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This paper presents a theoretical investigation of power 
reflection and transmission coefficients for a meander-line 
polarizer placed periodically on a chiral slab. It is assumed 
that a linearly polarized transverse magnetic wave is 
incident on a chiral slab from the air region. In the analysis, 
we derive the electric and magnetic fields in the modal form 
in the air and chiral regions. We obtain power reflection 
and transmission coefficients in a straightforward manner 
after matching the tangential components of the electric and 
magnetic fields at the boundaries. We present numerical 
results for the power reflection and transmission coefficients 
versus frequency and incident angle for different values of 
the chirality admittance. A meander-line polarizer placed 
on a dielectric slab can convert a linearly polarized wave to 
a circularly polarized wave. The design parameters for a 
meander-line polarizer are the dimensions of the meander-
line and the values of the dielectric slab. Replacing a 
dielectric slab with a chiral slab introduces a new 
independent parameter which controls the wave 
polarization. 
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I. INTRODUCTION 

Chiral media have received considerable attention in the last 
decades due to their potential applications in the fields of 
electromagnetic (EM), microwave, and millimeter wave 
frequencies. The lack of geometric symmetry between an 
object and its mirror image is referred to as chirality. An 
artificial chiral medium for a microwave frequency can be 
constructed by embedding chiral objects, such as wire helices, 
möbius strips, and irregular tetrahedrons, in a non-chiral host 
medium. A linearly polarized wave incident on a chiral slab 
splits into two circularly polarized waves left and right with 
different phase velocities. The two circularly polarized waves 
combine and a linearly polarized wave, whose plane of 
polarization is rotated with respect to the plane of polarization 
of the incident plane wave, emerges behind the chiral slab. The 
amount of rotation or attenuation depends on the distance 
traveled by the EM wave in the medium and on the difference 
between the two wave numbers, which is an indication of the 
degree of chirality given by ξ [1]-[3]. 

The first meander-line polarizer was designed by trial and 
error at the Stanford Research Institute in 1966 and the 
computer program used in its design was described in 1969. 
Young et al. presented a theoretical analysis and a discussion of 
the experimental results of a meander-line polarizer [4]. Chu 
and Lee reported a simple transmission line model in terms of 
E-and H-type mode for multilayered meander-line polarizers 
for a plane wave incident at normal and oblique angles [5]. A 
linearly polarized wave can be converted to a circularly 
polarized wave with a meander-line polarizer that provides a 
wide-band circular polarization and a 90° phase difference in 
transmission between the two linear components. For this 
purpose, the electric field of the incident wave on a meander-
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line polarizer can be seen as consisting of two equal orthogonal 
components that are respectively parallel (E//) and 
perpendicular (E⊥) to the meander-line axis. The E// component 
is delayed and the E⊥ component is advanced due respectively 
to the inductive and capacitive effects of the grating structure of 
the meander-line polarizer. 

Many researchers have studied the interaction of EM waves 
with chiral and other possible structures [6]-[11]. However, to 
the best of our knowledge, no study has dealt with a meander-
line polarizer with a chiral slab. The rotation property of chiral 
media and the polarization property of the meander-line strips 
motivated us to investigate meander-line polarizers with chiral 
slabs. Starting out with this curiosity, we made theoretical 
investigations of the power reflection and transmission 
coefficients of a meander-line polarizer with a chiral slab for a 
transverse magnetic (TM) wave incidence. 

Assuming it to be infinitely thin and a perfect conductor, 
we placed a meander-line strip periodically in the x-y plane 
(Figs. 1(a) and (b)). Due to the periodicity of the problem we 
expanded the fields into Floquet modes in the air and chiral 
regions. The boundary conditions, combined with the Floquet 
modes orthogonality over a single periodic unit cell, lead to a 
Fredholm integral equation of the first kind for the unknown 
current density induced on the metallic part of the meander-line 
by the incident plane wave. This integral equation can be 
solved using the moments method which entails expanding the 
unknown current density in terms of a set of basis functions 
{ }nf  and testing with the same basis. We implemented a 
complex matrix inversion program to obtain the solutions of 
the resulting matrix equation. We were able to extract the 
power reflection and transmission coefficients from the electric 
field equations using the Poynting vector. 

II. FORMULATION OF THE PROBLEM 

1. Propagation of EM Waves in a Chiral Medium 

Assuming an exp(jωt) time dependence, [3] gave the 
constitutive equations of an isotropic, homogeneous, lossless, 
and source free chiral medium: 
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where cε , cµ , and ξ are real constants representing the 
permittivity, the permeability, and the chirality admittance of 
the chiral medium, respectively. Using (1) and (2) together 
with Maxwell’s time harmonic equations for a source free 
region, we obtain the chiral Helmholtz equation as 
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Fig. 1. Geometry of a meander-line polarizer with a chiral 
slab. 
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The propagating eigenmodes within such media consist of 
two circularly polarized waves with characteristic wave 
numbers, 
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where kR and kL are real quantities (wavenumbers) 
characterizing the right and left circularly polarized waves (RCP 
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and LCP), respectively. Hence the chiral medium allows a 
double mode propagation, namely, LCP and RCP waves, 
which is called polarization birefringence. The LCP and RCP 
waves propagate with different phase velocities in the chiral 
medium. 

2. Analysis of a Meander-Line Polarizer with a Chiral Slab 

The periodic structure of the two-dimensional printed 
meander-line array is shown in Fig.1(a). The unit cell presented 
within the dotted line in Fig.1(a) also appears in a larger scale 
in Fig.1(c). The array is periodic and extends to infinity in both 
the x and y directions. A unit cell is divided into five branches, 
three horizontal and two vertical. These branches are also 
divided into a specific number of segments within a unit cell, as 
explained by Uckun and Ege [12], and as can be seen in 
Fig.1(c). It is assumed that a linearly polarized TM wave is 
incident upon a chiral slab. The total field is the sum of the 
incident field and the field scattered from the conducting body. 
The scattered fields are produced by the current distributions 
on the scatterers. The electromagnetic field distributions near 
the array of conducting meander-line strips are expanded into a 
set of Floquet mode functions [13], [14]. Floquet’s theorem is 
an extension of the Fourier series theorem for periodic 
functions. The extension permits a modal description of any 
field or function which repeats itself periodically except for a 
multiplicative exponential factor [13]. 

Since any rectangular field component Ψ is well known to 
be a solution of the homogeneous scalar Helmholtz equation in 
the given region as 

( ) ,0)22 =+∇ zyxk ,,(Ψ             (6) 

where .22 µεω=k  
A complete set of solutions of the scalar wave equation can be 
written for the periodic structure as 
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and d1 and d2 are the dimensions of the unit cell as shown in 
Fig.1. The angles θ  and φ  are the standard spherical 
coordinates. 

The total incident fields ),( ii HE in the first region (z<0) for 
the incident TM wave can be written as 
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where TM
oE  is the amplitude of the TM incident wave and 

)(m
rE is the amplitude of the reflected wave in the absence of a 

scatterer. The sub- and superscript m=1 and m=2 stand for TM 
and transverse electric (TE) modes, respectively. The scattered 
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rpqE  is the amplitude of the scattered field in      
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Inside the chiral slab 0<z<d, the electric and magnetic 
fields are expressed as the sum of the LCP and RCP plane 
waves. 
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where the superscripts + and – represent the +z and –z 
propagation directions, respectively. The full expressions for 
the coefficients appearing in (14)-(17) are given in the 
appendix. 

For z>d total transmitted fields ),( tt HE  are given by 
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where )(m
tE  and )(m

tpqE  are the amplitudes of the transmitted 
wave in the absence of the scatterer and the amplitudes of the 
scattered wave in the third region, respectively. Matching the 
tangential components of electric and magnetic fields at the 
boundaries at z=0 and z=d, combined with the orthogonality of 
the Floquet modes over a unit cell leads to integral equations in 
which the magnitude of the scattered fields are expressed in 
terms of the unknown current density: 
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where zyx zyx aaar ++=  is the position vector. This 
integral equation can be solved using the moments method 
which involves expanding the unknown current density in 
terms of a set of basis functions and testing with the same 
basis [16]. In order to provide an efficient basis for the 
induced current we make the approximation that the width of 
the strips are narrow enough (with respect to λ ), so that the 
component of the current parallel to the width of the strip can 
be ignored. We assume that the expansion functions are a set 
of orthogonal pulse functions. In addition, we choose the 
same functions for the weighting function (Galerkin’s 
method) [17]. 
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where nα  are unknown coefficients 
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After finding the current density by evaluating the inner 
products separately for each branch, the unknown complex 
coefficients can be found in terms of the current density and the 
medium parameters. Since both the scattered and incident 
fields satisfy the air-chiral medium boundary conditions, the 
only remaining boundary condition is that the total tangential 
electric field vanishes on the metallic part of the scatterer 
(meander-line). Therefore at z=0 we have 
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Multiplying both sides of the above equation by 

nffff1 ,...,,, 32  successively and then integrating it over a unit 
cell, we obtain N set of equations: 
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where the superscript * stands for the complex conjugate and 
.,...,3,2,1 Nk =  Eq. (26) is a matrix equation for the 

unknown coefficients of the current expansion. Upon finding 
the unknown coefficients nα  by a complex matrix 
inversion, we can express the total reflected field at z=0 from 
(10) and (12) as a sum of the reflected fields in the absence 
of the scatterer and the reflected fields due to the scatterer: 
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The transmitted field in the third region can be expressed 
from (12) and (18) as a sum of the transmitted fields in the 
absence of the scatterer and the transmitted fields due to the 
scatterer: 
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III. NUMERICAL RESULTS 

Our study investigated the power reflection and transmission 
characteristics of meander-line polarizers with a chiral slab 
considering chirality effects. We plotted these coefficients as a 
function of frequency and of the incidence angle for a linearly 
polarized TM wave. The plotted values of these coefficients in 
all figures were normalized with respect to the incident power. 
We used the power conservation principle as a criterion to test 
the accuracy of the obtained results and thus prove the validity 
of our model. The sum of the co-TM-polarized and cross-TE-
polarized power reflection and transmission coefficients 
amplitudes is equal to unity. The chirality admittance ξ  
indicates the degree of chirality, and its value is limited by 

cc µεξ ≤  [2]. 
We assumed that the meander-line is a two-dimensional 

infinite array of a perfectly conducting strip with a narrow 
width (with respect to λ). The geometrical dimensions chosen 
in the simulations (Fig. 1) were d1=5 mm, d2=10 mm 
(periodicities); Lu=Lx=2.5 mm (horizontal length); Ly=5 mm 
(vertical length); ty=tx=0.25 mm (thickness). During the 
calculations we tried different p and q values of the Floquet 
mode numbers and found that p=q=20 gave the best result, 
where the sum of the normalized power reflection and 
transmission coefficients were equal to unity [18]. For fixed 
values of p and q to give acceptable solutions, the number of 
segments n1 (for lower horizontal branches), n2 (for vertical 
branches), and n3 (for upper horizontal branches) have to be 
correctly determined. The critical value of n2 can be obtained 
from 22 )12( dLqn y+=  [17]. In order for the segments to 
have the same length, the number of segments along the x-axis 
had to be n1= n3= n2/2, since Lx and Lu are halves of Ly in this 
case. 

Figures 2(a), 2(b), and 2(c) illustrate the co-polarized power 
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Fig. 2. Normalized power reflection and transmission coefficients
against frequency for different values of chirality 
admittances; TM normal incidence, εr=2.0 and d=6.25 
(λ/4) mm. (a) TM Power reflection coefficient, (b) TM 
Power transmission coefficient, (c) TE Power 
Transmission coefficient.  

 
reflection and transmission coefficients and the cross-polarized 
power transmission coefficient, respectively. The cross-
polarized power reflection coefficient was zero due to 
reciprocity and rotational symmetry. As Fig. 2(a) reveals, the 
co-polarized power reflection coefficient was unity around   
10 GHz for four different values of chirality admittances. Thus, 
while the stop-band width is not a function of chirality, the 
transmission selectivity depicted in Fig. 2(b) is. Figure 2(c) 
shows that the cross-polarized power transmission coefficient 
approaches unity at a frequency band of around 15.5 GHz for 
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ξ=0.002. The polarization state of the transmitted wave is then 
converted from a TM mode to a TE mode at that frequency 
band. 

Figures 3(a), 3(b), and 3(c) illustrate the co-polarized power 
reflection and the co-polarized power transmission coefficients 
and the cross-polarized power transmission coefficient as 
functions of the incidence angle, respectively. There is a 
Brewster angle only for ξ=0 and ξ=0.001 (Fig. 3(a)). The co-
polarized power reflection coefficient shifts towards 90° with 
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Fig. 3. Normalized power reflection and transmission coefficients 
against incident angle θ for different values of chirality 
admittances; TM incidence, εr=9 and d=6.25(λ/4) mm, 
f=12 GHz. (a) TM Power reflection coefficient, (b) TM 
Power Transmission coefficient, (c) TE Power 
Transmission coefficient.  

a narrowing bandwidth and the Brewster angle disappears for 
ξ=0.003. The co-polarized power transmission coefficient is 
unity only at 72° for ξ=0. The magnitude of the cross-
polarized power transmission coefficient is almost the same 
up to 70° (Fig. 3(c)). 

IV. CONCLUSION 

Chiral slabs can be used as a polarization transformer, which 
transforms any incoming polarization into any other 
polarization by rotating the axes of the two slabs of certain 
angles. A linearly polarized wave can be converted to a 
circularly polarized wave by using meander-line strips on a 
dielectric slab. In this study we examined the behavior of a 
chiral slab with a meander-line polarizer for different 
parameters. We presented power reflection and transmission 
coefficients as a function of frequency and of incidence angle 
for different values of the chirality admittance of the medium. 
Our results demonstrate that these coefficients can be changed 
effectively by using different chirality admittance values. The 
design parameters for a meander-line polarizer are the 
dimensions of the strips and the values of the dielectric slab. If 
dielectric slab is replaced by a chiral slab, the number of 
parameters will be increased by an effective parameter, namely, 
the chirality admittance. This presents an alternative for design 
parameters. 
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APPENDIX 

The full expressions for the coefficients appearing in (14)-
(17) are given below. 
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