly less 
than two.
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The primary contribution of this paper is (1) to 
present the proof that the performance ratio of 
MFFH is at most two and (2) to show that 
MFFH cannot yield a schedule with makespan 
strictly less than twice optimum in worst-case by 
providing an example. As a result, we show that 
the performance ratio of MFFH is two.

We present some definitions in Section 2. In 
Section 3, the subfunction FFH (First Fit preferred 
in Horizon) of MFFH is described. Then, in 
Section 4, we describe MFFH and prove its worst- 
case performance. The time complexity MFFH is 
presented in Section 5. Finally, conclusions are 
followed.

2.  Definitions 

An instance of our scheduling problem is denoted 
by ( J,m). Let μ j and ν j denote the first and last 
eligible machine in the consecutively eligible 
machine set. That is, when Ej={ i 1,…,i r}, we let 
μ j= i 1 and ν j= i r. We simply call the set Ej 
eligible horizon and just denote it as an interval 
[μ j,ν j]. For two jobs j and k, job j is said to 

be preferable to job k if ν j≤ν k. Then a schedule 
for an instance ( J,m) is a partition of J into m 
disjoint sets, S=<S 1,…,Sm> such that j∈Si if 
machine i belongs to the eligible horizon of job 
j, that is, μ j≤i≤ν j. The makespan of a schedule 
S, denoted by z(S), is defined as max 1≤i≤mt(Si), 
where for any set of J ' ⊆J, t(J')= ∑

j∈J'
p j if J'≠∅,

0, otherwise. The optimum makespan for ( J,m) is 
denoted by z *(J,m)= minz(S), where the minimi- 
zation is over all the schedules S. Then the per- 
formance ratio for an algorithm A is defined by 

R(A)= sup {
zA(S)

z
*(J,m)

: S  is a schedule by A

for  all instances (J,m)}.

Any algorithm with performance ratio no greater 
than r is called r-approximation algorithm.

3.  The algorithm  FFH

The algorithm MFFH (Multi FFH) is a binary 
search method which uses internal subfunction 
FFH (First Fit preferred in Horizon). Firstly, we 

describe the function FFH. Given pre-specified 
time deadline C, FFH checks if it is possible to 
assign all the jobs within the time line C. FFH 
takes the first job in a list of jobs which is in the 
order of preference and then assigns the job on a 
machine with the smallest possible index, which is 
in the eligible horizon of the job, and can process 
the job within time C. Function FFH returns 
value true with a schedule if all the jobs were 
assigned within the specified time, false, otherwise. 
Now we present the algorithm FFH in <Figure 1>.

Boolean function FFH( J,m,C)
begin
    Sort jobs of J in the order of preference 

so that
   ν1≤,…,≤νn;
    for i :=1 to m do Si :=∅;
    FFH := true; i :=μ1; j :=1;
    repeat
        if t(Si)+p j≤C then begin
            Si :=Si ∪ { j};
            j := j+1;
            i :=μ j;
        end
        else i := i+1;
    until ( j>n or i>ν j)
    if i>ν j then FFH : = false;
end

Figure 1.  Algorithm FFH.

Without loss of generality, from now on we 
assume ν j≤ν j+1 for all 1≤j<n. We denote 
Sj=<Sj1,…,S

j
m> as the partial FFH schedule 

which has been constructed at the time right 
before job j is tried to be assigned. The 
following lemma implies the algorithm FFH has 
monotonicity property for binary search and 
assures a schedule with some bounded makespan.

Lemma 1 Suppose that for each job j in J, its 
processing time is not greater than ρz *(J,m),0 <ρ≤1. 
Then for all C≥(1+ρ)z *(J,m), FFH(J,m,C)=true.

Proof. Assume the lemma is not true and ( J,m) 
is a counterexample in which FFH(J,m,C)=false, 
for some C≥(1+ρ)z *(J,m). Let j be the first 
job which could not be assigned within time C. 
That is, FFH terminated with false value with the 
partial FFH schedule Sj. Then, we obtain 



2-Approximation Algorithm for Parallel Machine Scheduling with Consecutive Eligibility 193

t(Sji)+p j>C≥(1+ρ)z
*(J,m) and thus

t(S ji) >  z
*(J,m)  for  μ j≤i≤ν j, (1)

since p j≤ρz *(J,m). Note that there exists at least 
one machine i such that t(S ji)≤z *(J,m),1≤i≤ν j, 
since the sum of all the processing times of the 
jobs, whose eligible machines are within [1,ν j], 
is not greater than ν jz *(J,m). Let machine r be 
the last machine such that t(Sji)≤z *(J,m),1≤i≤r 
and t(Sji)>z *(J,m) for all r< i≤ν j. Such r exists 
by (1). From the fact that t(Sjr)≤z *(J,m), we 
know all the jobs assigned to machines i> r will 
not be eligible to machines from 1 to r. It is 
because if there is a job k with  μ k≤r and it is 
assigned to machines i> r, then it means

t(Sjr)+pk ≥ t(S
k
r)+pk >  C ≥ (1+ρ)z

*(J,m) 

and thus pk> ρz *(J,m), which is a contradiction to 

the assumption. Hence, all the jobs in ∪
ν j

i= r+1
S ji and 

j must only be eligible to machines from r+1 to 
ν j. However, from the fact that 

∑
ν j

i=r+1
t(Sji)+p j  >  (ν j-r)z

*(J,m)+p j,

we see it is impossible for these jobs to be 
assigned on the ν j-r machines within time 
z *(J,m). This is a contradiction.

4.  Algorithm  M FFH  and its 
     Perform ance

The algorithm FFH will be used as the underlying 
subfunction of the binary search method MFFH 
for which we want to prove that it always genera- 
tes a schedule with makespan no greater than (1+ρ) 
times optimal when each job has processing time 
at most ρz *(J,m), for  0<ρ≤1. MFFH starts with 
predetermined lower and upper bound for the 
estimated makespan of a problem instance. MFFH 
utilizes the results on LS (List Scheduling) 
schedule to obtain the needed lower and upper 
bound, CL(J,m) and CU(J,m), respectively. We 
know from the the study of Azar  et al. (1995) 
that the LS algorithm can do no worse than 
log 22m times the optimum. We thus first apply 

the LS algorithm and then constructs:  

CL( J,m) = max {∑j p j/m,
z LS
log 22m },

          CU(J,m) = z LS,

where z LS is the makespan of a schedule by 
LS. Note that CL(J,m)≤z *(J,m). 

The MFFH with k binary search iteration is 
denoted by MFFH[k] and can be described as 
shown in <Figure 2>.

    Procedure MFFH [k](J,m)  
    begin   
         CL :=CL(J,m);   
         CU :=CU(J,m);   
          for i :=1  to k  do begin  
              C := (CL+CU)/2;  
              if FFH (J,m,C)=true   
                  then CU :=C;  
              else CL :=C;  
          end  
    end

Figure 2.  Algorithm MFFH

The MFFH schedule is defined to be the latest 
feasible schedule generated by the FFH with 
returned value true during the k iterations. If all 
the k operations of FFH resulted in failure, we 
set the one generated by LS as the MFFH 
schedule. 

In the execution of the algorithm MFFH[k], the 
size of the interval [CL,CU] is reduced by half 
at each iteration. It is easy to see that the gap 
between CL(J,m) and CU(J,m) is at most 
log 22m⋅z

*(J,m). Then this together with Lemma 
1 implies the following theorem, which can be 
proved in a similar way to that by Coffman et al. 
(1978). First, let CLk and CUk be the final lower 
and upper bound value, respectively, made right 
after the kth calling of the algorithm FFH. Then 
from the nature of binary search of MFFH, we 
obtain that

CUk-CLk ≤ 2
- k(CU(J,m)-CL(J,m))

≤ 2
- k⋅log 22m⋅z

*(J,m).
  (2)

Theorem 2 For parallel machine scheduling 
problem with consecutive eligibility, if all the 
processing times are not greater than ρ times 
optimum ( 0<ρ≤1), then we have R(MFFP[k])≤1+
ρ+2 - k⋅log 22m. 
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Proof. Suppose the theorem does not hold and 
there exists a problem instance (J,m) for which

z MFFH[ k]

z *(J,m)
 >  1+ρ+2 - k⋅log 22m (3)

where z MFFH[ k] is the makespan of the final sche- 
dule of MFFH with k iterations. We further 
suppose FFH(J,m,CUk)= false. Then, from the 
operation of MFFH, all the k operations of FFH 
were in failure. Therefore, in this case we have 
z MFFH[ k]=z LS, where z LS is the makespan of the 
schedule by LS. Since FFH(J,m,CU(J,m))= false, 
by Lemma 1, we obtain that CU(J,m)< (1+ρ)z *
(J,m). However, this is a contradiction to (3), 

noting CU(J,m)=z LS=z MFFH[ k]. Hence, we have 
FFH(J,m,CUk)= true and thus CUk≥z MFFH[ k], 
which means

CUk >  (1+ρ+2
- k⋅log 22m)z

*(J,m). 

Then, from this with (2), it is true that

CLk >  (1+ρ)z
*(J,m)  ≥ CL(J,m), (4)

since CL(J,m)≤z *(J,m). From this we know that 
FFH must have been executed with time deadline 
CLk at some point during the binary search with 

the result FFH(J,m,CLk)= false. However, this is 
impossible by Lemma 1 and (4).

As an immediate result of Theorem 2, we have 
the following corollary.

Corollary 3 For parallel machine scheduling 
problem with consecutive eligibility,

R(MFFP[k])≤2+2 - k⋅log 22m.

Proof. From the fact that each job has proce- 
ssing time no larger than the optimal makespan, 
we prove the corollary.

From Corollary 3, we see that the MFFH is 
2-approximation algorithm. By choosing k large 
enough, a schedule with makespan at most twice 
optimum can be generated. In the case that the 
chosen k is so large that the term 2 - k⋅log 22m is 
almost zero, we just write that R(MFFP)≤2.

Then, a natural question is what the exact value 
of R(MFFP) is, that is, whether R(MFFP) is 
two or strictly less than two. In general, when one 
wants to prove that the performance ratio of an 
algorithm is γ, it is enough to show that R(A)≤γ 
and then, for every r<γ, to find instance ( J,m) 
such that A cannot generate a schedule with 

makespan at most rz *(J,m). We note that MFFP 
cannot generate a schedule with makespan r times 
optimum for an instance( J,m), ifFFH(J,m,rz *(J,m))
= false for any r, 0< r< 2. Thus, in order to 
show that R(MFFP)=2, we need to get instances 
( J,m) such that FFH( J,m,rz *(J,m))= false for 
every r< 2.

In the following example, we will see that for 
every r, 0< r< 2, there exists worst-case instances 
for which FFH cannot assign all the jobs within 
r times optimum.

Example 1. Consider a problem with (J,m). In 
J, there are 2m-2 jobs: m-2 small jobs and 
m big jobs. Each big job j, 2≤j≤m-1, has 
processing time 1-ε and eligible horizon of 

[ j,j], where ε= 1
m-2

. The big jobs 1 and m 
have processing time 1 with eligible horizons of 
[1,m] and [m,m], respectively. Finally, the 

small jobs m+1,…,2m-2 have processing time 
ε and eligible horizon of [1,m-1].

Then as shown in <Figure 3> (b), the optimal 
schedule S * with makespan z *(J,m)=1 would be 
given as follows:

      S *1= {1},
      S*i={ i,m+ i-1},   2≤i≤m-1,
      S*m={m}.

Now, consider the schedule generated by FFH 
with time deadline 2-ε. Since the m-2 big 
jobs are preferable to the remaining jobs, these 
will first be assigned to their corresponding 
machines. Next, all the m-2 small jobs will be 
assigned to machine 1. Then, the job m is 
assigned to machine m.

...

(a) (b)

......

2

m-1

1

2

m-1

m

1

2

m-1

1

m-1

2 1

m mm

...

(a) (b)

......

2

m-1

1

2

m-1

m

1

2

m-1

1

m-1

2 1

m mm

Figure 3.  (a) FFH and (b) optimal schedule.

At this time, the machines 1 and m have load 
of 1 and the remaining m-2 machines have load 
of 1-ε. Thus, finally, the first big job 1 is 
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assigned to machine 2, resulting to its completion 
time 2-ε. Hence, the makespan by FFH is 2-ε 
(<Figure 3> (a)), which is 2-ε times optimum 
makespan. Note that for any r< 2-ε, FFH cannot 
assign all the jobs within time r, i.e., 
FFH(J,m,r)= false. Thus, we can see that for 
any r, 0< r< 2, there exists (J,m) such that 
FFH( J,m,rz *(J,m))= fa lse (by choosing m such 
that 2-ε=2-

1
m-2

> r). Therefore, the exact 
performance ratio of MFFP is two.

5.  Com plexity of M FFH

In general, for parallel machine scheduling problem 
with consecutive eligibility, the performance ratio 
of MFFH is the same as that of the LP-based 
algorithm (Lenstra et al., 1990). However, in 
execution time, it might be said that MFFH is 
much faster than the LP-based algorithm.

Let us examine how long MFFH takes to run. 
The sorting step of FFH can actually be imple- 
mented once at the time MFFH starts, and hence 
we first note that each application of FFH only 
takes O(n logm) steps (Coffman et al., 1978). In 
addition, the algorithm LS runs in time O(n logm). 
Thus the total time for MFFH[k], including the 
initial sorting of J by preference, is O(n logn+
kn logm). Therefore, MFFH is a strongly polyno- 
mial time algorithm (polynomial in the parameters 
of n and m) while the LP-based algorithm is poly- 
nomial in the problem size, which means in general 
MFFH runs faster than the LP-based algorithm.

6.  Conclusions

We considered the problem of scheduling n jobs 
to m parallel machines where each job cannot be 
eligible to all the machines but some subset of 
consecutive machines ( P|Ej|C max

). For this problem, 
we developed a binary search algorithm MFFH, 
which invokes its subfunction FFH. FFH is a kind 
of FF (First Fit) algorithm for bin-packing problems. 
It assigns jobs to the first possible machine that 
can process it within given time deadline. We 
showed that MFFH is a 2-approximation algorithm 
running in polynomial time of n and m. Thus, it 
is likely that MFFH executes much faster than the 
known LP-based algorithm. Though MFFH is a 
strongly polynomial time algorithm, its performance 

ratio is still not good. More effective algorithm, if 
it exists, might consider the information of proce- 
ssing times. It is shown that there are no algori- 
thms with performance ratio less than 1.5 for the 
parallel machine scheduling problem with general 
eligibility ( P|Ej|C max

). The hardness of our problem 
is still open question.
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