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We present a high performance cache structure with a 
hardware prefetching mechanism that enhances 
exploitation of spatial and temporal locality. Temporal 
locality is exploited by selectively moving small blocks into 
the direct-mapped cache after monitoring their activity in 
the spatial buffer. Spatial locality is enhanced by 
intelligently prefetching a neighboring block when a spatial 
buffer hit occurs. We show that the prefetch operation is 
highly accurate: over 90% of all prefetches generated are 
for blocks that are subsequently accessed. Our results show 
that the system enables the cache size to be reduced by a 
factor of four to eight relative to a conventional direct-
mapped cache while maintaining similar performance. 
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I. Introduction 

Cache memory is a key mechanism for improving overall 
system performance. A cache exploits the locality inherent in 
the reference stream of a typical application. Two primary 
types of locality are available, and the degree to which they can 
be exploited depends on program execution characteristics. 
Temporal locality relies on the greater probability that recently 
accessed data will be accessed again in the near future. Spatial 
locality refers to the tendency for adjacent or nearby memory 
locations to be referenced close together in time. However, 
most cache systems have shown a tendency to emphasize only 
one or the other of the two types of locality because they place 
contradictory requirements on the structure of the hardware. 

Prefetching mechanisms can be used to reduce cache misses. 
Prefetching also reduces processor stall time by bringing data 
into the cache before its use, so that it can be accessed without 
delay. Hardware-based prefetching [1] requires some 
modification of the cache but little modification to the 
processor core. Its main advantage is that prefetches are 
handled dynamically at run time without compiler intervention. 
The drawbacks are that extra hardware is needed and that 
memory references for complex access patterns are difficult to 
predict. In contrast, software-based approaches [2] rely on 
compiler technology to perform static program analysis and to 
selectively insert prefetch instructions. The drawbacks are that 
non-negligible execution overhead is introduced due to the 
extra instructions, and that static analysis may miss some 
prefetch opportunities that are obvious at run-time. 

Most hardware prefetching mechanisms generate a prefetch 
signal when either a cache hit or a miss occurs. Therefore, a 
large number of prefetch signals are generated, leading to 
higher power consumption and cache pollution [3]. Prefetching 
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can also cause an increase in the memory cycles per instruction 
(MCPI) in the worst case. Our intelligent prefetching 
mechanism avoids these problems by reducing the prefetch 
generation rate. As a result, power consumption is also reduced 
and the increase in MCPI is negligible. 

The proposed cache is constructed in three parts: a 
conventional direct-mapped cache with a small block size, a 
fully associative spatial buffer with a large block size at the 
same cache level, and a hardware prefetching unit. The 
improvement in performance is achieved by exploiting the 
basic characteristics of locality. Specifically, two different block 
sizes are used, i.e., a small block size to exploit temporal 
locality and a large block size, which is a multiple of the small 
block size, to exploit spatial locality. In addition, temporal 
locality is enhanced by selectively retaining blocks with a high 
probability of a repeated reference in the time domain, and 
spatial locality is enhanced by both a large fetch size and an 
intelligent prefetching mechanism. 

The technique we use for enhancing temporal locality is to 
monitor the behavior of a block over a time interval before 
choosing to store it into the direct-mapped cache. In this way, 
instead of placing every missed block directly into the direct-
mapped cache, we first load a large block including the missed 
block into the spatial buffer. The missed block is not moved 
into the direct-mapped cache until the large block is replaced 
from the spatial buffer, and then only if it has shown evidence 
of temporal locality while it was resident in the spatial buffer. 
Thus the proposed cache exploits information about utilization 
of the block that is obtained during this time interval. The 
interval itself is proportional to the number of entries in the 
spatial buffer. The behavior that we observe during this time 
enables us to determine which blocks show strong temporal 
locality. 

II. Related Work 

The stream cache [4] is a small fully-associative cache 
containing on the order of two to five lines of data. When a 
miss occurs, data are returned to the direct-mapped cache and 
then several consecutive words from the data stream are 
prefetched to the stream cache. To make better use of the 
stream cache, Jouppi uses a different replacement algorithm, 
that is, victim caching. The victim cache [4] reduces the delay 
associated with cache misses due to line conflicts. It has been 
shown to be effective in improving overall system performance 
while requiring only a small additional buffer. Conflict misses 
may also be reduced by increasing cache associativity. 
Selective victim caching [5] places incoming blocks selectively 
in the main cache or a small victim buffer using a prediction 
scheme. This scheme swaps a block from the victim buffer to 

the main cache based on its history of use. For instruction 
caches, the selective victim cache shows an effective 
performance improvement compared to conventional victim 
caches. However, it shows no performance improvement for 
data caches. 

The selective cache [6] consists of a spatial cache with a 
large block size, a temporal cache with a small block size, and 
a locality prediction table. The data may be placed in just one 
of the two subcaches or may not be cached anywhere, 
depending on the predicted type of locality for a given memory 
access. The prediction is made by means of a history table, 
which is called a locality prediction table. The locality 
prediction mechanism is designed for numeric codes with 
constant stride vectors. 

The split temporal/spatial cache (STS) [7] is organized as 
two parts, i.e., a spatial cache with a prefetch mechanism and a 
temporal cache. The temporal cache is organized as a two-level 
hierarchy, with a one-word block size at each level. The spatial 
cache has the usual block size and includes a hardware 
prefetching mechanism. At compile time, with some 
estimation of the access probability, data accesses are classified 
as exhibiting predominantly either temporal locality or spatial 
locality, and are tagged for one or the other of these caches. 

The HP-7200 assist cache [8] provides a methodology that 
seeks to avoid both block interference and cache pollution 
before they happen. This design places the primary direct-
mapped cache in parallel with a small fully associative buffer, 
guaranteeing single-cycle lookup at both units. Blocks 
requested from the cache controller, due to a cache miss or a 
prefetch, are first loaded into the assist buffer, and are only 
promoted into the direct-mapped cache if they exhibit temporal 
locality. Data with no temporal reuse bypass the direct-mapped 
cache and are moved directly back to memory with a FIFO 
replacement algorithm. 

The NTS cache proposed by Rivers and Davidson [9] 
supplements the conventional direct-mapped cache with a 
parallel fully associative cache. This scheme separates the 
reference stream into temporal and non-temporal block 
references. Blocks are treated as non-temporal until they 
become temporal. Cache blocks that are identified as non-
temporal when they are replaced are allocated to fully 
associative cache on subsequent requests. However, NTS 
caching does not allow swaps between cache A and cache B. 
This becomes critical when we have conflicts among temporal 
blocks or conflicts among non-temporal blocks. This degrades 
the performance by not utilizing cache space that might be 
available in the L1 cache. Although they use a mechanism 
similar to tag blocks as temporal, they improve this scheme by 
allowing both temporal and non-temporal blocks to reside in 
cache A and in cache B. 
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The difference between the proposed cache and these 
approaches is explained as follows. The proposed cache has 
different associativities and block sizes. We also include 
hardware prefetching. In contrast, the selective cache [6] and 
the STS cache [7] use the same associativity with different 
block sizes. The stream cache [4], victim cache [4], and assist 
cache [8] use different associativities with the same block size. 
Additionally, the hardware mechanisms of these schemes differ 
from each other in many aspects. First of all, the selective 
cache system has a locality prediction table that decides 
whether the requested data has either temporal locality or 
spatial locality. The STS cache uses a prefetching mechanism 
to exploit spatial locality but cannot exploit temporal locality 
effectively. The cited cache systems focus on how to detect the 
type of locality for a certain memory reference and how to deal 
with the references based on the predicted locality. The 
proposed cache effectively exploits both types of locality via a 
hardware control mechanism that employs a time interval 
during which a location is accessed from the spatial cache to 
determine whether it also has temporal locality. The HP-7200 
assist cache system employs a time interval and a prefetching 
mechanism, but the information needed to detect temporal 
locality is provided statically by the compiler. 

III. New Cache System 

1. Motivation 

Common design objectives for a cache are to improve 
utilization of the temporal and spatial locality inherent in 
applications. However no single cache organization exploits 
both temporal and spatial locality optimally because of their 
contradictory characteristics. Increasing block size reduces the 
number of cache blocks. Thus, conventional cache designs 
attempt to compromise by selecting an adequate block size. 
The cache’s lack of adaptability to patterns of references with 
different types of locality poses a further drawback. A fixed 
block size results in suboptimal overall access time and 
bandwidth utilization because it fails to match the varying 
spatial and temporal localities across and within programs [10], 
[11]. 

A significant reason for using a direct-mapped cache with a 
small block size is to reduce power consumption and cycle 
time. To make up for the poor spatial locality of such a direct-
mapped cache, we provide a fully associative spatial buffer 
with a large block size. The small block size exploits temporal 
locality and the large block size exploits spatial locality. Small 
blocks are first loaded as part of larger blocks that are fetched 
into the spatial buffer. We selectively extend the lifetime of 
those small blocks that exhibit high temporal locality by storing 

them in the direct-mapped cache. When a large block is 
replaced in the spatial buffer, small blocks belonging to it that 
have been accessed at least once during its residency are 
moved into the direct-mapped cache. This approach effectively 
reduces conflict misses and thrashing at the same time. 

Making the block size of the direct-mapped cache as small 
as possible improves temporal locality by increasing the 
number of available entries for a given cache space. For 
example, the number of entries for 4B blocks is sixteen times 
more than for 64B blocks. Therefore, the lifetime of a data item 
in a direct-mapped cache with an s-byte block size is at most l/s 
times that for a cache with an l-byte (l > s) block size, for a 
given cache size. In conventional direct-mapped caches, the 
increase in spatial locality due to a larger block size gives a 
greater performance improvement than the increase in 
temporal locality resulting from increasing the number of 
entries. However, the spatial buffer of the proposed cache 
provides the necessary spatial locality, and thus we choose the 
smallest block size possible for the direct-mapped cache. 

Fetching a large block when a cache miss occurs increases 
spatial locality. Our simulations show the probability that 
neighboring small blocks will be accessed during the lifetime 
of the initial block is more than 50% for most benchmarks. An 
intelligent prefetching approach that emphasizes prefetching of 
data that has exhibited evidence of spatial locality can also 
improve cache performance. 

Instead of loading a missed block directly into the direct-
mapped cache, we load it into the fully-associative spatial 
buffer. Then a time interval proportional to the number of 
entries in the buffer elapses before it is evicted. The small 
blocks, (which are individual words in the simple case) within 
the large block, that have been referenced during that time are 
moved into the direct-mapped cache when the large block is 
evicted. 

2. Cache System Structure 

The proposed cache structure is shown in Fig. 1. The direct-
mapped cache is the main cache and its organization is similar 
to a traditional direct-mapped cache, but it has a smaller block 
size. The spatial buffer is designed so that each entry is a 
collection of several banks, each of which is the size of a block 
in the direct-mapped cache. The tag space of the buffer is a 
content addressable memory (CAM). The small blocks in each 
bank include a hit bit (H) to distinguish referenced blocks from 
unreferenced blocks. Each large block entry in the spatial 
buffer further has a prefetch bit (P), which directs the operation 
of the prefetch controller. The prefetch bits are used to 
dynamically generate prefetch operations. 

When the CPU performs a memory reference, the direct-
mapped cache and the spatial buffer are searched in parallel. 
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We assumed that the tag match with the direct-mapped cache 
and the spatial buffer should be as fast as the time used in the 
direct-mapped cache only. A hit in the direct-mapped cache is 
processed in the same way as a hit in a conventional L1 cache. 
When a miss occurs in both the direct-mapped cache and the 
spatial buffer, a large block is fetched into the spatial buffer. If a 
reference misses in the direct-mapped cache but hits in the 
spatial buffer, its corresponding small block is simply fetched 
from the spatial buffer and the hit bit for that small block is set 
at the same time. The prefetch controller generates a prefetch 
signal when a large block is accessed and found to have a 
multiple hit bits set. Two operations are performed 
consecutively by the prefetch controller. Given a hit in the i-th 
large block, the first operation searches the tags of the spatial 
buffer to detect whether the (i+1)th large block is already 
present. A one-cycle penalty occurs in this case, but the 
overhead is negligible because prefetching is initiated in 
response to only about 1.5% to 2.5% of the total number of 
addresses generated by the CPU. Thus, the average MCPI is 
increased by about 0.06%. If the (i+1)th large block is not 
already in the spatial buffer, the second operation is performed: 
it is fetched into a prefetch buffer and the P bit in the i-th large 
block is set to prevent it from generating further prefetches. The 

 
number of prefetch buffer entries is assumed to be one. 

If misses occur in both the direct-mapped cache and the 
spatial buffer, the cache controller initiates miss handling. 
When this occurs, a block that was already in the prefetch 
buffer is transferred to the spatial buffer. Therefore, the transfer 
time is hidden because 19 clock cycles are required for 
handling a miss. But the missed block may already be present 
in the prefetch buffer. Therefore, when the block in the prefetch 
buffer is transferred to the spatial buffer, the tag value should be 
simultaneously compared with the generated address. This 
comparison can be implemented either by using the 
comparator in the direct-mapped cache or an additional 
comparator. If the comparator shows a match, the requested 
data item is transmitted to the CPU and transferred to the 
spatial buffer at the same time. In addition, the ongoing miss 
signal should be canceled by the cache controller. 

3. Operational Model of the Proposed Cache 

Here we describe in detail the algorithms for managing the 
proposed cache. Prefetching is performed dynamically 
depending upon both the H and the P bits for a particular large 
block in the spatial buffer. On every memory access, both the 
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direct-mapped cache and the spatial buffer are accessed at the 
same time. The different cases for the operational model are 
explained as in Fig. 1. 

A. Case of Cache Hits 

On every memory access, a hit may occur at the direct-
mapped cache or the spatial buffer. First, consider the case of a 
hit in the direct-mapped cache. If a read access to the direct-
mapped cache is a hit, the requested data item is transmitted to 
the CPU without delay. If a write access to the direct-mapped 
cache is a hit, the write operation is performed and the dirty bit 
for the block is set. 

Second, consider the case of a hit in the spatial buffer. The 
data in the small block are sent to the CPU, and the hit bit is set 
to mark it as referenced. As an aside, we also reduce power 
consumption by using the most significant two bits of the large 
block offset to activate just one of the banks in the spatial buffer. 
For example, if the size of a small block is 8B and a large block 
is 32B, there are four banks in the spatial buffer. When a large 
block is accessed, and its P bit is in the reset state, a prefetch 
operation is initiated if a hit occurs in any bank of the spatial 
buffer and one or more hit bits are already set. At the same time, 
the tags of the spatial buffer are searched for the prefetch 
address to check whether it is already present, in which case the 
prefetch is squashed and the P bit is set. If the address is not in 
the spatial buffer, the prefetch controller generates the prefetch 
signal and the target address to fetch the large block into the 
prefetch buffer from the next level of memory. At the same 
time, the P bit of the original large block is set to prevent 
repetition of the prefetch. If the P bit of a large block is set, the 
consecutive large block must be present in either the spatial 
buffer or the prefetch buffer, and there is no need to search the 
tags within the spatial buffer. 

If a block is in the prefetch buffer when a subsequent 
prefetch signal is generated as a result of a cache miss, then the 
miss stalls while the contents of the prefetch buffer are moved 
into the spatial buffer. According to our simulation results, this 
case almost never occurs, even for a prefetch buffer with just 
one entry. This is because the overall rate of prefetch operations 
is only about 0.3%, and the miss ratio is about 1.7%. Therefore, 
the probability for a prefetch to be initiated in this manner is 
about 6 times smaller than the miss ratio. Because the 
utilization of prefetched blocks is over 90%, we concluded that 
it is not worth adding hardware specifically to handle this rare 
case, relying instead on the existing cache stall mechanism. 

When either cache misses, then while the cache controller is 
handling the miss, a large block is loaded into the spatial buffer 
from the prefetch buffer. All of the hit bits of the prefetched 
block are set to zero. Finally, if either cache misses while a 
prefetch operation is being performed, miss handling is 

deferred until the ongoing prefetch operation completes. 

B. Case of Cache Misses 

If a miss occurs in both caches, a large block including the 
missed small block is brought into the spatial buffer from the 
next level of memory. We use as an example an 8kB direct-
mapped cache with a small block size of 8B and a 1kB spatial 
buffer with a large block size of 32B, so four sequential small 
blocks are contained within a 32B block. We consider two 
cases, depending on whether the spatial buffer is full. 

•  Case 1: The spatial buffer is not full. 

If at least one entry in the spatial buffer is in the invalid state, 
a large block is fetched and stored in the spatial buffer. When a 
particular small block is accessed by the CPU, the 
corresponding hit bit is set to one. Thus, the hit bit of the small 
block identifies it as a referenced block. 

•  Case 2: The spatial buffer is full. 

If the spatial buffer is full, the oldest large block is replaced. 
Each small block whose hit bit is set in the about-to-be-evicted 
large block is loaded into the direct-mapped cache, because 
those blocks have shown temporal locality. This loading time is 
also hidden by the miss-handling time. If the spatial buffer is 
full, the oldest entry is replaced according to a FIFO policy. At 
that point, the blocks in the entry whose hit bits are set are 
moved into the direct-mapped cache. Because these actions are 
accomplished while the cache controller is handling a miss, this 
operation does not introduce any additional delay. The move 
operations between the two caches are illustrated as follows. 
For our example configuration, when a 32-bit memory address 
is generated, such as FFFFFF80, in the direct-mapped cache, 
the tag field is 19 bits (A: 7FFFF), the index field is 10 bits (B: 
3F0), and the offset field is 3 bits. In the spatial buffer, the tag 
field is 27 bits (C: 7FFFFFC) and the offset field is 5 bits. 
Therefore, the high order two bits of the large block offset are 
00. These two bits are used to search one of the four banks 
selectively. If a miss occurs in both caches, data corresponding 
to the tag value of the large block (C) are fetched and only the 
hit bit of the first (1FFFFFF0) of the four small blocks 
(1FFFFFF3, 1FFFFFF2, 1FFFFFF1, and 1FFFFFF0) is set. 
Now consider what happens when this large block in the 
spatial buffer is replaced. If the hit bit of the first small block is 
only one set, the bits 00 corresponding to the first small block 
are added to the tag value of the spatial buffer (C) by the 
address generator. The two-bit offsets corresponding to the four 
small blocks are 00, 01, 10, and 11, respectively. Therefore, a 
new memory address (A+B) without an offset is formed, and 
the corresponding tag and index values for the direct-mapped 
cache are represented as A and B, respectively, through the 
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process of redecoding. 
Cache write-back does not occur from the spatial buffer 

because any modified or referenced small block is always 
moved to the direct-mapped cache before its corresponding 
large block is replaced. Write-back occurs only from the direct-
mapped cache. In a conventional direct-mapped cache or 
victim cache, which would typically have the same block size 
(e.g., 32B) as the spatial buffer, write-back must be performed 
for the full 32B block, even though only one word requires 
write-back. In contrast, the proposed cache executes the write-
back operation only for the marked 8B small blocks. Therefore, 
write traffic into memory is potentially reduced to a significant 
degree. 

It should be noted that the potential exists in any split cache 
for blocks of incoherent copies to appear in the different 
subcaches. Thus, to avoid this problem, we chose and 
simulated a simple mechanism, which we describe as follows. 
When a global miss occurs, the cache controller searches the 
tags of the temporal cache to detect whether any of the four 
small blocks belonging to the particular large block being 
fetched are present in the temporal cache. If a match is detected, 
then all of the corresponding small blocks in the temporal 
cache are invalidated. Each of these small blocks that is also 
dirty is then used to update its corresponding entry in the spatial 
buffer once the large block has been loaded. This search 
operation can be accomplished while the cache controller is 
handling a miss. Further, the power consumption overhead is 
negligible, because the miss ratio is only about 1.7% of the 
total number of addresses generated by the CPU. 

A small block may thus temporarily exist in the temporal 
cache in the invalid state, while its valid copy is being 
referenced in the spatial buffer. When its corresponding large 
block is replaced, the small block is copied into the temporal 
cache once again. Therefore, there is almost no performance 
decrease. Of course, if three or four small blocks are present in 
both the temporal cache and the spatial cache, then the effective 
utilization of total cache space decreases a bit more, but is still 
negligible. This mechanism also applies in the case of 
transferring a prefetched block into the spatial buffer. 

IV. Performance Evaluation 

Benchmarks used in the trace-driven simulation include six 
of the SPECint95 benchmarks and two from SPECfp95 (applu 
and tomcatv), representing general-purpose applications, and 
ten of the Media benchmarks, representing embedded 
multimedia and communications applications. The Media 
benchmarks are representative of image compression, voice, 
video transmission, 3D text mapping, cryptography, and so 
forth. Only data references are collected and used for the 

simulation. The DineroIV cache simulator was modified to 
simulate the proposed data cache system. We have chosen two 
common approaches, the direct-mapped cache and the victim 
cache, for comparison in terms of performance. 

1. Time of Prefetch Signal Generation and Overhead 

We used simulation to determine the threshold for the 
number of hit bits that should be set before we initiate a 
prefetch signal. Figures 2 and 3 show the miss ratio and the 
average memory access time for variations of initiating a 
prefetch signal based on the number of set hit bits. Generally, 
the more meaningful measure to evaluate the performance of 
any given memory-hierarchy is the average memory access 
time. The basic parameters for the simulation are presented as 
follows: the hit times of direct mapped cache and fully 
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associative buffer are both assumed to be one cycle. We 
assume 15 cycles are needed for a miss. Therefore, each 8B 
block is transferred from the off-chip memory after a 15 cycle 
penalty. These parameters are based on the values for common 
32-bit embedded processors (e.g., Hitachi SH4 or ARM920T). 

The notation “8K–1K’’ denotes our example configuration 
(8kB direct-mapped cache with a 1kB spatial buffer). Also the 
notation “prefetch-2” denotes that the prefetch controller 
generates a prefetch signal when two of the four hit bits are set, 
"prefetch-3" denotes a threshold of three set hit bits, and so on. 
Our simulations show that prefetching when the number of hit 
bits is two achieves a more significant miss gain than the other 
cases, in spite of the potential for greater overhead due to 
increased prefetch frequency. With respect to power 
consumption, memory traffic, and the accuracy of the 
prefetching operation, the “prefetch-4” mechanism provides 
the most significant effect. 

When a prefetch operation is performed, the overhead can be 
determined as follows. If the P bit is reset, the prefetch controller 
searches the tag part of the spatial buffer, resulting in an 
additional one-cycle penalty beyond the single cycle required for 
normal access. Search overhead is shown in Fig. 4. We count 
both the access cycle and the search cycle, for a total of two 
cycles, in determining the overhead. However, this overhead 
turns out to be negligible because it applies to only 1.5% to 2.5% 
of all addresses generated. Also, using the P bit can reduce the 
two-cycle overhead to a single cycle by eliminating searching 
when a block is already present. Overall, use of the P bit reduces 
the search overhead by around 65% to 80%. 
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In general, the search overhead of the “prefetch-2” case tends 
to be greater than the other configurations because of the higher 
rate of prefetch generation, but not in every case. For example, 
the detailed breakdown of overhead for the “applu” benchmark 
is shown in Table 1. The figures in the row for case A show the 

Table 1. Various cases of the two cycle search overhead in Applu.

Cases prefetch-2 prefetch-3 prefetch-4 Two cycle
overhead 

A (P bit: 0 1) 0.436% 0.324% 0.196% Yes 

B (P bit: 0 1) 1.176% 2.866% 1.469% Yes 

C (P bit: 1 1) 4.041% 2.623% 4.539% No 

Actual two cycle
search overhead

(A+B) 
1.612% 3.190% 1.665%  

 

 
rate at which prefetch operations actually occurred after the 
tags of the spatial buffer were searched, with a two-cycle 
overhead. Case B shows the rate when the block to prefetch 
already exists in the spatial buffer, but the P bit is not set, so 
an extra-cycle search is performed before a prefetch signal is 
generated. In case C, the P bit of the block has already been set, 
so there is no need to search the tags. In this case there is only 
one cycle of overhead, as with normal accesses. Thus, the 
actual overhead in Table 1 is reduced by the amount in case C. 

Finally, in the case of prefetching a block that does not exist 
in the spatial buffer, the target block is simply fetched into the 
prefetch buffer. The rates at which prefetch operations actually 
occurred and prefetched blocks are actually referenced are 
shown in Figures 5 and 6. With only a small number of 
prefetch operations, the proposed cache system achieves a 
significant performance gain with low overhead. For the 
“prefetch-4” mechanism, the utilization of prefetched blocks is 
over 90%. This data clearly shows that spatial locality is 
enhanced by prefetching a neighboring block intelligently 
when a spatial buffer hit occurs. 
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2. Comparison of a Conventional Cache with the Proposed 
Cache Configuration 

Two common performance metrics, the miss ratio, and the 
average memory access time, are used to evaluate and compare 
the proposed cache system operating in a “prefetch-4” 
configuration with other approaches. 

A. Miss Ratio and Average Memory Access Time 

Several experiments were performed to determine the 
optimum block sizes for the proposed direct-mapped cache and 
spatial buffer. The combination of an 8B small block and a 32B 
large block shows the best performance for most cases. To 
clarify the impact of the prefetch operation, we evaluated the 
cache both with and without prefetching. 

The cache miss ratios for the conventional direct-mapped 
cache and the proposed cache are shown in Fig. 7. For the 
direct-mapped cache, denoted as DM, the notation “32kB–
32B’’ denotes a 32kB direct-mapped cache with a block size 
of 32B. The proposed cache notation “8K8–1K32’’ denotes 
an 8kB direct-mapped cache with a block size of 8B, and a 
1kB spatial buffer with a block size of 32B. Notice that the 
average miss ratio of the proposed cache for a given size (e.g., 
8kB) is equal to a conventional direct-mapped cache with a 
cache size of four or eight times as much space (e.g., 32kB, or 
64kB) in a non-prefetching mode and prefetching mode, 
respectively. 

The miss ratios for a conventional 2-way set-associative 
cache and the proposed cache are compared in Fig. 8. The 2-
way set-associative cache greatly reduces the miss ratio, but 
because of its slower access time and higher power 
consumption, embedded processors typically do not employ 
this organization. The results of simulation show that the 
proposed cache can achieve better performance than a 2-way 
set associative cache with double the space. A 4-way set 
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 Fig. 7. Miss ratios of the direct-mapped cache and 
proposed cache.  
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associative cache shows results similar to a 2-way set 
associative cache, given the same cache sizes (16kB–32kB). 

The average memory access times for the conventional 
direct-mapped cache and the proposed cache are compared in 
Fig. 9. The average access time was obtained using the 
following simulation mechanism. First, a block to prefetch is 
loaded into the prefetch buffer 19 cycles after the initiation of a 
prefetch signal, using a cycle counter. If no cache miss or 
reference to the block being prefetched occurs during this 
prefetch operation, then the prefetch controller needs to check 
the tag part of the spatial buffer to see whether the block is 
present, resulting in a single-cycle penalty being added to the 
normal access time. However, if a cache miss occurs while a 
prefetch operation is being performed, its miss handling is 
deferred until the ongoing prefetch operation completes. In this 
case, we assume that the average access time is increased by at 
most 18 cycles, as would occur when a miss arrives on the 
cycle following the start of the prefetch operation. The precise 
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 Fig. 9. Average memory access time of the direct cache 
and proposed cache.  
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miss penalty is 19 cycles minus the number of cycles between 
the prefetch initiation time and the time when the miss signal 
was generated. When a reference is made to a block that is 

being prefetched, the hit time is 19 cycles minus the number of 
cycles since the prefetch initiation. The exact number of cycles 
is measured by a counter in the simulation. Our analysis shows 
that applications with a high degree of locality, such as tomcatv, 
show an especially strong performance improvement with the 
proposed cache. 

Figures 10 and 11 show the resulting miss ratio and 
average memory access time for the media benchmarks. 
Multimedia applications show better performance when 
larger cache block sizes, e.g., 64B or 128B, are chosen. 
Therefore, the prefetching mechanism is more prominent, but 
the non-prefetching mode can also achieve high performance. 

3. Comparison of a Victim Cache with the Proposed Cache 

We compared several previously proposed cache designs 
(e.g., NTS cache, victim cache, selective victim cache, assist 
cache, and so forth) with the proposed cache. Our analysis of 
the performance improvement achieved by each of these 
designs showed that one of the most effective is the victim 
cache [12], [13]. Our results from comparing a victim cache 
configuration with the proposed cache are presented here. The 
victim cache can significantly reduce conflict misses and can 
provide a low overall miss ratio with just a simple hardware 
mechanism. However, a victim cache does incur a large 
number of content swaps between the main cache and the 
victim buffer, and operates with a large block size. Figures 12 
and 13 show the resulting miss ratio and average memory 
access time for the two approaches when the same cache and 
buffer sizes are used. A victim cache with a 32B block size 
shows the best performance, but increasing the block size often 
increases write traffic into memory. 

As shown in Figs. 12 and 13, the proposed cache (a 8kB 
direct cache with an 8B block size and a 1kB spatial buffer 
with a 32B block size) has better performance than the 
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8kB victim cache with a 1kB victim buffer. The victim cache 
employs the same 32B cache block size in the main cache and 
the victim buffer, while 8B blocks are used in the main 
proposed cache. The use of a smaller block size in the proposed 
cache results in a significant reduction in power consumption 
because write traffic into memory is reduced by 25%. 

4. Relation between Cost and Performance 

In general, the logic to manage the tags for the fully 
associative cache is designed as a CAM structure for 
simultaneous comparison of each entry. Because each CAM 
cell is a combination of storage and comparison, the size of a 
CAM cell is double that of a RAM cell [14]. For fair 
performance/cost analysis, the performance for various direct-
mapped cache and buffer sizes is evaluated. The metric is rbe 
(register bit equivalents), and the total area can be calculated as 
follows: 

Area = PLA + RAM + CAM.             (1) 

Here, the control logic PLA (programmable logic array) is 
assumed to be 130 rbe, a RAM cell as 0.6 rbe, and a CAM cell 
as 1.2 rbe. (2) represents the RAM area [14]: 

),)_#_((#
)#(#6.0 _

driver

ampsense

Wbitsstatusbitsdata
LentriesRAM

++×

+=
   (2) 

where Lsense_amp is the bit length of a bit-line sense amplifier, 
Wdriver the data width of a driver, #entries the number of rows of 
the tag array or data array, #data_bits the tag bits or data bits of 
one set, and #status_bits the state bits of one set. Finally, (3) 
calculates the area of the CAM: 

CAM=0.6 (√ 2×#entries +#Lsense_amp) 
   ×(√ 2×#tag_bits + Wdriver),         (3) 

where #tag_bits is the number of bits for one set in the tag array. 

Table 2. Performance and cost of the proposed cache and various 
caches. (IR: improvement ratio, AMAT: average memory
access time) 

 
Area 
(IR) 

Miss ratio 
(IR) 

AMAT 
(IR) 

32kB–32B 
(DM) 

177,496 rbe 
(1.00) 

1.89% 
(1.00) 

1.34 cycle 
(1.00) 

8kB–1kB 
(victim) 

67,431 rbe 
(0.38) 

2.00% 
(1.06) 

1.42 cycle 
(1.06) 

8kB–1kB 
(proposed cache)

67,431 rbe 
(0.38) 

1.61% 
(0.85) 

1.29 cycle 
(0.96) 

64kB–32B (DM) 352,596 rbe 
(1.99) 

1.46% 
(0.77) 

1.26 cycle 
(0.94) 

8kB–2kB 
(victim) 

73,680 rbe 
(0.42) 

1.69% 
(0.89) 

1.38 cycle 
(1.03) 

8kB–2kB 
(proposed cache)

73,680 rbe 
(0.42) 

1.37% 
(0.73) 

1.25 cycle 
(0.93) 

 

 
Table 2 shows the performance/cost for three different cache 
configurations. 

A 32kB direct-mapped cache, an 8kB–1kB victim cache 
and an 8kB–1kB proposed cache are compared. The 
improvement for each configuration is normalized to the value 
of the direct-mapped cache. A 64kB–32B direct-mapped 
cache, an 8kB–2kB victim cache and an 8kB–2kB proposed 
cache are compared to a 32kB-32B direct-mapped cache. The 
proposed cache shows about a 60% area reduction compared 
with the 32kB–32B conventional direct-mapped cache, even 
though it provides higher performance. It also offers an 80% 
area reduction compared with the 64kB–32B configuration, 
while providing much higher performance. In addition, the 
improvement ratio for the average memory access time shows 
that the 8kB–2kB proposed cache is the best configuration. 

5. Comparison of Power Consumption 

For power consumption analysis, we evaluated various 
cache sizes using the CACTI-3.0 simulator [15], which can 
calculate access times, cycle times, area, and power 
consumption for many types of hardware caches. Our results 
are based on 0.18 µm technology with a 1.7 V supply voltage. 

Table 3 shows the power consumption for various cache 
configurations. Each entry shows the power dissipation for a 
cache access and a cache update on a miss case. In the cases of 
the victim cache and the proposed cache system, the direct-
mapped cache and the fully associative cache are searched in 
parallel at the same level. According to the results of CACTI 
3.0, access times for the dual direct-mapped cache (e.g., 8kB–
8B) and the fully associative cache (e.g., 1kB–32B) of the 
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proposed cache are 0.953 ns and 1.934 ns, respectively. 
However, the access time for the tag part of the fully 
associative cache is 1.372 ns. If a hit occurs at the direct-
mapped cache, the data part of the fully associative cache does 
not need to be driven. That is, the requested data item is 
transmitted to the CPU without checking for a hit/miss in the 
fully associative cache. This mechanism offers the fast access 
time of a direct-mapped cache and low power consumption 
by using a simple additional unit and an asynchronous 
SRAM. 
 

Table 3. Power consumption per access for various cache 
configurations. 

Cache configuration Paccess (nJ) Pcache_write (nJ) 

16kB–32B (DM) 0.4734 0.2220 

32kB–32B (DM) 0.6205 0.3726 

64kB–32B (DM) 0.9358 0.6909 

16kB–32B (2-way) 0.6335 0.2237 

16kB–32B (4-way) 0.9349 0.2260 

32kB–32B (2-way) 0.7586 0.3402 

Victim cache 
(8kB 32B–1kB 32B) 

DM miss: 0.649 
DM hit: 0.440 

DM write: 0.130 
FA write: 0.077 

Proposed cache 
(8 kB 8 B–1 kB 32 B) 

DM miss: 0.577 
DM hit: 0.409 

DM write: 0.106 
FA write: 0.077 

 

 
Paccess of the victim and the proposed cache can be divided 

into two parts, i.e., a hit case and a miss case at the direct-
mapped cache. If a hit occurs at the direct-mapped cache, 
accessing power is consumed to access the tag and the data part 
of the direct-mapped cache and to access the tag part of the 
fully associative cache (i.e., the “DM hit” case in Table 5). And 
if a miss case occurs at the direct-mapped cache, power 
consumption to access the data part of the fully associative 
cache should be added to that of a hit case (i.e., the “DM miss” 
case in Table 3). Finally “DM write” at the victim cache 
denotes two cases, namely, power consumption to update the 
direct-mapped cache when a global miss occurs or the case for 
content swapping when a victim buffer hit occurs. “FA write” 
for the victim cache denotes power consumption for updating 
the associative cache when the replaced item from the direct-
mapped cache is moved into the victim buffer. “FA write” for 
the proposed cache denotes power consumption for updating 
the associative cache when a miss occurs. “DM write” for the 
proposed cache denotes power consumption in the direct-
mapped cache when a large block is replaced, that is, when its 
small blocks that are marked as having been accessed are 
moved into their corresponding block entries in the direct-

mapped cache. 

From these values, the average power consumption of the 
cache system is given by 

Avg.power = Nhit · Paccess + Nmiss · Pmiss,       (4) 

where Nhit and Nmiss are the ratios of hits and misses in the cache, 
respectively. Paccess is the power used to access a cache block 
and Pmiss is the power required to process a miss. Pmiss can be 
calculated as 

    Pmiss = Paccess + Pcache_write  + Ppad,          (5) 

where Pcache_write is the power for a cache write operation in a 
cache miss, and Ppad is the power dissipated at the on-chip pad 
slot. Ppad can be calculated as in [16], [17], 

 Ppad = 0.5 Vdd
2 · (0.5 (Wdata + Waddr) · 20pF,      (6) 

where Wdata and Waddr are the number of bits for both the data 
sent/returned and the address sent to the lower level memory 
on a miss request. The capacitive load for off-chip destinations 
is assumed to be 20 pF [16]. A data cache with a 32B block 
size is assumed, where the values of Wdata and Waddr are also 32 
bits. 

Figures 14 and 15 present the average power consumption of 
different cache structures compared to the proposed cache for 
the benchmarks used earlier. Simulation results show that 
power consumption in the proposed cache is around 10% to 
60% lower than these various cache systems. Therefore, the 
proposed cache shows the lowest power consumption of all the 
approaches. Overall, the proposed cache shows the best result 
in terms of both performance and power among all of the 
approaches. 
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Fig. 15. Media benchmarks: power consumptions of the 

conventional caches and the proposed cache.  

V. Conclusion 

The goal of this research was to design a simple but high 
performance and low power cache system with low cost. To 
attain this goal, we designed a new caching mechanism for 
exploiting two types of locality effectively and adaptively; a 
direct-mapped cache with a small block size for exploiting 
temporal locality and a fully associative spatial buffer with a 
large block size for exploiting spatial locality. We used an 
intelligent hardware-based prefetching mechanism to 
maximize the effect of spatial locality. We have shown that the 
proposed cache overcomes the structural drawbacks of direct-
mapped caches, such as conflict misses and thrashing. We 
evaluated the proposed cache system in two configurations, the 
non-prefetching mode and prefetching mode, to analyze the 
contribution of intelligent prefetching. Both modes provide 
high performance, but the non-prefetching mode offers lower 
power consumption while the prefetching mode offers higher 
performance. According to our simulation results, the time 
interval mechanism of the proposed cache decreases conflict 
misses by about 26%, and the spatial locality miss ratio 
decreases by about 48%. The average rate of prefetch signal 
generation is only about 0.3% to 0.7% of the total number of 
address references generated. For the prefetching mode, the 
miss ratio is about 21% less and the average memory access 
time is about 10% less than non-prefetching mode. The 
average miss ratio and average memory access time of the 
proposed cache for a given cache space (e.g., 8kB) is 
equivalent to a conventional direct-mapped cache with four 
times as much space (e.g., 32kB). We have also shown that at 
least 60% to 80% area reduction can be obtained as compared 
with a direct-mapped cache that is large enough to provide 

similar performance. In addition, the proposed cache can 
reduce the miss ratio by around 20% and the average memory 
access time by around 10% (in either the prefetching or non-
prefetching mode), versus the victim cache configuration. We 
have also shown that power consumption in the proposed 
cache is around 10% to 60% lower than these various cache 
systems. 
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