
Journal of the Korean Institute of Industrial Engineers
Vol. 29, No. 3, pp. 190-196, September 2003.

주어진 구간 내의 기계에서만 생산 가능한 병렬기계문제에

대한 2-근사 알고리듬

황학진․김규태
†

조선대학교 산업공학과

2-Approximation Algorithm for Parallel Machine Scheduling with
Consecutive Eligibility

Hark-Chin Hwang․Gyutai kim

Department of Industrial Engineering Chosun University, Gawngju, 501-759

We consider the problem of scheduling n jobs on m machines with the objective of minimizing makespan. Each
job cannot be eligible to all the machines but to its consecutively eligible set of machines. For this problem, a
2-approximation algorithm, MFFH, is developed. In addition, an example is presented to show the tightness of
the algorithm.

Keywords: parallel machine scheduling, analysis of algorithm, consecutive eligibility

†Corresponding author : Professor Gyutai Kim, Department of Industrial Engineering, Chosun University, 375 Seosuk-Dong, Dong-Gu,
 Gwangju, Korea, 501-759, Fax : +82-62-230-7128, e-mail : gtkim@chosun.ac.kr

Received September 2002; revision received May 2003, June 2003; accepted June 2003.

1. Introduction

When scheduling jobs on machines, we are often
confronted with a situation where each job is not
equally important and machines have different
capabilities to each other. An important job might
be originated from a customer of high priority, or
impending requirements that could not be resolved
within previous production period, etc. Likewise,
no two machines are of the same but a machine
can produce products of high quality and lower
defects to another one.

Formally, we are given a set of machines
M={1,…,m} where machine i is thought to have
better capability than machine i+1. On the m
machines, we shall schedule n jobs, J={1,…,n}.
Each job j has processing time p j and has a
range of machines, called consecutively eligible
set, Ej⊆M, only one of which the job can be

assigned to. Ej is consecutively eligible set in the
sense that if Ej={ i 1,…,i r}, then the machines
can be ordered so that i k+1= i k+1,k=1,…,r-1.
An important job is likely to have the first
machine i 1 closer to the best capable machine 1
and wider range of eligible machines. The objective
of our problem is to find a schedule with
minimum makespan, in which each job is assigned
to a machine in its consecutively eligible set.
Machine scheduling problems are often classified
using the three-field representation α|β|γ of Graham
et al. (1979) where α describes machine environ-
ment, β sets restrictions on job processing and γ
defines objective function. Then, we can denote
our problem by P|Ej|C max

using the representation.
In order to better understand our problem, we

consider more general problem than ours, called
parallel machine scheduling problem with eligibility
denoted by P|Ej|C max

. In this problem, the eligi-
ble set Ej⊆M need not be consecutive. We for-

2-Approximation Algorithm for Parallel Machine Scheduling with Consecutive Eligibility 191

mulate the problem P|Ej|C max
 as the following

integer linear program:

Minimize C
Subject to

∑
i∈Ej
x ij=1 for j=1,…,n

∑
j:i∈Ej

p jx ij≤C for i=1,…,m

x ij∈{0,1}.

The problem P|Ej|C max
 can be applied to the

health care industry. The processing flexibility of
each operating room depends on the equipments it
has. Hospitals want to fit in the rooms as many
cases (patients) as possible, while considering the
type of facilities needed for each case (Vairaktara-
kis and Cai, 2001). Thus, each case cannot be
handled in all the operating rooms but some
subset of them. Here, operating rooms represent
the machines and the cases represent the jobs.
Vairaktarakis and Cai developed a branch-and-
bound procedure for the problem. In semiconductor
manufacturing, machine capabilities in workcenters
are different: machines in a wafer test workcenter
cannot process all the jobs but pre-specified type
of jobs (Centeno and Armacost, 1997). Sometimes,
machine eligible set for each type of jobs is
consecutive and thus the problem P|Ej|C max

 applies
to in this case.

When every Ej=M for all jobs j, it is the classical
parallel machine scheduling problem denoted by
P||C max

. We note that P||C max
 is a special case of our

problem P|Ej|C max
. The classical parallel machine

scheduling problem is NP-Complete (Garey and
Johnson, 1979), so that it is unlikely that there exists
efficient algorithms to find a schedule with optimum
makespan. As a result, the focus of the theoretical
research concerning parallel machine scheduling
problem has been the analysis of the worst-case
performances of various heuristic methods. Polyno-
mial time algorithms that always produce schedules
with makespan at most (1+ε) times optimum are
called (1+ε)-approximation algorithms. A family of
algorithms {A ε : ε > 0} is called polynomial time
approximation scheme (PTAS), if each A ε is (1+ε)
-approximation algorithm. If each (1+ε)-algorithm
in a family runs in polynomial of 1/ε as well as
problem size, the family is called fully polynomial
time approximation scheme (FPTAS).

Consider first the problem P||C max
 for m=2 or

P2||C max
. The decision version of this problem is

partition problem, which is NP-Complete in the
ordinary sense. Thus, there exists exact (pseudo-
polynomial time) algorithm using dynamic progra-
mming(Garey and Johnson, 1979). Furthermore, we
can generate fast a schedule with makespan at
most (1+ε) times optimum by deploying FPTAS's
for knapsack problems (Ibarra and Kim, 1975;
Kellerer and Pferschy, 1999). Recently, 12/11
-approximation algorithm with running time of
O(n) was developed (He et al., 2000). Though
there are many efficient algorithms for P2||C max

,
it does not seem to be so in the case of P||C max

as the problem is proven to be NP-Complete in
the strong sense. Hence, it does not exist any
FPTAS for this problem unless P≠NP. It was
shown that LPT (Longest Processing Time first)
and MULTIFIT algorithm yield schedules with
makespan no more than 4/3-1/3m (Graham,
1969) and 13/11 times optimum (Friesen, 1984;
Yue, 1990), respectively. Hochbaum and Shmoys
(1987, 1997) devised a PTAS for this problem
though it runs not so fast in practice.

To the problem of P|Ej|C max
, a greedy LS (List

Scheduling) algorithm is applied and the perfor-
mance ratio is proved to be log22m (Azar et al.,
1995). However, in general, it has been known
that there cannot even exist PTAS for P|Ej|C max

unless P≠NP from the research of Lenstra et al.
(1990). That is, they showed that no (1+ε)
-approximation algorithm can exist for all ε< 1/2.
Moreover, they presented an LP-based algorithm
with worst-case performance ratio two on the most
general case of unrelated parallel machine schedul-
ing problem. Thus, using the algorithm we can
generate schedule whose makespan is at most
twice optimum for the problems P|Ej|C max

 and
P|Ej|C max

.
For the problem P|Ej|C max

, it is still an open
question whether a PTAS exists or not. Though
the LP-based algorithm is 2-approximate for
P|Ej|C max

, its running time is not polynomial of
the parameters of n and m but of the problem
size. In other words, it is not a strongly
polynomial time algorithm. Recently, Hwang(2002)
presented strongly polynomial algorithm MFFH
(Multi First Fit preferred in Horizon) similar to
the binary search algorithm MULTIFIT (Coffman
et al., 1978). However, the statement was not
proved that MFFH always generates a schedule of
twice optimum in Hwang (2002). In addition, it
has been unknown until now whether the worst-
case performance ratio of MFFH is strictly less
than two.

192 Hark-Chin Hwang․Gyutae Kim

The primary contribution of this paper is (1) to
present the proof that the performance ratio of
MFFH is at most two and (2) to show that
MFFH cannot yield a schedule with makespan
strictly less than twice optimum in worst-case by
providing an example. As a result, we show that
the performance ratio of MFFH is two.

We present some definitions in Section 2. In
Section 3, the subfunction FFH (First Fit preferred
in Horizon) of MFFH is described. Then, in
Section 4, we describe MFFH and prove its worst-
case performance. The time complexity MFFH is
presented in Section 5. Finally, conclusions are
followed.

2. Definitions

An instance of our scheduling problem is denoted
by (J,m). Let μ j and ν j denote the first and last
eligible machine in the consecutively eligible
machine set. That is, when Ej={ i 1,…,i r}, we let
μ j= i 1 and ν j= i r. We simply call the set Ej
eligible horizon and just denote it as an interval
[μ j,ν j]. For two jobs j and k, job j is said to

be preferable to job k if ν j≤ν k. Then a schedule
for an instance (J,m) is a partition of J into m
disjoint sets, S=<S 1,…,Sm> such that j∈Si if
machine i belongs to the eligible horizon of job
j, that is, μ j≤i≤ν j. The makespan of a schedule
S, denoted by z(S), is defined as max 1≤i≤mt(Si),
where for any set of J ' ⊆J, t(J')= ∑

j∈J'
p j if J'≠∅,

0, otherwise. The optimum makespan for (J,m) is
denoted by z *(J,m)= minz(S), where the minimi-
zation is over all the schedules S. Then the per-
formance ratio for an algorithm A is defined by

R(A)= sup {
zA(S)

z
*(J,m)

: S is a schedule by A

for all instances (J,m)}.

Any algorithm with performance ratio no greater
than r is called r-approximation algorithm.

3. The algorithm FFH

The algorithm MFFH (Multi FFH) is a binary
search method which uses internal subfunction
FFH (First Fit preferred in Horizon). Firstly, we

describe the function FFH. Given pre-specified
time deadline C, FFH checks if it is possible to
assign all the jobs within the time line C. FFH
takes the first job in a list of jobs which is in the
order of preference and then assigns the job on a
machine with the smallest possible index, which is
in the eligible horizon of the job, and can process
the job within time C. Function FFH returns
value true with a schedule if all the jobs were
assigned within the specified time, false, otherwise.
Now we present the algorithm FFH in <Figure 1>.

Boolean function FFH(J,m,C)
begin
 Sort jobs of J in the order of preference

so that
 ν1≤,…,≤νn;
 for i :=1 to m do Si :=∅;
 FFH := true; i :=μ1; j :=1;
 repeat
 if t(Si)+p j≤C then begin
 Si :=Si ∪ { j};
 j := j+1;
 i :=μ j;
 end
 else i := i+1;
 until (j>n or i>ν j)
 if i>ν j then FFH : = false;
end

Figure 1. Algorithm FFH.

Without loss of generality, from now on we
assume ν j≤ν j+1 for all 1≤j<n. We denote
Sj=<Sj1,…,S

j
m> as the partial FFH schedule

which has been constructed at the time right
before job j is tried to be assigned. The
following lemma implies the algorithm FFH has
monotonicity property for binary search and
assures a schedule with some bounded makespan.

Lemma 1 Suppose that for each job j in J, its
processing time is not greater than ρz *(J,m),0 <ρ≤1.
Then for all C≥(1+ρ)z *(J,m), FFH(J,m,C)=true.

Proof. Assume the lemma is not true and (J,m)
is a counterexample in which FFH(J,m,C)=false,
for some C≥(1+ρ)z *(J,m). Let j be the first
job which could not be assigned within time C.
That is, FFH terminated with false value with the
partial FFH schedule Sj. Then, we obtain

2-Approximation Algorithm for Parallel Machine Scheduling with Consecutive Eligibility 193

t(Sji)+p j>C≥(1+ρ)z
*(J,m) and thus

t(S ji) > z
*(J,m) for μ j≤i≤ν j, (1)

since p j≤ρz *(J,m). Note that there exists at least
one machine i such that t(S ji)≤z *(J,m),1≤i≤ν j,
since the sum of all the processing times of the
jobs, whose eligible machines are within [1,ν j],
is not greater than ν jz *(J,m). Let machine r be
the last machine such that t(Sji)≤z *(J,m),1≤i≤r
and t(Sji)>z *(J,m) for all r< i≤ν j. Such r exists
by (1). From the fact that t(Sjr)≤z *(J,m), we
know all the jobs assigned to machines i> r will
not be eligible to machines from 1 to r. It is
because if there is a job k with μ k≤r and it is
assigned to machines i> r, then it means

t(Sjr)+pk ≥ t(S
k
r)+pk > C ≥ (1+ρ)z

*(J,m)

and thus pk> ρz *(J,m), which is a contradiction to

the assumption. Hence, all the jobs in ∪
ν j

i= r+1
S ji and

j must only be eligible to machines from r+1 to
ν j. However, from the fact that

∑
ν j

i=r+1
t(Sji)+p j > (ν j-r)z

*(J,m)+p j,

we see it is impossible for these jobs to be
assigned on the ν j-r machines within time
z *(J,m). This is a contradiction.

4. Algorithm M FFH and its
 Perform ance

The algorithm FFH will be used as the underlying
subfunction of the binary search method MFFH
for which we want to prove that it always genera-
tes a schedule with makespan no greater than (1+ρ)
times optimal when each job has processing time
at most ρz *(J,m), for 0<ρ≤1. MFFH starts with
predetermined lower and upper bound for the
estimated makespan of a problem instance. MFFH
utilizes the results on LS (List Scheduling)
schedule to obtain the needed lower and upper
bound, CL(J,m) and CU(J,m), respectively. We
know from the the study of Azar et al. (1995)
that the LS algorithm can do no worse than
log 22m times the optimum. We thus first apply

the LS algorithm and then constructs:

CL(J,m) = max {∑j p j/m,
z LS
log 22m },

 CU(J,m) = z LS,

where z LS is the makespan of a schedule by
LS. Note that CL(J,m)≤z *(J,m).

The MFFH with k binary search iteration is
denoted by MFFH[k] and can be described as
shown in <Figure 2>.

 Procedure MFFH [k](J,m)
 begin
 CL :=CL(J,m);
 CU :=CU(J,m);
 for i :=1 to k do begin
 C := (CL+CU)/2;
 if FFH (J,m,C)=true
 then CU :=C;
 else CL :=C;
 end
 end

Figure 2. Algorithm MFFH

The MFFH schedule is defined to be the latest
feasible schedule generated by the FFH with
returned value true during the k iterations. If all
the k operations of FFH resulted in failure, we
set the one generated by LS as the MFFH
schedule.

In the execution of the algorithm MFFH[k], the
size of the interval [CL,CU] is reduced by half
at each iteration. It is easy to see that the gap
between CL(J,m) and CU(J,m) is at most
log 22m⋅z

*(J,m). Then this together with Lemma
1 implies the following theorem, which can be
proved in a similar way to that by Coffman et al.
(1978). First, let CLk and CUk be the final lower
and upper bound value, respectively, made right
after the kth calling of the algorithm FFH. Then
from the nature of binary search of MFFH, we
obtain that

CUk-CLk ≤ 2
- k(CU(J,m)-CL(J,m))

≤ 2
- k⋅log 22m⋅z

*(J,m).
 (2)

Theorem 2 For parallel machine scheduling
problem with consecutive eligibility, if all the
processing times are not greater than ρ times
optimum (0<ρ≤1), then we have R(MFFP[k])≤1+
ρ+2 - k⋅log 22m.

194 Hark-Chin Hwang․Gyutae Kim

Proof. Suppose the theorem does not hold and
there exists a problem instance (J,m) for which

z MFFH[k]

z *(J,m)
 > 1+ρ+2 - k⋅log 22m (3)

where z MFFH[k] is the makespan of the final sche-
dule of MFFH with k iterations. We further
suppose FFH(J,m,CUk)= false. Then, from the
operation of MFFH, all the k operations of FFH
were in failure. Therefore, in this case we have
z MFFH[k]=z LS, where z LS is the makespan of the
schedule by LS. Since FFH(J,m,CU(J,m))= false,
by Lemma 1, we obtain that CU(J,m)< (1+ρ)z *
(J,m). However, this is a contradiction to (3),

noting CU(J,m)=z LS=z MFFH[k]. Hence, we have
FFH(J,m,CUk)= true and thus CUk≥z MFFH[k],
which means

CUk > (1+ρ+2
- k⋅log 22m)z

*(J,m).

Then, from this with (2), it is true that

CLk > (1+ρ)z
*(J,m) ≥ CL(J,m), (4)

since CL(J,m)≤z *(J,m). From this we know that
FFH must have been executed with time deadline
CLk at some point during the binary search with

the result FFH(J,m,CLk)= false. However, this is
impossible by Lemma 1 and (4).

As an immediate result of Theorem 2, we have
the following corollary.

Corollary 3 For parallel machine scheduling
problem with consecutive eligibility,

R(MFFP[k])≤2+2 - k⋅log 22m.

Proof. From the fact that each job has proce-
ssing time no larger than the optimal makespan,
we prove the corollary.

From Corollary 3, we see that the MFFH is
2-approximation algorithm. By choosing k large
enough, a schedule with makespan at most twice
optimum can be generated. In the case that the
chosen k is so large that the term 2 - k⋅log 22m is
almost zero, we just write that R(MFFP)≤2.

Then, a natural question is what the exact value
of R(MFFP) is, that is, whether R(MFFP) is
two or strictly less than two. In general, when one
wants to prove that the performance ratio of an
algorithm is γ, it is enough to show that R(A)≤γ
and then, for every r<γ, to find instance (J,m)
such that A cannot generate a schedule with

makespan at most rz *(J,m). We note that MFFP
cannot generate a schedule with makespan r times
optimum for an instance(J,m), ifFFH(J,m,rz *(J,m))
= false for any r, 0< r< 2. Thus, in order to
show that R(MFFP)=2, we need to get instances
(J,m) such that FFH(J,m,rz *(J,m))= false for
every r< 2.

In the following example, we will see that for
every r, 0< r< 2, there exists worst-case instances
for which FFH cannot assign all the jobs within
r times optimum.

Example 1. Consider a problem with (J,m). In
J, there are 2m-2 jobs: m-2 small jobs and
m big jobs. Each big job j, 2≤j≤m-1, has
processing time 1-ε and eligible horizon of

[j,j], where ε= 1
m-2

. The big jobs 1 and m
have processing time 1 with eligible horizons of
[1,m] and [m,m], respectively. Finally, the

small jobs m+1,…,2m-2 have processing time
ε and eligible horizon of [1,m-1].

Then as shown in <Figure 3> (b), the optimal
schedule S * with makespan z *(J,m)=1 would be
given as follows:

 S *1= {1},
 S*i={ i,m+ i-1}, 2≤i≤m-1,
 S*m={m}.

Now, consider the schedule generated by FFH
with time deadline 2-ε. Since the m-2 big
jobs are preferable to the remaining jobs, these
will first be assigned to their corresponding
machines. Next, all the m-2 small jobs will be
assigned to machine 1. Then, the job m is
assigned to machine m.

...

(a) (b)

......

2

m-1

1

2

m-1

m

1

2

m-1

1

m-1

2 1

m mm

...

(a) (b)

......

2

m-1

1

2

m-1

m

1

2

m-1

1

m-1

2 1

m mm

Figure 3. (a) FFH and (b) optimal schedule.

At this time, the machines 1 and m have load
of 1 and the remaining m-2 machines have load
of 1-ε. Thus, finally, the first big job 1 is

2-Approximation Algorithm for Parallel Machine Scheduling with Consecutive Eligibility 195

assigned to machine 2, resulting to its completion
time 2-ε. Hence, the makespan by FFH is 2-ε
(<Figure 3> (a)), which is 2-ε times optimum
makespan. Note that for any r< 2-ε, FFH cannot
assign all the jobs within time r, i.e.,
FFH(J,m,r)= false. Thus, we can see that for
any r, 0< r< 2, there exists (J,m) such that
FFH(J,m,rz *(J,m))= fa lse (by choosing m such
that 2-ε=2-

1
m-2

> r). Therefore, the exact
performance ratio of MFFP is two.

5. Com plexity of M FFH

In general, for parallel machine scheduling problem
with consecutive eligibility, the performance ratio
of MFFH is the same as that of the LP-based
algorithm (Lenstra et al., 1990). However, in
execution time, it might be said that MFFH is
much faster than the LP-based algorithm.

Let us examine how long MFFH takes to run.
The sorting step of FFH can actually be imple-
mented once at the time MFFH starts, and hence
we first note that each application of FFH only
takes O(n logm) steps (Coffman et al., 1978). In
addition, the algorithm LS runs in time O(n logm).
Thus the total time for MFFH[k], including the
initial sorting of J by preference, is O(n logn+
kn logm). Therefore, MFFH is a strongly polyno-
mial time algorithm (polynomial in the parameters
of n and m) while the LP-based algorithm is poly-
nomial in the problem size, which means in general
MFFH runs faster than the LP-based algorithm.

6. Conclusions

We considered the problem of scheduling n jobs
to m parallel machines where each job cannot be
eligible to all the machines but some subset of
consecutive machines (P|Ej|C max

). For this problem,
we developed a binary search algorithm MFFH,
which invokes its subfunction FFH. FFH is a kind
of FF (First Fit) algorithm for bin-packing problems.
It assigns jobs to the first possible machine that
can process it within given time deadline. We
showed that MFFH is a 2-approximation algorithm
running in polynomial time of n and m. Thus, it
is likely that MFFH executes much faster than the
known LP-based algorithm. Though MFFH is a
strongly polynomial time algorithm, its performance

ratio is still not good. More effective algorithm, if
it exists, might consider the information of proce-
ssing times. It is shown that there are no algori-
thms with performance ratio less than 1.5 for the
parallel machine scheduling problem with general
eligibility (P|Ej|C max

). The hardness of our problem
is still open question.

Acknowledgements
The authors would like to thank the referees for

their careful reading and advice.

References

Azar Y., Naor J., Rom R. (1995), The competitiveness of
On-Line Assignments, J. Algorithms, 18, 221-237.

Centeno G., Armacost R.L. (1997), Parallel machine schedul-
ing with release time and machine eligibility restrictions,
Computers and Industrial Engineering, 33, 273-276.

Coffman Jr E.G., Garey M.R., Johnson D.S. (1978), An
application of bin-packing to multiprocessor scheduling,
SIAM J. Comput., 7, 1-17.

Friesen D.K. (1984), Tighter bounds for the multi processor
scheduling algorithm. SIAM J. Comput., 13, 35-59.

Garey M.R., Johnson D.S. (1979), Computers and Intractability:
A Guide to the theory of NP-Completeness, Freeman, San
Francisco.

Graham R.L. (1969), Bounds on multiprocessor timing ano-
malies, SIAM J. Appl. Math., 17, 263-269.

Graham, R.L., Lawler E.L., Lenstra J.K. and Rinnooy Kan
A.H.G. (1979), Optimization and Approximation in Deter-
ministic Machine Scheduling: A Survey. Annals of Discrete
Mathematics, 5, 287-326.

He Y., Kellerer H., Kotov V. (2000), Linear Compound
Algorithms for the Partitioning Problem, Naval Research
Logistics, 47, 593-601.

Hochbaum D.S., Shmoys D. (1987), Using dual approximation
algorithms for scheduling problems: Theoretical and prac-
tical results, J. ACM, 34, 144-162.

Hochbaum D.S. (1997), Approximation Algorithms for NP-
Hard Problems, PWS PUBLISHING COMPANY, Boston,
370-371.

Hwang H.-C. (2002), A strongly polynomial algorithm for
parallel machine scheduling problem with consecutive
eligibility, The Research Institute of Industrial Technology
Chosun University, 24, 27-31.

Ibarra O.H., Kim C.E. (1975), Fast approximation algorithms
for the knapsack and sum of subset problems, J. ACM,
22, 463-468.

Kellerer H., Pferschy U. (1999), A New Fully Polynomial
Approximation Scheme for the Knapsack Problem, Journal
of Combinatorial Optimization, 3, 59-71.

Lenstra J.K., Shmoys D.B., Tardos E. (1990), Approximation
Algorithms for Scheduling Unrelated Parallel Machines,
Mathematical Programming, 46, 259-271.

196 Hark-Chin Hwang․Gyutae Kim

Yue M. (1990), On the exact upper bound for the MULTIFIT
processor scheduling algorithm, in Operations Research in
China, M. Yue (ed.), Vol. 24 of Annals of Operations
Research, Baltzer, Basel, Switzerland, 233-259.

Vairaktarakis G.L., X. Cai (2001), The Value of Processing
Flexibility in Multipurpose Machines, Technical Memoran-
dum Number 744, Weatherhead School of Management,
Case Western Reserve University.

