Computer Topology and Its Applications*

Sang-Eon Han

Department of Computer and Applied Mathematics,
College of Natural Science,
Honam University,
Gwangju 506-714, Korea.
e-mail: sehan@honam.ac.kr

Abstract

Recently, the generalized digital (k_0, k_1) -continuity and its properties are investigated. Furthermore, the k-type digital fundamental group for digital image has been studied with the generalized k-adjacencies. The main goal of this paper is to find some properties of the k-type digital fundamental group of Boxer and to investigate some properties of minimal simple closed k-curves with relation to their embeddings into some spaces in $\mathbb{Z}^n(2 \le n \le 3)$.

2000 Mathematics Subject Classification: 51N05, 68U05, 65D18 Key words and phrases: digital (k_0, k_1) -continuity, generalized k-adjacency, k-type digital fundamental group

1. Introduction

For digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$, one concept of digital (k_0, k_1) -continuity was established via $\varepsilon - \delta$ definition for the case, $(k_0, k_1) = (2n_0, 2n_1)$ [2, 7]. Another was introduced in terms of the transformation from

^{*}The author wishes to acknowledge the financial support of the Korea Research Foundation made in the program of 2001.

each k_0 -connected subimage of X into k_1 -connected one, $k_i \in \{2n_i(n_i \ge 1), 3^{n_i} - 1(n_i \ge 2), 18(n_i = 3)\}, i \in \{0, 1\}$ [cf. 1].

Recently the notion of digital (k_0,k_1) -continuity from the image X in $(\mathbb{Z}^{n_0},k_0,\bar{k}_0,X)$ into Y in $(\mathbb{Z}^{n_1},k_1,\bar{k}_1,Y)$ has been studied with the generalized k_i -adjacencies, where $k_i \in \{2n_i(n_i \geq 1), 3^{n_i} - 1(n_i \geq 2), 3^{n_i} - \sum_{t=0}^{r-2} C_t^{n_i} 2^{n_i-t} - 1(r=n_i-1,n_i \geq 3)\}, i \in \{0,1\}$ [cf. 3, 4]. In this paper we investigate some digital images with generalized graph (k_0,k_1) -continuity. Furthermore, we calculate the k-type digital fundamental group of minimal simple closed k-curves in $\mathbb{Z}^n (2 \leq n \leq 3)$.

2. Preliminaries

We briefly overview some notations and terminologies. Let \mathbb{Z}^n be the set of points in the Euclidian n-dimensional space with integer coordinates. Two functions on \mathbb{Z}^n are assumed as follows: $d_n, d_* : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{N} \cup \{0\}$ with $d_n(p,q) = \sum_{i=1}^n |p_i - q_i|$ and $d_*(p,q) = \max\{|p_i - q_i|\}_{i \in M}, M = \{1,2,\cdots,n\}, p = (p_1,p_2,\cdots,p_n), q = (q_1,q_2,\cdots,q_n) \in \mathbb{Z}^n \text{ and } \mathbb{N} \text{ is the set of natural numbers.}$

Actually, the k-adjacency of a digital image is established from two functions, d_n and d_* . In fact, in \mathbb{Z}^n , some k-adjacencies have been used for the study of n-dimensional images, where $k \in \{2n(n \ge 1), 3^n - 1(n \ge 2), 18(n = 3)\}$ [1]. For $\{a,b\} \subset \mathbb{Z}$ with $a \le b$, $[a,b]_{\mathbb{Z}} = \{a \le n \le b | n \in \mathbb{Z}\}$ is called a digital interval.

Since the notion of generalized k-connectivity for n-dimensional digital image in $\mathbb{Z}^n (n \ge 1)$ are very useful in image processing, image synthesis, image analysis, computer vision, and so forth, it was induced from $(1) \sim (n)$ below [cf. 3, 4]:

(1) p and q are called $(3^n - 1)$ -adjacent if $q \in N_{3^n - 1}(p)$, $n \ge 2$, where $N_{3^n - 1}(p) = \{q \in \mathbb{Z}^n | d_n(p, q) \le n, d_*(p, q) = 1\}$ and $3^n - 1$ is the cardinality of $N_{3^n - 1}(p)$.

Generally, for $l \in [2, n-1]_{\mathbb{Z}}, n \geq 3$, the following is established.

 $\begin{array}{l} (l) \ p \ {\rm and} \ q \ {\rm are} \ {\rm called} \ (3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1) - {\rm adjacent} \ {\rm if} \ q \in N_{3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1}(p), \\ {\rm where} \ N_{3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1}(p) \ = \ \{q \in \mathbb{Z}^n | d_n(p,q) \ \leq \ n-l+1, d_*(p,q) \ = \ 1\}, \\ {\rm where} \ C_t^n \ {\rm stands} \ {\rm for} \ {\rm the} \ {\rm combination} \ {\rm of} \ n \ {\rm objects} \ {\rm taken} \ t \ {\rm and} \ 3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1 \\ {\rm 1} \ {\rm is} \ {\rm the} \ {\rm cardinality} \ {\rm of} \ N_{3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1}(p), r = n-1. \ {\rm And} \ {\rm finally}, \\ (n) \ p \ {\rm and} \ q \ {\rm are} \ {\rm called} \ 2^n - {\rm adjacent} \ {\rm if} \ q \in N_{2n}(p), n \ge 1, \ {\rm where} \ N_{2n}(p) \ = \ \{q \in \mathbb{Z}^n | d_n(p,q) \ = 1\} \ {\rm and} \ 2^n \ {\rm is} \ {\rm the} \ {\rm cardinality} \ {\rm of} \ N_{2n}(p). \end{array}$

Hereafter, the n-dimensional digital image X is considered in a digital picture $(\mathbb{Z}^n,k,\bar{k},X)$ with one of the following cases: $(k,\bar{k})\in\{(2n,\bar{k}),(k,2n)\}$, where $k,\bar{k}\in\{2n(n\geq 1),3^n-1(n\geq 2),3^n-\sum_{t=0}^{r-2}C_t^n2^{n-t}-1(r=n-1,n\geq 3)\}$.

The case $k = \bar{k}$ should not be taken because of the digital connectivity paradox in the digital Jordan theorem [5, p. 266] except for k = 2n.

For example, in \mathbb{Z}^2 , k-adjacency is considered, $k \in \{4,8\}$; in \mathbb{Z}^3 , k-adjacency is also assumed, $k \in \{26,18,6\}$ [5]. Furthermore, from the formulas $(1) \sim (n)$, in $\mathbb{Z}^n (n \geq 4)$, a digital picture $(\mathbb{Z}^4, k, \bar{k}, X)$ is assumed with one of the following cases, $k \in \{80,64,32,8\}$; a digital picture $(\mathbb{Z}^5, k, \bar{k}, X)$ is also considered with one of the following cases, $k \in \{242,210,130,50,10\}$. And further, a digital picture $(\mathbb{Z}^n, k, \bar{k}, X) (n \geq 6)$ is also obtained from (l) above.

For a digital image $X\subset\mathbb{Z}^n$, two points $x(\neq)y\in X$ are called k-connected [6] if there is a k-path $f:[0,m]_{\mathbb{Z}}\to X$ which the image is a sequence (x_0,x_1,\cdots,x_m) from the set of points $\{f(0)=x_0=x,f(1)=x_1,\cdots,f(m)=x_m=y\}$ such that x_i and x_{i+1} are k-adjacent, $i\in[0,m-1]_{\mathbb{Z}}, m\geq 1$. The length of a k-path is the number m above [cf. 2, 6]. And a simple k-curve is considered as a sequence (x_0,x_1,\cdots,x_m) of an image of the k-path such that x_i and x_j are k-adjacent if and only if $j=i\pm 1 \pmod p$ [cf. 1].

Now the digital continuity of [1, 2] is restated with relation to the local property and the generalized k-adjacencies, which is helpful to study a pointed digital (k_0, k_1) -homotopy theory in \mathbb{Z}^n .

Definition 2.1. In two digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$, we say a map $f: X \to Y$ is digitally (k_0, k_1) -continuous at $x_0 \in X$ if f satisfies the following: The image under the map f of every k_0 -connected

subset containing x_0 , $O_{k_0}(x_0)$, is k_1 -connected.

If f is digitally (k_0, k_1) -continuous at any point $x \in X$, f is called a digitally (k_0, k_1) -continuous map where $k_i \in \{3^{n_i} - 1(n_i \ge 2), 3^{n_i} - (\sum_{t=0}^{r-2} C_t^{n_i} 2^{n_i - t}) - 1(2 \le r \le n_i - 1), 2n_i\}, i \in \{0, 1\}.$

3. Some Propertoes of the Boxer's K-Type Digital Fundamental Group

A digital (k_0,k_1) -homotopy can be established in terms of the digital (k_0,k_1) -continuity above. Specifically, digital pictures $(\mathbb{Z}^{n_0},k_0,\bar{k}_0,X)$ and $(\mathbb{Z}^{n_1},k_1,\bar{k}_1,Y)$, let $f,g:X\to Y$ be digitally (k_0,k_1) -continuous functions. And suppose that there is a positive integer m and a function, $F:X\times [0,m]_{\mathbb{Z}}\to Y$ such that

- (1) for all $x \in X$, F(x, 0) = f(x) and F(x, m) = g(x),
- (2) for all $x \in X$, the induced map $F_x : [0,m]_{\mathbb{Z}} \to Y$ defined by $F_x(t) = F(x,t)$ for all $t \in [0,m]_{\mathbb{Z}}$ is digitally $(2,k_1)$ -continuous,
- (3) for all $t \in [0, m]_{\mathbb{Z}}$, the induced map F_t which is defined by $F_t(x) = F(x, t) : X \to Y$ is digitally (k_0, k_1) -continuous for all $x \in X$.

Then we use the notation $f \simeq_{d \cdot (k_0, k_1) \cdot h} g$.

Especially, for the case of digital (k,k)-homotopy, we call it a digital k-homotopy and use the notation: $f \simeq_{d \cdot k \cdot h} g$ instead of $f \simeq_{d \cdot (k,k) \cdot h} g$.

For the digital image X with k-adjacency and its subimage A, we call (X,A) a digital image pair with k-adjacency. Furthermore, if A is a singleton set $\{p\}$ then (X,p) is called a pointed digital image [1]. And the image X is called k-contractible if $1_X \simeq_k c_{\{x_0\}}$, where $c_{\{x_0\}}$ is a constant map for every $x_0 \in X$ [1].

A digitally (k_0, k_1) -continuous function $f: X \to Y$ is k_1 -nullhomotopic in Y if f is digitally k_1 -homotopic in Y to a constant function $c_{\{y_0\}}$, $y_0 \in Y$ [cf. 1].

In two digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, (X, A))$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, (Y, B))$, we say $f:(X,A)\to (Y,B)$ is digitally (k_0,k_1) -continuous if $f:X\to Y$ is digitally (k_0,k_1) -continuous and $f(A)\subset B$, respectively.

The digital fundamental group was developed for a digital image in at most three dimensional image in \mathbb{Z}^3 by use of k-loops [6] and another was derived from an approach to algebraic topology with the standard k-adjacencies, where $k \in \{3^n-1,2n,18\}$, $n \in \mathbb{N}$ [cf. 1]. We now generalize that of [1] with respect to the dimension and the k-adjacency of an image. A k-type digital fundamental group is induced in terms of the generalized pointed k-homotopy above. Namely, we study an image in \mathbb{Z}^n with n kinds of k-adjacencies, $k \in \{3^n-1(n \geq 2), 3^n-\sum_{t=0}^{r-2} C_t^n 2^{n-t}-1(2 \leq r \leq n-1), 2n\}$.

For a pointed digital image (X,p), a k-loop f based at p is a k-path, $f:[0,m]_{\mathbb{Z}}\to (X,p)$ such that f(0)=p=f(m). The number m is not fixed, which depends on the k-loop on (X,p). And we put $F_1^k(X,p)=\{f|f \text{ is a } k\text{-loop based at }p\}$.

For maps $f,g \in F_1^k(X,p)$, *i.e.*, $f:[0,m_1]_{\mathbb{Z}} \to (X,p)$ with $f(0)=p=f(m_1)$ and $g:[0,m_2]_{\mathbb{Z}} \to (X,p)$ with $g(0)=p=g(m_2)$, a map $f*g:[0,m_1+m_2]_{\mathbb{Z}} \to (X,p)$ is taken as follows: $f*g:[0,m_1+m_2]_{\mathbb{Z}} \to (X,p)$ is defined by $f*g(t)=f(t), 0 \le t \le m_1$ and $g(t-m_1), m_1 \le t \le m_1+m_2$. Then $f*g \in F_1^k(X,p)$.

We denote by [f] a digital k-homotopy class of f. Obviously, the homotopy class [f*g] only depends on the homotopy classes [f] and [g]. Furthermore, for any $f_1, f_2, g_1, g_2 \in F_1^k(X, p)$ such that $f_1 \in [f_2], g_1 \in [g_2], [f_1*g_1] = [f_2*g_2]$ [1]. In fact, the operation * is due to Khalimsky [5]. Consequently, we put $\pi_1^k(X,p) = \{[f]|f \in F_1^k(X,p)\}$. And we take an operation \cdot on $\pi_1^k(X,p)$ as follows: $[f] \cdot [g] = [f*g]$. The group structure on $\pi_1^k(X,p)$ is checked by the same method of [1] with respect to the digital (2,k)-continuity. Consequently, we get the group $\pi_1^k(X,p)$ with the operation \cdot above, which is called a k-type digital fundamental group of a pointed digital image (X,p).

For digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$, $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$ and a digitally (k_0, k_1) continuous based map $h: (X, p) \to (Y, q)$, the map h induces a digital

fundamental group (k_0, k_1) -homomorphism, $\pi_1^{(k_0, k_1)}(h) = h_* : \pi_1^{k_0}(X, p) \to \pi_1^{k_1}(Y, q)$ by an equation $h_*([f_1]) = [h \circ f_1]$, where $[f_1] \in \pi_1^{k_0}(X, p)$, which is well defined. Particularly, if $k_0 = k_1$, we use the notation, $\pi_1^{k_0}(h)$.

For digital pictures $(\mathbb{Z}^{n_0},k_0,\bar{k}_0,X)$, $(\mathbb{Z}^{n_1},k_1,\bar{k}_1,Y)$ and $(\mathbb{Z}^{n_2},k_2,\bar{k}_2,Z)$, let $f:X\to Y$ be digitally (k_0,k_1) -continuous based map and $g:Y\to Z$ be digitally (k_1,k_2) -continuous functions, then $\pi_1^{(k_0,k_2)}(g\circ f)=\pi_1^{(k_1,k_2)}(g)\circ\pi_1^{(k_0,k_1)}(f)$ is obviously followed. In particular, if $k_0=k_1=k_2$, $\pi_1^{k_0}(g\circ f)=\pi_1^{k_0}(g)\circ\pi_1^{k_0}(f)$ [cf. 1].

Actually, if a pointed image (X,p) is k-connected, for any point $q \in X$ there is a group isomorphism $\pi_1^k(X,p) \cong \pi_1^k(X,q)$, where \cong means a group isomorphism.

For this reason, omitting the base point can be approved for a k-connected image with relation to a k-type digital fundamental group. If X is k-contractible, then $\pi_1^k(X, p)$ is trivial [cf. 1].

Definition 3.1. We say a digital image $X \subset \mathbb{Z}^n$ is simply k-connected if it is k-connected and $\pi_1^k(X, x_0)$ is trivial for every $x_0 \in X$, $k \in \{3^n - 1, 3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1(2 \le r \le n-1), 2n\}$.

4. Minimal Simple Closed K-curve and Their Digital Topological Properties

We now recall the minimal simple closed k-curves in \mathbb{Z}^2 , $k \in \{4,8\}$, MSC_8 , MSC_4 and MSC_8' , with relation to k-connectedness, and their digital topological properties with relation to k-contractibility were studied [cf. 3]. To be specific,

- (1) MSC_8 is any set in \mathbb{Z}^2 of the form,
- $\{(x_1,y_1),(x_1-1,y_1+1),(x_1-2,y_1),(x_1-2,y_1-1),(x_1-1,y_1-2),(x_1,y_1-1)\}.$
- (2) MSC_4 is any set in \mathbb{Z}^2 of the form,
- $\{(x_1,y_1),(x_1,y_1+1),(x_1-1,y_1+1),(x_1-2,y_1+1),(x_1-2,y_1),(x_1-2,y_1-1),(x_1-1,y_1-1),(x_1,y_1-1)\}.$
 - (3) Let MSC_8' be any set in \mathbb{Z}^2 of the form,

$$\{(x_1,y_1),(x_1-1,y_1+1),(x_1-2,y_1),(x_1-1,y_1-1)\}.$$

On the other hand, since each element of MSC_8' is distinct with respect to the 4-connectedness, $\pi_1^4(MSC_8', x_0)$ is trivial for any point $x_0 \in MSC_8'$ and further MSC_8' is simply 8-connected [cf. 1].

It is possible to consider (MSC_4, p_0) as a subimage of $(\mathbb{Z}^2 - \{z_0\}, p_0)$ from (*2) above, where $z_0 = (x_1 - 1, y_1)$. And (MSC_8, p_0) can be also considered as a subimage of $(\mathbb{Z}^2 - \{z_1, z_2\}, p_0)$ from (*1) above, where $z_1 = (x_1 - 1, y_1), z_2 = (x_1 - 1, y_1 - 1)$.

Now some properties with relation to a k-type digital fundamental group homomorphism are followed.

Theorem 4.1 There exist some digital topological properties of MSC_4 , MSC_8 and $\mathbb{Z}^2 - \{z_1, z_2, \dots, z_n\}$ with relation to their embeddings into some spaces in $\mathbb{Z}^n (2 \le n \le 3)$.

- (1) The inclusion map $i:(MSC_4,p_0)\to (\mathbb{Z}^2-\{z_0\},p_0)$ induces a k-type digital fundamental group isomorphism $i_*:\pi_1^k(MSC_4,p_0)\to\pi_1^k(\mathbb{Z}^2-\{z_0\},p_0), k\in\{4,8\}.$
- (2) The inclusion map $j:(MSC_8,p_0)\to (\mathbb{Z}^2-\{z_1,z_2\},p_0)$ induces an 8-type digital fundamental group isomorphism: $j_*:\pi_1^8(MSC_8,p_0)\to \pi_1^8(\mathbb{Z}^2-\{z_1,z_2\},p_0)$, where $z_i(\neq)z_j$ are 4-adjacent. But the inclusion map j does not induce a 4-type digital fundamental group isomorphism, *i.e.*, $j_*:\pi_1^4(MSC_8,p_0)\to\pi_1^4(\mathbb{Z}^2-\{z_1,z_2\},p_0)$ is not an isomorphism.
- (3) If any two elements of the set $\{q_i\}_{i\in M}$ are not 4-adjacent, $M=\{1,2,\cdots,n\}$, $\mathbb{Z}^2-\{q_1,q_2,\cdots,q_n\}$ is simply 8-connected. On the other hand, if at least two elements of $\{q_i\}_{i\in M}$ are 4-adjacent, $\mathbb{Z}^2-\{q_1,q_2,\cdots,q_n\}$ is not simply 8-connected.

Proof. (1) The minimal simple 4-curve MSC_4 can be assumed as a subimage of $\mathbb{Z}^2 - \{z_0\}$. Since any k-loops based at p_0 in $(\mathbb{Z}^2 - \{z_0\}, p_0)$ are k-homotopic to a k-loop based at p_0 in (MSC_4, p_0) , $\pi_1^k(MSC_4, p_0)$ is isomorphic to $\pi_1^k(\mathbb{Z}^2 - \{z_0\}, p_0)$, $k \in \{4, 8\}$. Furthermore, MSC_4 can be assumed in this way:

$$\{p_0 = (x_1, y_1), p_1 = (x_1, y_1 + 1), p_2 = (x_1 - 1, y_1 + 1), p_3 = (x_1 - 2, y_1 + 1), p_4 = (x_1 - 2, y_1), p_5 = (x_1 - 2, y_1 - 1), p_6 = (x_1 - 1, y_1 - 1), p_7 = (x_1, y_1 - 1)\}.$$

Then there is a digital 8-homotopy, $H: MSC_4 \times [0,3]_{\mathbb{Z}} \to MSC_4$ as follows:

- (1) $H(p_i, 0) = p_i$, for any $p_i \in MSC_4$,
- (2) $H(p_{2i+1},1) = p_{2i}, H(p_{2i},1) = p_{2i}, i \in [0,3]_{\mathbb{Z}},$
- (3) $H(p_i, 2) = p_0, i \in [0, 3]_{\mathbb{Z}}$ and $H(p_j, 2) = p_6, j \in [4, 7]_{\mathbb{Z}}$,
- (4) $H(p_i, 3) = p_0, i \in [0, 7]_{\mathbb{Z}}$.

Thus $1_{MSC_4} \simeq_8 c_{\{p_0\}}$. Therefore $\pi_1^8(\mathbb{Z}^2 - \{z_0\}, p_0) \simeq \pi_1^8(MSC_4, p_0) \simeq 0$. Namely, if k = 8, i_* is a trivial group isomorphism.

On the other hand, since any 4-loops based at p_0 in (MSC_4, p_0) are not 4-nullhomotopic, $\pi_1^4(MSC_4)$ is not trivial.

(2) The minimal simple 8-curve MSC_8 can be assumed as a subimage of $\mathbb{Z}^2-\{z_1,z_2\}$. Since any 8-loops based at p_0 in $(\mathbb{Z}^2-\{z_1,z_2\},p_0)$ are 8-homotopic to an 8-loop based at p_0 in (MSC_8,p_0) , $\pi_1^8(\mathbb{Z}^2-\{z_1,z_2\},p_0)\cong\pi_1^8(MSC_8,p_0)$. In fact, any nontrivial 8-loops in (MSC_8,p_0) are not 8-nullhomotopic.

On the other hand, any nontrivial 4-loops surrounding the points p_1, p_2 in $(\mathbb{Z}^2 - \{p_1, p_2\}, p_0)$ are not 4-nullhomotopic. Thus $\pi_1^4(\mathbb{Z}^2 - \{p_1, p_2\}, p_0)$ is not trivial. However, since any 4-loops in MSC_8 are 4-nullhomotopic, $\pi_1^4(MSC_8, p_0)$ is trivial. Thus $\pi_1^4(\mathbb{Z}^2 - \{p_1, p_2\}, p_0)$ is not isomorphic to $\pi_1^4(MSC_8, p_0)$.

(3) We only prove that any nontrivial 8-loops in $(\mathbb{Z}^2 - \{q_1, q_2, \cdots, q_n\}, r_1)$ are 8-nullhomotopic, where any two elements of the set $\{q_i\}_{i \in M}$ are not 4-adjacent. First, we prove that any nontrivial 8-loops in $(\mathbb{Z}^2 - \{q_1, q_2\}, r_1)$ are 8-nullhomotopic, where q_1 and q_2 are not 4-adjacent. Specifically, W is assumed as a subimage of $(\mathbb{Z}^2 - \{q_1, q_2\})$, where $W = \{r_1 = (x_1, y_1), r_2 = (x_1 - 1, y_1 + 1), r_3 = (x_1 - 2, y_1), r_4 = (x_1 - 1, y_1 - 1), r_5 = (x_1 + 1, y_1 - 1), r_6 = (x_1, y_1 - 2), \}$, $q_1 = (x_1 - 1, y_1)$ and $q_2 = (x_1, y_1 - 1)$.

Actually, any 8-loops based at p_0 in $(\mathbb{Z}^2 - \{z_1, z_2\}, p_0)$ are 8-homotopic to an 8-loop based at p_0 in (W, p_0) . And further, there is a digital 8-homotopy on W, *i.e.* $H: W \times [0, 2]_{\mathbb{Z}} \to W$ such that

- (1) $H(r_i, 0) = r_i$, for any $r_i \in W$,
- (2) $H(r_3, 1) = H(r_2, 1) = r_2, H(r_4, 1) = H(r_1, 1) = r_1, H(r_6, 1) = H(r_5, 1) = r_5,$
- (3) $H(r_i, 2) = r_1$, for any $r_i \in W$ and $i \in [1, 6]_{\mathbb{Z}}$.

Namely, W is 8-contractible from the digital 8-homotopy above. Moreover, $\pi_1^8(\mathbb{Z}^2 - \{q_1, q_2\})$ is group isomorphic to $\pi_1^8(W)$ as a trivial group.

Similarly, if any two elements of $\{q_i\}_{i\in M}$ are not 4-adjacent, $M=[1,n]_{\mathbb{Z}}$, any nontrivial 8-loops in $(\mathbb{Z}^2-\{q_1,q_2,\cdots,q_n\},r_1)$ are 8-nullhomotopic.

On the other hand, if at least two elements of $\{q_1,q_2,\cdots,q_n\}$ are 4-adjacent, any nontrivial 8-loops surrounding the points q_1,q_2,\cdots,q_n in $\mathbb{Z}^2-\{q_1,q_2,\cdots,q_n\}$ are not 8-nullhomotopic by the non 8-contractibility of the minimal simple closed 8-curve MSC_8 . Thus $\pi_1^8(\mathbb{Z}^2-\{q_1,q_2,\cdots,q_n\},r_1)$ are not trivial. \square

References

- [1] L. Boxer, A classical construction for the digital fundamental group, J. Mathematical Imaging and Vision **10** (1999), 51-62.
- [2] _____, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839.
- [3] S. E. Han, Digital (k_0, k_1) -covering and a unique digital lifting, (submitted), 2002.
- [4] _____ Digital product image, (submitted), 2003.
- [5] E. Khalimsky, *Motion, deformation, and homotopy in finite spaces*, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987), 227-234.
- [6] L. Y. Kong and A. Rosenfeld, (Digital topology A brief introduction and bibliography) Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.

[7] A. Rosenfeld, *Continuous functions on digital pictures*, Pattern Recognition Letters 4 (1986), 177-184.