
ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 275

We present a high performance cache structure with a
hardware prefetching mechanism that enhances
exploitation of spatial and temporal locality. Temporal
locality is exploited by selectively moving small blocks into
the direct-mapped cache after monitoring their activity in
the spatial buffer. Spatial locality is enhanced by
intelligently prefetching a neighboring block when a spatial
buffer hit occurs. We show that the prefetch operation is
highly accurate: over 90% of all prefetches generated are
for blocks that are subsequently accessed. Our results show
that the system enables the cache size to be reduced by a
factor of four to eight relative to a conventional direct-
mapped cache while maintaining similar performance.

Keywords: Memory hierarchy, dual data cache, temporal
locality, spatial locality, prefetching.

Manuscript received Jan. 15, 2003; revised June 11, 2003.
This work was supported by postdoctoral fellowship program from Korea Science &

Engineering Foundation (KOSEF).
Jung-Hoon Lee (phone: +82 2 2123 2718, email: ljh@yonsei.ac.kr) and Shin-Dug Kim

(email: sdkim@yonsei.ac.kr) are with the Department of Computer Science, Yonsei University,
Seoul, Korea.

Gi-Ho Park (email: gihopark@samsung.com) is with Samsung Electronics Co., Suwon,
Korea.

I. Introduction

Cache memory is a key mechanism for improving overall
system performance. A cache exploits the locality inherent in
the reference stream of a typical application. Two primary
types of locality are available, and the degree to which they can
be exploited depends on program execution characteristics.
Temporal locality relies on the greater probability that recently
accessed data will be accessed again in the near future. Spatial
locality refers to the tendency for adjacent or nearby memory
locations to be referenced close together in time. However,
most cache systems have shown a tendency to emphasize only
one or the other of the two types of locality because they place
contradictory requirements on the structure of the hardware.

Prefetching mechanisms can be used to reduce cache misses.
Prefetching also reduces processor stall time by bringing data
into the cache before its use, so that it can be accessed without
delay. Hardware-based prefetching [1] requires some
modification of the cache but little modification to the
processor core. Its main advantage is that prefetches are
handled dynamically at run time without compiler intervention.
The drawbacks are that extra hardware is needed and that
memory references for complex access patterns are difficult to
predict. In contrast, software-based approaches [2] rely on
compiler technology to perform static program analysis and to
selectively insert prefetch instructions. The drawbacks are that
non-negligible execution overhead is introduced due to the
extra instructions, and that static analysis may miss some
prefetch opportunities that are obvious at run-time.

Most hardware prefetching mechanisms generate a prefetch
signal when either a cache hit or a miss occurs. Therefore, a
large number of prefetch signals are generated, leading to
higher power consumption and cache pollution [3]. Prefetching

Dual Cache Architecture for
Low Cost and High Performance

 Jung-Hoon Lee, Gi-Ho Park, and Shin-Dug Kim

276 Jong-Hoon Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

can also cause an increase in the memory cycles per instruction
(MCPI) in the worst case. Our intelligent prefetching
mechanism avoids these problems by reducing the prefetch
generation rate. As a result, power consumption is also reduced
and the increase in MCPI is negligible.

The proposed cache is constructed in three parts: a
conventional direct-mapped cache with a small block size, a
fully associative spatial buffer with a large block size at the
same cache level, and a hardware prefetching unit. The
improvement in performance is achieved by exploiting the
basic characteristics of locality. Specifically, two different block
sizes are used, i.e., a small block size to exploit temporal
locality and a large block size, which is a multiple of the small
block size, to exploit spatial locality. In addition, temporal
locality is enhanced by selectively retaining blocks with a high
probability of a repeated reference in the time domain, and
spatial locality is enhanced by both a large fetch size and an
intelligent prefetching mechanism.

The technique we use for enhancing temporal locality is to
monitor the behavior of a block over a time interval before
choosing to store it into the direct-mapped cache. In this way,
instead of placing every missed block directly into the direct-
mapped cache, we first load a large block including the missed
block into the spatial buffer. The missed block is not moved
into the direct-mapped cache until the large block is replaced
from the spatial buffer, and then only if it has shown evidence
of temporal locality while it was resident in the spatial buffer.
Thus the proposed cache exploits information about utilization
of the block that is obtained during this time interval. The
interval itself is proportional to the number of entries in the
spatial buffer. The behavior that we observe during this time
enables us to determine which blocks show strong temporal
locality.

II. Related Work

The stream cache [4] is a small fully-associative cache
containing on the order of two to five lines of data. When a
miss occurs, data are returned to the direct-mapped cache and
then several consecutive words from the data stream are
prefetched to the stream cache. To make better use of the
stream cache, Jouppi uses a different replacement algorithm,
that is, victim caching. The victim cache [4] reduces the delay
associated with cache misses due to line conflicts. It has been
shown to be effective in improving overall system performance
while requiring only a small additional buffer. Conflict misses
may also be reduced by increasing cache associativity.
Selective victim caching [5] places incoming blocks selectively
in the main cache or a small victim buffer using a prediction
scheme. This scheme swaps a block from the victim buffer to

the main cache based on its history of use. For instruction
caches, the selective victim cache shows an effective
performance improvement compared to conventional victim
caches. However, it shows no performance improvement for
data caches.

The selective cache [6] consists of a spatial cache with a
large block size, a temporal cache with a small block size, and
a locality prediction table. The data may be placed in just one
of the two subcaches or may not be cached anywhere,
depending on the predicted type of locality for a given memory
access. The prediction is made by means of a history table,
which is called a locality prediction table. The locality
prediction mechanism is designed for numeric codes with
constant stride vectors.

The split temporal/spatial cache (STS) [7] is organized as
two parts, i.e., a spatial cache with a prefetch mechanism and a
temporal cache. The temporal cache is organized as a two-level
hierarchy, with a one-word block size at each level. The spatial
cache has the usual block size and includes a hardware
prefetching mechanism. At compile time, with some
estimation of the access probability, data accesses are classified
as exhibiting predominantly either temporal locality or spatial
locality, and are tagged for one or the other of these caches.

The HP-7200 assist cache [8] provides a methodology that
seeks to avoid both block interference and cache pollution
before they happen. This design places the primary direct-
mapped cache in parallel with a small fully associative buffer,
guaranteeing single-cycle lookup at both units. Blocks
requested from the cache controller, due to a cache miss or a
prefetch, are first loaded into the assist buffer, and are only
promoted into the direct-mapped cache if they exhibit temporal
locality. Data with no temporal reuse bypass the direct-mapped
cache and are moved directly back to memory with a FIFO
replacement algorithm.

The NTS cache proposed by Rivers and Davidson [9]
supplements the conventional direct-mapped cache with a
parallel fully associative cache. This scheme separates the
reference stream into temporal and non-temporal block
references. Blocks are treated as non-temporal until they
become temporal. Cache blocks that are identified as non-
temporal when they are replaced are allocated to fully
associative cache on subsequent requests. However, NTS
caching does not allow swaps between cache A and cache B.
This becomes critical when we have conflicts among temporal
blocks or conflicts among non-temporal blocks. This degrades
the performance by not utilizing cache space that might be
available in the L1 cache. Although they use a mechanism
similar to tag blocks as temporal, they improve this scheme by
allowing both temporal and non-temporal blocks to reside in
cache A and in cache B.

ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 277

The difference between the proposed cache and these
approaches is explained as follows. The proposed cache has
different associativities and block sizes. We also include
hardware prefetching. In contrast, the selective cache [6] and
the STS cache [7] use the same associativity with different
block sizes. The stream cache [4], victim cache [4], and assist
cache [8] use different associativities with the same block size.
Additionally, the hardware mechanisms of these schemes differ
from each other in many aspects. First of all, the selective
cache system has a locality prediction table that decides
whether the requested data has either temporal locality or
spatial locality. The STS cache uses a prefetching mechanism
to exploit spatial locality but cannot exploit temporal locality
effectively. The cited cache systems focus on how to detect the
type of locality for a certain memory reference and how to deal
with the references based on the predicted locality. The
proposed cache effectively exploits both types of locality via a
hardware control mechanism that employs a time interval
during which a location is accessed from the spatial cache to
determine whether it also has temporal locality. The HP-7200
assist cache system employs a time interval and a prefetching
mechanism, but the information needed to detect temporal
locality is provided statically by the compiler.

III. New Cache System

1. Motivation

Common design objectives for a cache are to improve
utilization of the temporal and spatial locality inherent in
applications. However no single cache organization exploits
both temporal and spatial locality optimally because of their
contradictory characteristics. Increasing block size reduces the
number of cache blocks. Thus, conventional cache designs
attempt to compromise by selecting an adequate block size.
The cache’s lack of adaptability to patterns of references with
different types of locality poses a further drawback. A fixed
block size results in suboptimal overall access time and
bandwidth utilization because it fails to match the varying
spatial and temporal localities across and within programs [10],
[11].

A significant reason for using a direct-mapped cache with a
small block size is to reduce power consumption and cycle
time. To make up for the poor spatial locality of such a direct-
mapped cache, we provide a fully associative spatial buffer
with a large block size. The small block size exploits temporal
locality and the large block size exploits spatial locality. Small
blocks are first loaded as part of larger blocks that are fetched
into the spatial buffer. We selectively extend the lifetime of
those small blocks that exhibit high temporal locality by storing

them in the direct-mapped cache. When a large block is
replaced in the spatial buffer, small blocks belonging to it that
have been accessed at least once during its residency are
moved into the direct-mapped cache. This approach effectively
reduces conflict misses and thrashing at the same time.

Making the block size of the direct-mapped cache as small
as possible improves temporal locality by increasing the
number of available entries for a given cache space. For
example, the number of entries for 4B blocks is sixteen times
more than for 64B blocks. Therefore, the lifetime of a data item
in a direct-mapped cache with an s-byte block size is at most l/s
times that for a cache with an l-byte (l > s) block size, for a
given cache size. In conventional direct-mapped caches, the
increase in spatial locality due to a larger block size gives a
greater performance improvement than the increase in
temporal locality resulting from increasing the number of
entries. However, the spatial buffer of the proposed cache
provides the necessary spatial locality, and thus we choose the
smallest block size possible for the direct-mapped cache.

Fetching a large block when a cache miss occurs increases
spatial locality. Our simulations show the probability that
neighboring small blocks will be accessed during the lifetime
of the initial block is more than 50% for most benchmarks. An
intelligent prefetching approach that emphasizes prefetching of
data that has exhibited evidence of spatial locality can also
improve cache performance.

Instead of loading a missed block directly into the direct-
mapped cache, we load it into the fully-associative spatial
buffer. Then a time interval proportional to the number of
entries in the buffer elapses before it is evicted. The small
blocks, (which are individual words in the simple case) within
the large block, that have been referenced during that time are
moved into the direct-mapped cache when the large block is
evicted.

2. Cache System Structure

The proposed cache structure is shown in Fig. 1. The direct-
mapped cache is the main cache and its organization is similar
to a traditional direct-mapped cache, but it has a smaller block
size. The spatial buffer is designed so that each entry is a
collection of several banks, each of which is the size of a block
in the direct-mapped cache. The tag space of the buffer is a
content addressable memory (CAM). The small blocks in each
bank include a hit bit (H) to distinguish referenced blocks from
unreferenced blocks. Each large block entry in the spatial
buffer further has a prefetch bit (P), which directs the operation
of the prefetch controller. The prefetch bits are used to
dynamically generate prefetch operations.

When the CPU performs a memory reference, the direct-
mapped cache and the spatial buffer are searched in parallel.

278 Jong-Hoon Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

=

VD Tag Data

Direct-mapped
cache hit

Data Address for CPU

Data word

Tag

CAM

DM Index bits
DM Tag bits SB Tag bits

Spatial buffer hit

Bank Enable

large block offset

Small block

Data to/from CPU

Data word

Data word

Large block
Data

prefetch controller

SB Tag bits Prefetch
operation

Prefetch signal

Address generator

Leftmost two bits of

Data word

Prefetch buffer

Prefetching large block

Large block including
missed small block

Data from
next level memory

Dirty bit

Decoder

Spatial Buffer

Direct-Mapped Cache

Match

Hit bit
(D3 - D0) SB 3 SB 0SB 1SB 2(H3 - H0)

PV
Small block

Fig. 1. Proposed cache structure.

We assumed that the tag match with the direct-mapped cache
and the spatial buffer should be as fast as the time used in the
direct-mapped cache only. A hit in the direct-mapped cache is
processed in the same way as a hit in a conventional L1 cache.
When a miss occurs in both the direct-mapped cache and the
spatial buffer, a large block is fetched into the spatial buffer. If a
reference misses in the direct-mapped cache but hits in the
spatial buffer, its corresponding small block is simply fetched
from the spatial buffer and the hit bit for that small block is set
at the same time. The prefetch controller generates a prefetch
signal when a large block is accessed and found to have a
multiple hit bits set. Two operations are performed
consecutively by the prefetch controller. Given a hit in the i-th
large block, the first operation searches the tags of the spatial
buffer to detect whether the (i+1)th large block is already
present. A one-cycle penalty occurs in this case, but the
overhead is negligible because prefetching is initiated in
response to only about 1.5% to 2.5% of the total number of
addresses generated by the CPU. Thus, the average MCPI is
increased by about 0.06%. If the (i+1)th large block is not
already in the spatial buffer, the second operation is performed:
it is fetched into a prefetch buffer and the P bit in the i-th large
block is set to prevent it from generating further prefetches. The

number of prefetch buffer entries is assumed to be one.

If misses occur in both the direct-mapped cache and the
spatial buffer, the cache controller initiates miss handling.
When this occurs, a block that was already in the prefetch
buffer is transferred to the spatial buffer. Therefore, the transfer
time is hidden because 19 clock cycles are required for
handling a miss. But the missed block may already be present
in the prefetch buffer. Therefore, when the block in the prefetch
buffer is transferred to the spatial buffer, the tag value should be
simultaneously compared with the generated address. This
comparison can be implemented either by using the
comparator in the direct-mapped cache or an additional
comparator. If the comparator shows a match, the requested
data item is transmitted to the CPU and transferred to the
spatial buffer at the same time. In addition, the ongoing miss
signal should be canceled by the cache controller.

3. Operational Model of the Proposed Cache

Here we describe in detail the algorithms for managing the
proposed cache. Prefetching is performed dynamically
depending upon both the H and the P bits for a particular large
block in the spatial buffer. On every memory access, both the

ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 279

direct-mapped cache and the spatial buffer are accessed at the
same time. The different cases for the operational model are
explained as in Fig. 1.

A. Case of Cache Hits

On every memory access, a hit may occur at the direct-
mapped cache or the spatial buffer. First, consider the case of a
hit in the direct-mapped cache. If a read access to the direct-
mapped cache is a hit, the requested data item is transmitted to
the CPU without delay. If a write access to the direct-mapped
cache is a hit, the write operation is performed and the dirty bit
for the block is set.

Second, consider the case of a hit in the spatial buffer. The
data in the small block are sent to the CPU, and the hit bit is set
to mark it as referenced. As an aside, we also reduce power
consumption by using the most significant two bits of the large
block offset to activate just one of the banks in the spatial buffer.
For example, if the size of a small block is 8B and a large block
is 32B, there are four banks in the spatial buffer. When a large
block is accessed, and its P bit is in the reset state, a prefetch
operation is initiated if a hit occurs in any bank of the spatial
buffer and one or more hit bits are already set. At the same time,
the tags of the spatial buffer are searched for the prefetch
address to check whether it is already present, in which case the
prefetch is squashed and the P bit is set. If the address is not in
the spatial buffer, the prefetch controller generates the prefetch
signal and the target address to fetch the large block into the
prefetch buffer from the next level of memory. At the same
time, the P bit of the original large block is set to prevent
repetition of the prefetch. If the P bit of a large block is set, the
consecutive large block must be present in either the spatial
buffer or the prefetch buffer, and there is no need to search the
tags within the spatial buffer.

If a block is in the prefetch buffer when a subsequent
prefetch signal is generated as a result of a cache miss, then the
miss stalls while the contents of the prefetch buffer are moved
into the spatial buffer. According to our simulation results, this
case almost never occurs, even for a prefetch buffer with just
one entry. This is because the overall rate of prefetch operations
is only about 0.3%, and the miss ratio is about 1.7%. Therefore,
the probability for a prefetch to be initiated in this manner is
about 6 times smaller than the miss ratio. Because the
utilization of prefetched blocks is over 90%, we concluded that
it is not worth adding hardware specifically to handle this rare
case, relying instead on the existing cache stall mechanism.

When either cache misses, then while the cache controller is
handling the miss, a large block is loaded into the spatial buffer
from the prefetch buffer. All of the hit bits of the prefetched
block are set to zero. Finally, if either cache misses while a
prefetch operation is being performed, miss handling is

deferred until the ongoing prefetch operation completes.

B. Case of Cache Misses

If a miss occurs in both caches, a large block including the
missed small block is brought into the spatial buffer from the
next level of memory. We use as an example an 8kB direct-
mapped cache with a small block size of 8B and a 1kB spatial
buffer with a large block size of 32B, so four sequential small
blocks are contained within a 32B block. We consider two
cases, depending on whether the spatial buffer is full.

• Case 1: The spatial buffer is not full.

If at least one entry in the spatial buffer is in the invalid state,
a large block is fetched and stored in the spatial buffer. When a
particular small block is accessed by the CPU, the
corresponding hit bit is set to one. Thus, the hit bit of the small
block identifies it as a referenced block.

• Case 2: The spatial buffer is full.

If the spatial buffer is full, the oldest large block is replaced.
Each small block whose hit bit is set in the about-to-be-evicted
large block is loaded into the direct-mapped cache, because
those blocks have shown temporal locality. This loading time is
also hidden by the miss-handling time. If the spatial buffer is
full, the oldest entry is replaced according to a FIFO policy. At
that point, the blocks in the entry whose hit bits are set are
moved into the direct-mapped cache. Because these actions are
accomplished while the cache controller is handling a miss, this
operation does not introduce any additional delay. The move
operations between the two caches are illustrated as follows.
For our example configuration, when a 32-bit memory address
is generated, such as FFFFFF80, in the direct-mapped cache,
the tag field is 19 bits (A: 7FFFF), the index field is 10 bits (B:
3F0), and the offset field is 3 bits. In the spatial buffer, the tag
field is 27 bits (C: 7FFFFFC) and the offset field is 5 bits.
Therefore, the high order two bits of the large block offset are
00. These two bits are used to search one of the four banks
selectively. If a miss occurs in both caches, data corresponding
to the tag value of the large block (C) are fetched and only the
hit bit of the first (1FFFFFF0) of the four small blocks
(1FFFFFF3, 1FFFFFF2, 1FFFFFF1, and 1FFFFFF0) is set.
Now consider what happens when this large block in the
spatial buffer is replaced. If the hit bit of the first small block is
only one set, the bits 00 corresponding to the first small block
are added to the tag value of the spatial buffer (C) by the
address generator. The two-bit offsets corresponding to the four
small blocks are 00, 01, 10, and 11, respectively. Therefore, a
new memory address (A+B) without an offset is formed, and
the corresponding tag and index values for the direct-mapped
cache are represented as A and B, respectively, through the

280 Jong-Hoon Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

process of redecoding.
Cache write-back does not occur from the spatial buffer

because any modified or referenced small block is always
moved to the direct-mapped cache before its corresponding
large block is replaced. Write-back occurs only from the direct-
mapped cache. In a conventional direct-mapped cache or
victim cache, which would typically have the same block size
(e.g., 32B) as the spatial buffer, write-back must be performed
for the full 32B block, even though only one word requires
write-back. In contrast, the proposed cache executes the write-
back operation only for the marked 8B small blocks. Therefore,
write traffic into memory is potentially reduced to a significant
degree.

It should be noted that the potential exists in any split cache
for blocks of incoherent copies to appear in the different
subcaches. Thus, to avoid this problem, we chose and
simulated a simple mechanism, which we describe as follows.
When a global miss occurs, the cache controller searches the
tags of the temporal cache to detect whether any of the four
small blocks belonging to the particular large block being
fetched are present in the temporal cache. If a match is detected,
then all of the corresponding small blocks in the temporal
cache are invalidated. Each of these small blocks that is also
dirty is then used to update its corresponding entry in the spatial
buffer once the large block has been loaded. This search
operation can be accomplished while the cache controller is
handling a miss. Further, the power consumption overhead is
negligible, because the miss ratio is only about 1.7% of the
total number of addresses generated by the CPU.

A small block may thus temporarily exist in the temporal
cache in the invalid state, while its valid copy is being
referenced in the spatial buffer. When its corresponding large
block is replaced, the small block is copied into the temporal
cache once again. Therefore, there is almost no performance
decrease. Of course, if three or four small blocks are present in
both the temporal cache and the spatial cache, then the effective
utilization of total cache space decreases a bit more, but is still
negligible. This mechanism also applies in the case of
transferring a prefetched block into the spatial buffer.

IV. Performance Evaluation

Benchmarks used in the trace-driven simulation include six
of the SPECint95 benchmarks and two from SPECfp95 (applu
and tomcatv), representing general-purpose applications, and
ten of the Media benchmarks, representing embedded
multimedia and communications applications. The Media
benchmarks are representative of image compression, voice,
video transmission, 3D text mapping, cryptography, and so
forth. Only data references are collected and used for the

simulation. The DineroIV cache simulator was modified to
simulate the proposed data cache system. We have chosen two
common approaches, the direct-mapped cache and the victim
cache, for comparison in terms of performance.

1. Time of Prefetch Signal Generation and Overhead

We used simulation to determine the threshold for the
number of hit bits that should be set before we initiate a
prefetch signal. Figures 2 and 3 show the miss ratio and the
average memory access time for variations of initiating a
prefetch signal based on the number of set hit bits. Generally,
the more meaningful measure to evaluate the performance of
any given memory-hierarchy is the average memory access
time. The basic parameters for the simulation are presented as
follows: the hit times of direct mapped cache and fully

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

M
is

s
ra

tio
 (

%
)

prefetch-2 (8K-1K) prefetch-3 (8K-1K) prefetch-4 (8K-1K)

prefetch-2 (8K-2K) prefetch-3 (8K-2K) prefetch-4 (8K-2K)

Fig. 2. Miss ratio for various prefetch configurations.

A
ve

ra
ge

 m
em

or
y

ac
ce

ss
 ti

m
e

 (
cy

cl
e)

prefetch-2 (8K-1K) prefetch-3 (8K-1K) prefetch-4 (8K-1K)
prefetch-2 (8K-2K) prefetch-3 (8K-2K) prefetch-4 (8K-2K)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

Fig. 3. Average memory access time for various
prefetch configurations.

ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 281

associative buffer are both assumed to be one cycle. We
assume 15 cycles are needed for a miss. Therefore, each 8B
block is transferred from the off-chip memory after a 15 cycle
penalty. These parameters are based on the values for common
32-bit embedded processors (e.g., Hitachi SH4 or ARM920T).

The notation “8K–1K’’ denotes our example configuration
(8kB direct-mapped cache with a 1kB spatial buffer). Also the
notation “prefetch-2” denotes that the prefetch controller
generates a prefetch signal when two of the four hit bits are set,
"prefetch-3" denotes a threshold of three set hit bits, and so on.
Our simulations show that prefetching when the number of hit
bits is two achieves a more significant miss gain than the other
cases, in spite of the potential for greater overhead due to
increased prefetch frequency. With respect to power
consumption, memory traffic, and the accuracy of the
prefetching operation, the “prefetch-4” mechanism provides
the most significant effect.

When a prefetch operation is performed, the overhead can be
determined as follows. If the P bit is reset, the prefetch controller
searches the tag part of the spatial buffer, resulting in an
additional one-cycle penalty beyond the single cycle required for
normal access. Search overhead is shown in Fig. 4. We count
both the access cycle and the search cycle, for a total of two
cycles, in determining the overhead. However, this overhead
turns out to be negligible because it applies to only 1.5% to 2.5%
of all addresses generated. Also, using the P bit can reduce the
two-cycle overhead to a single cycle by eliminating searching
when a block is already present. Overall, use of the P bit reduces
the search overhead by around 65% to 80%.

prefetch-2 (8K-1K) prefetch-3 (8K-1K) prefetch-4 (8K-1K)
prefetch-2 (8K-2K) prefetch-3 (8K-2K) prefetch-4 (8K-2K)

0

0.5

1.0

1.5

2.0

2.5

3.5

4.0

4.5

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

T
w

o
cy

cl
e

se
ar

ch
 o

ve
rh

ea
d

(%
)

3.0

Fig. 4. Tag search overhead for various prefetch configurations.

In general, the search overhead of the “prefetch-2” case tends
to be greater than the other configurations because of the higher
rate of prefetch generation, but not in every case. For example,
the detailed breakdown of overhead for the “applu” benchmark
is shown in Table 1. The figures in the row for case A show the

Table 1. Various cases of the two cycle search overhead in Applu.

Cases prefetch-2 prefetch-3 prefetch-4 Two cycle
overhead

A (P bit: 0 1) 0.436% 0.324% 0.196% Yes

B (P bit: 0 1) 1.176% 2.866% 1.469% Yes

C (P bit: 1 1) 4.041% 2.623% 4.539% No

Actual two cycle
search overhead

(A+B)
1.612% 3.190% 1.665%

rate at which prefetch operations actually occurred after the
tags of the spatial buffer were searched, with a two-cycle
overhead. Case B shows the rate when the block to prefetch
already exists in the spatial buffer, but the P bit is not set, so
an extra-cycle search is performed before a prefetch signal is
generated. In case C, the P bit of the block has already been set,
so there is no need to search the tags. In this case there is only
one cycle of overhead, as with normal accesses. Thus, the
actual overhead in Table 1 is reduced by the amount in case C.

Finally, in the case of prefetching a block that does not exist
in the spatial buffer, the target block is simply fetched into the
prefetch buffer. The rates at which prefetch operations actually
occurred and prefetched blocks are actually referenced are
shown in Figures 5 and 6. With only a small number of
prefetch operations, the proposed cache system achieves a
significant performance gain with low overhead. For the
“prefetch-4” mechanism, the utilization of prefetched blocks is
over 90%. This data clearly shows that spatial locality is
enhanced by prefetching a neighboring block intelligently
when a spatial buffer hit occurs.

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG
0

0.5

1.0

1.5

2.0

2.5

A
ct

ua
l p

re
fe

tc
h

op
er

at
io

n
ra

tio
 (

%
)

prefetch-2 (8K-1K) prefetch-3 (8K-1K) prefetch-4 (8K-1K)
prefetch-2 (8K-2K) prefetch-3 (8K-2K) prefetch-4 (8K-2K)

Fig. 5. Ratio of the actual number of prefetch signals
generated by prefetch operation.

282 Jong-Hoon Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

0

10
20
30
40

50
60

70

80

90
100

T
he

 a
cc

ur
ac

y
of

 p
re

fe
tc

hi
ng

 (
%

)

prefetch-2 (8K-1K) prefetch-3 (8K-1K) prefetch-4 (8K-1K)
prefetch-2 (8K-2K) prefetch-3 (8K-2K) prefetch-4 (8K-2K)

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

Fig. 6. Actual hit ratio of prefetched blocks.

2. Comparison of a Conventional Cache with the Proposed
Cache Configuration

Two common performance metrics, the miss ratio, and the
average memory access time, are used to evaluate and compare
the proposed cache system operating in a “prefetch-4”
configuration with other approaches.

A. Miss Ratio and Average Memory Access Time

Several experiments were performed to determine the
optimum block sizes for the proposed direct-mapped cache and
spatial buffer. The combination of an 8B small block and a 32B
large block shows the best performance for most cases. To
clarify the impact of the prefetch operation, we evaluated the
cache both with and without prefetching.

The cache miss ratios for the conventional direct-mapped
cache and the proposed cache are shown in Fig. 7. For the
direct-mapped cache, denoted as DM, the notation “32kB–
32B’’ denotes a 32kB direct-mapped cache with a block size
of 32B. The proposed cache notation “8K8–1K32’’ denotes
an 8kB direct-mapped cache with a block size of 8B, and a
1kB spatial buffer with a block size of 32B. Notice that the
average miss ratio of the proposed cache for a given size (e.g.,
8kB) is equal to a conventional direct-mapped cache with a
cache size of four or eight times as much space (e.g., 32kB, or
64kB) in a non-prefetching mode and prefetching mode,
respectively.

The miss ratios for a conventional 2-way set-associative
cache and the proposed cache are compared in Fig. 8. The 2-
way set-associative cache greatly reduces the miss ratio, but
because of its slower access time and higher power
consumption, embedded processors typically do not employ
this organization. The results of simulation show that the
proposed cache can achieve better performance than a 2-way
set associative cache with double the space. A 4-way set

M
is

s
ra

tio
 (%

)

32kB-32B (DM)

64kB-32B (DM)
8K8-1K32 (non-prefetch mode) 8K8-1K32 (prefetch mode)
8K8-2K32 (non-prefetch mode) 8K8-2K32 (prefetch mode)

0
0.5
1.0

1.5
2.0
2.5
3.0
3.5

4.0
4.5
5.0

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

 Fig. 7. Miss ratios of the direct-mapped cache and
proposed cache.

M
is

s
ra

tio
 (%

)
16kB-32B (2-way) 8K8-1K32 (non-prefetch mode) 8K8-1K32 (prefetch mode)

8K8-2K32 (non-prefetch mode) 8K8-2K32 (prefetch mode)

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

32kB-32B (2-way)

5.0
6.0
7.0
8.0

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

Fig. 8. Miss ratios of the 2-way set associative cache and
proposed cache.

associative cache shows results similar to a 2-way set
associative cache, given the same cache sizes (16kB–32kB).

The average memory access times for the conventional
direct-mapped cache and the proposed cache are compared in
Fig. 9. The average access time was obtained using the
following simulation mechanism. First, a block to prefetch is
loaded into the prefetch buffer 19 cycles after the initiation of a
prefetch signal, using a cycle counter. If no cache miss or
reference to the block being prefetched occurs during this
prefetch operation, then the prefetch controller needs to check
the tag part of the spatial buffer to see whether the block is
present, resulting in a single-cycle penalty being added to the
normal access time. However, if a cache miss occurs while a
prefetch operation is being performed, its miss handling is
deferred until the ongoing prefetch operation completes. In this
case, we assume that the average access time is increased by at
most 18 cycles, as would occur when a miss arrives on the
cycle following the start of the prefetch operation. The precise

ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 283

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Av
er

ag
e

m
em

or
y

ac
ce

ss
 ti

m
e

(c
yc

le
)

32kB-32B (DM)
64kB-32B (DM)

8K8-1K32 (non-prefetch mode) 8K8-1K32 (prefetch mode)
8K8-2K32 (non-prefetch mode) 8K8-2K32 (prefetch mode)

applu compress gcc go ijpeg m88ksim tomcatv vortex AVG

 Fig. 9. Average memory access time of the direct cache
and proposed cache.

32kB-32B (DM) 64kB-32B (DM) 16kB-32B (2-way)
8K8-1K32 (prefetch mode)

0

1

2

3

4

5

6

7

8

9

epic unepic cjpeg djpegmpeg2
decode

rasta mipmaptexgen osdemo AVG

M
is

s
ra

tio
 (%

)

8K8-1K32 (non-prefetch mode)

mpeg2
encode

Fig. 10. Miss ratios of the various caches and proposed cache.

epic unepic cjpeg djpegmpeg2
decode

rasta mipmap texgenosdemoAVG
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve

ra
ge

 m
em

or
y

ac
ce

ss
 ti

m
es

(c
yc

le
) 32kB-32B (DM) 64kB-32B (DM) 16kB-32B (2-way)

8K8-1K32 (prefetch mode)8K8-1K32 (non-prefetch mode)

mpeg2
encode

Fig. 11. Average memory access time of the various caches
and proposed cache.

miss penalty is 19 cycles minus the number of cycles between
the prefetch initiation time and the time when the miss signal
was generated. When a reference is made to a block that is

being prefetched, the hit time is 19 cycles minus the number of
cycles since the prefetch initiation. The exact number of cycles
is measured by a counter in the simulation. Our analysis shows
that applications with a high degree of locality, such as tomcatv,
show an especially strong performance improvement with the
proposed cache.

Figures 10 and 11 show the resulting miss ratio and
average memory access time for the media benchmarks.
Multimedia applications show better performance when
larger cache block sizes, e.g., 64B or 128B, are chosen.
Therefore, the prefetching mechanism is more prominent, but
the non-prefetching mode can also achieve high performance.

3. Comparison of a Victim Cache with the Proposed Cache

We compared several previously proposed cache designs
(e.g., NTS cache, victim cache, selective victim cache, assist
cache, and so forth) with the proposed cache. Our analysis of
the performance improvement achieved by each of these
designs showed that one of the most effective is the victim
cache [12], [13]. Our results from comparing a victim cache
configuration with the proposed cache are presented here. The
victim cache can significantly reduce conflict misses and can
provide a low overall miss ratio with just a simple hardware
mechanism. However, a victim cache does incur a large
number of content swaps between the main cache and the
victim buffer, and operates with a large block size. Figures 12
and 13 show the resulting miss ratio and average memory
access time for the two approaches when the same cache and
buffer sizes are used. A victim cache with a 32B block size
shows the best performance, but increasing the block size often
increases write traffic into memory.

As shown in Figs. 12 and 13, the proposed cache (a 8kB
direct cache with an 8B block size and a 1kB spatial buffer
with a 32B block size) has better performance than the

0

1

2

3

4

5

6

7

8

9

10

go tomcatv gcc ijpeg compress applu vortex m88ksim avg

M
is

s
ra

tio
 (%

)

victim-8B victim-16B victim-32B
8K8-1K32 (non-prefetch mode) 8K8-1K32 (prefetch mode)

Fig. 12. Miss ratios of victim cache and proposed cache.

284 Jong-Hoon Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

applu compress gcc go ijpeg m88ksim tomcatv vortex AVGA
ve

ra
ge

 m
em

or
y

ac
ce

ss
 ti

m
e

(c
yc

le
)

victim-8B victim-16B victim-32B
8K8-1K32 (non-prefetch mode) 8K8-1K32 (prefetch mode)

Fig. 13. Average memory access times for victim cache
and proposed cache.

8kB victim cache with a 1kB victim buffer. The victim cache
employs the same 32B cache block size in the main cache and
the victim buffer, while 8B blocks are used in the main
proposed cache. The use of a smaller block size in the proposed
cache results in a significant reduction in power consumption
because write traffic into memory is reduced by 25%.

4. Relation between Cost and Performance

In general, the logic to manage the tags for the fully
associative cache is designed as a CAM structure for
simultaneous comparison of each entry. Because each CAM
cell is a combination of storage and comparison, the size of a
CAM cell is double that of a RAM cell [14]. For fair
performance/cost analysis, the performance for various direct-
mapped cache and buffer sizes is evaluated. The metric is rbe
(register bit equivalents), and the total area can be calculated as
follows:

Area = PLA + RAM + CAM. (1)

Here, the control logic PLA (programmable logic array) is
assumed to be 130 rbe, a RAM cell as 0.6 rbe, and a CAM cell
as 1.2 rbe. (2) represents the RAM area [14]:

),)_#_((#
)#(#6.0 _

driver

ampsense

Wbitsstatusbitsdata
LentriesRAM

++×

+=
 (2)

where Lsense_amp is the bit length of a bit-line sense amplifier,
Wdriver the data width of a driver, #entries the number of rows of
the tag array or data array, #data_bits the tag bits or data bits of
one set, and #status_bits the state bits of one set. Finally, (3)
calculates the area of the CAM:

CAM=0.6 (√ 2×#entries +#Lsense_amp)
 ×(√ 2×#tag_bits + Wdriver), (3)

where #tag_bits is the number of bits for one set in the tag array.

Table 2. Performance and cost of the proposed cache and various
caches. (IR: improvement ratio, AMAT: average memory
access time)

Area
(IR)

Miss ratio
(IR)

AMAT
(IR)

32kB–32B
(DM)

177,496 rbe
(1.00)

1.89%
(1.00)

1.34 cycle
(1.00)

8kB–1kB
(victim)

67,431 rbe
(0.38)

2.00%
(1.06)

1.42 cycle
(1.06)

8kB–1kB
(proposed cache)

67,431 rbe
(0.38)

1.61%
(0.85)

1.29 cycle
(0.96)

64kB–32B (DM) 352,596 rbe
(1.99)

1.46%
(0.77)

1.26 cycle
(0.94)

8kB–2kB
(victim)

73,680 rbe
(0.42)

1.69%
(0.89)

1.38 cycle
(1.03)

8kB–2kB
(proposed cache)

73,680 rbe
(0.42)

1.37%
(0.73)

1.25 cycle
(0.93)

Table 2 shows the performance/cost for three different cache
configurations.

A 32kB direct-mapped cache, an 8kB–1kB victim cache
and an 8kB–1kB proposed cache are compared. The
improvement for each configuration is normalized to the value
of the direct-mapped cache. A 64kB–32B direct-mapped
cache, an 8kB–2kB victim cache and an 8kB–2kB proposed
cache are compared to a 32kB-32B direct-mapped cache. The
proposed cache shows about a 60% area reduction compared
with the 32kB–32B conventional direct-mapped cache, even
though it provides higher performance. It also offers an 80%
area reduction compared with the 64kB–32B configuration,
while providing much higher performance. In addition, the
improvement ratio for the average memory access time shows
that the 8kB–2kB proposed cache is the best configuration.

5. Comparison of Power Consumption

For power consumption analysis, we evaluated various
cache sizes using the CACTI-3.0 simulator [15], which can
calculate access times, cycle times, area, and power
consumption for many types of hardware caches. Our results
are based on 0.18 µm technology with a 1.7 V supply voltage.

Table 3 shows the power consumption for various cache
configurations. Each entry shows the power dissipation for a
cache access and a cache update on a miss case. In the cases of
the victim cache and the proposed cache system, the direct-
mapped cache and the fully associative cache are searched in
parallel at the same level. According to the results of CACTI
3.0, access times for the dual direct-mapped cache (e.g., 8kB–
8B) and the fully associative cache (e.g., 1kB–32B) of the

ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 285

proposed cache are 0.953 ns and 1.934 ns, respectively.
However, the access time for the tag part of the fully
associative cache is 1.372 ns. If a hit occurs at the direct-
mapped cache, the data part of the fully associative cache does
not need to be driven. That is, the requested data item is
transmitted to the CPU without checking for a hit/miss in the
fully associative cache. This mechanism offers the fast access
time of a direct-mapped cache and low power consumption
by using a simple additional unit and an asynchronous
SRAM.

Table 3. Power consumption per access for various cache
configurations.

Cache configuration Paccess (nJ) Pcache_write (nJ)

16kB–32B (DM) 0.4734 0.2220

32kB–32B (DM) 0.6205 0.3726

64kB–32B (DM) 0.9358 0.6909

16kB–32B (2-way) 0.6335 0.2237

16kB–32B (4-way) 0.9349 0.2260

32kB–32B (2-way) 0.7586 0.3402

Victim cache
(8kB 32B–1kB 32B)

DM miss: 0.649
DM hit: 0.440

DM write: 0.130
FA write: 0.077

Proposed cache
(8 kB 8 B–1 kB 32 B)

DM miss: 0.577
DM hit: 0.409

DM write: 0.106
FA write: 0.077

Paccess of the victim and the proposed cache can be divided

into two parts, i.e., a hit case and a miss case at the direct-
mapped cache. If a hit occurs at the direct-mapped cache,
accessing power is consumed to access the tag and the data part
of the direct-mapped cache and to access the tag part of the
fully associative cache (i.e., the “DM hit” case in Table 5). And
if a miss case occurs at the direct-mapped cache, power
consumption to access the data part of the fully associative
cache should be added to that of a hit case (i.e., the “DM miss”
case in Table 3). Finally “DM write” at the victim cache
denotes two cases, namely, power consumption to update the
direct-mapped cache when a global miss occurs or the case for
content swapping when a victim buffer hit occurs. “FA write”
for the victim cache denotes power consumption for updating
the associative cache when the replaced item from the direct-
mapped cache is moved into the victim buffer. “FA write” for
the proposed cache denotes power consumption for updating
the associative cache when a miss occurs. “DM write” for the
proposed cache denotes power consumption in the direct-
mapped cache when a large block is replaced, that is, when its
small blocks that are marked as having been accessed are
moved into their corresponding block entries in the direct-

mapped cache.

From these values, the average power consumption of the
cache system is given by

Avg.power = Nhit · Paccess + Nmiss · Pmiss, (4)

where Nhit and Nmiss are the ratios of hits and misses in the cache,
respectively. Paccess is the power used to access a cache block
and Pmiss is the power required to process a miss. Pmiss can be
calculated as

 Pmiss = Paccess + Pcache_write + Ppad, (5)

where Pcache_write is the power for a cache write operation in a
cache miss, and Ppad is the power dissipated at the on-chip pad
slot. Ppad can be calculated as in [16], [17],

 Ppad = 0.5 Vdd
2 · (0.5 (Wdata + Waddr) · 20pF, (6)

where Wdata and Waddr are the number of bits for both the data
sent/returned and the address sent to the lower level memory
on a miss request. The capacitive load for off-chip destinations
is assumed to be 20 pF [16]. A data cache with a 32B block
size is assumed, where the values of Wdata and Waddr are also 32
bits.

Figures 14 and 15 present the average power consumption of
different cache structures compared to the proposed cache for
the benchmarks used earlier. Simulation results show that
power consumption in the proposed cache is around 10% to
60% lower than these various cache systems. Therefore, the
proposed cache shows the lowest power consumption of all the
approaches. Overall, the proposed cache shows the best result
in terms of both performance and power among all of the
approaches.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

compress applu go ijpeg m88ksim tomcatv vortex gcc AVG

P
ow

er
 c

on
su

m
pt

io
n

(n
J)

16kB-32B (DM) 32kB-32B (DM) 64kB-32B (DM) 16kB-32B (2-way)
16kB-32B (4-way) 32kB-32B (2-way) Victim cache Proposed cache

Fig. 14. Spec95 benchmarks: power consumptions of the
conventional caches and the proposed cache.

286 Jong-Hoon Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

epic unepic cjpeg djpegmpeg2
decode

rasta mipmap texgenosdemoAVGmpeg2
encode

16kB-32B (DM) 32kB-32B (DM) 64kB-32B (DM) 16 kB-32 B (2-way)
16kB-32B (4-way) 32kB-32B (2-way) Victim cache Proposed cache

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P
ow

er
 c

on
su

m
pt

io
n

(n
J)

Fig. 15. Media benchmarks: power consumptions of the

conventional caches and the proposed cache.

V. Conclusion

The goal of this research was to design a simple but high
performance and low power cache system with low cost. To
attain this goal, we designed a new caching mechanism for
exploiting two types of locality effectively and adaptively; a
direct-mapped cache with a small block size for exploiting
temporal locality and a fully associative spatial buffer with a
large block size for exploiting spatial locality. We used an
intelligent hardware-based prefetching mechanism to
maximize the effect of spatial locality. We have shown that the
proposed cache overcomes the structural drawbacks of direct-
mapped caches, such as conflict misses and thrashing. We
evaluated the proposed cache system in two configurations, the
non-prefetching mode and prefetching mode, to analyze the
contribution of intelligent prefetching. Both modes provide
high performance, but the non-prefetching mode offers lower
power consumption while the prefetching mode offers higher
performance. According to our simulation results, the time
interval mechanism of the proposed cache decreases conflict
misses by about 26%, and the spatial locality miss ratio
decreases by about 48%. The average rate of prefetch signal
generation is only about 0.3% to 0.7% of the total number of
address references generated. For the prefetching mode, the
miss ratio is about 21% less and the average memory access
time is about 10% less than non-prefetching mode. The
average miss ratio and average memory access time of the
proposed cache for a given cache space (e.g., 8kB) is
equivalent to a conventional direct-mapped cache with four
times as much space (e.g., 32kB). We have also shown that at
least 60% to 80% area reduction can be obtained as compared
with a direct-mapped cache that is large enough to provide

similar performance. In addition, the proposed cache can
reduce the miss ratio by around 20% and the average memory
access time by around 10% (in either the prefetching or non-
prefetching mode), versus the victim cache configuration. We
have also shown that power consumption in the proposed
cache is around 10% to 60% lower than these various cache
systems.

References

[1] J.L. Baer and T.F. Chen, “An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty,” Proc. Int’l Conf. on
Supercomputing’91, 1991, pp. 176-186.

[2] T. Mowry, M.S. Lam, and A. Gupta, “Design and Evaluation of a
Compiler Algorithm for Prefetching,” Proc. 5th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems, 1992, pp. 62-73.

[3] W.Y. Chen, R.A. Bringmann, S.A. Mahlke, R.E. Hank, and J.E.
Sicolo, “An Efficient Architecture for Loop Based Data
Preloading,” Proc. 25th Int’l Symposium on Microarchitecture,
1992, pp. 92-101.

[4] Norman P. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully Associative Cache
and Prefetch Buffers,” Proc. 17th ISCA, May 1990, pp. 364-373.

[5] D. Stiliadis and A. Varma, “Selective Victim Caching: A Method
to Improve the Performance of Direct Mapped Cache,” IEEE
Trans. Comput., vol. 46, no. 5, May 1997, pp. 603-610.

[6] A. Gonzalez, C. Aliagas, and M. Valero, “Data Cache with
Multiple Caching Strategies Tuned to Different Types of
Locality,” Proc. Int’l Conf. on Supercomputing’95, July 1995, pp.
338-347.

[7] V. Milutinovic, M. Tomasevic, B. Markovic, and M. Tremblay,
“The Split Temporal/Spatial Cache: Initial Performance Analysis,”
SCIzzL-5, Mar. 1996.

[8] G. Kurpanchek et al., “PA-7200: A PA-RISC Processor with
Integrated High Performance MP Bus Interface,” COMPCON
Digest of Papers, Feb. 1994, pp. 375-382.

[9] Jude A. Rivers and Edward S. Davidson, “Reducing Conflicts in
Direct-Mapped Caches with a Temporality-Based Design,” Proc.
the 1996 Int’l Conf. on Parallel Processing, vol. I, 1996, pp. 151-
162.

[10] S. Przybylski, “The Performance Impact of Block Sizes and Fetch
Strategies,” Proc. 17th ISCA, May 1990, pp. 160-169.

[11] F. Jesus Sanchez, Antonio Gonzalez, and Mateo Valeo, “Static
Locality Analysis for Cache Management,” Proc. PACT’97, Nov.
1997, pp. 261-271.

[12] G. Albera and R. Iris Bahar, “Power/Performance Advantages of
Victim Buffer in High-Performance Processors,” Proc. IEEE
Alessandro Volta Memorial Workshop, Mar. 1999, pp. 43-51.

[13] V. Srinivasan, Improving Performance of an L1 Cache with an
Associated Buffer, CSE-TR-361-98, University of Michigan, Feb.
1998.

[14] J.M. Mulder, N.T. Quach, and M.J. Flynn, “An Area Model for
On-Chip Memories and its Applications,” IEEE J. Solid State

ETRI Journal, Volume 25, Number 5, October 2003 Jung-Hoon Lee et al. 287

Circuits, vol. 26, no. 2, Feb. 1991, pp. 98-106.
[15] G. Reinman et al., CACTI 3.0: An Integrated Cache Timing and

Power, and Area Model, Compaq WRL Report, August 2001.
[16] M.B. Kamble et al., “Energy-Efficiency of VLSI Cache: A

Comparative Study,” Proc. IEEE 10th Int’l Conf. on VLSI Design,
Jan. 1997, pp. 261-267.

[17] M.B. Kamble et al., “Analytical Energy Dissipation Models for
Low Power Caches,” Proc. ISLPED’97, Aug. 1997.

Jung-Hoon Lee received his BS degree in
control instrumentation engineering from
Sungkyunkwan University in Seoul, Korea, in
1999 and the MS degree in computer science
from Yonsei University in Seoul, Korea, in 2001.
He is currently a PhD student in computer
science at Yonsei University. His research
interests include advanced architecture,

intelligent memory systems, low power architecture, and SoC systems.

Gi-Ho Park received the BS, MS, and PhD
degrees in 1993, 1995, and 2000 in computer
science at Yonsei University in Seoul, Korea.
He is currently a Senior Engineer in Processor
Architecture Lab., SOC R&D Center, System
LSI Division, Device Solution Network at
Samsung Electronics Co. His research interests

include advanced computer architectures, memory system design, and
realtime architecture.

Shin-Dug Kim received the BS degree in
electronic engineering from Yonsei University
in Seoul, Korea, in 1982 and the MS degree in
electrical engineering from University of
Oklahoma in 1987. In 1991, he received the
PhD degree from the School of Computer and
Electrical Engineering at Purdue University in

West Lafayette, Indiana. He is currently a Professor in Computer
Science at Yonsei University in Seoul, Korea. His research interests
include advanced computer architectures, parallel processing systems,
memory system design, and agent based Internet computing.

