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1. Introduction

An oscillating tableau is a finite sequence of tableaux where each tableau ex-

cept the first one is obtained from the previous tableau by an insertion or a

deletion of a cell. Sundaram [12] used the oscillating tableaux to prove a bi-

jection establishing the Cauchy identity for the symplectic group and it was
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followed by numerous works dealing with the combinatorial properties of
the Robinson-Schensted correspondence for oscillating tableaux [2, 4,5,6, 7.
We can cite the papers [1], [7],[11], [9],[10],[13] for the Robinson-Schensted
correspondence.

In this paper, we extend the Robinson-Schensted correspondence for oscil-
lating standard tableaux to the correspondence for oscillating semi-standard
tableaux. In the section 2, we give basic definitions on generalized biwords
and oscillating semi-standard tableaux and in the section 3, we present the
correspondence for oscillating semi-standard tableaux. Then we give a geo-
metric version of the Robinson-Schensted correspondence for oscillating semi-
standard tableaux and examine combinatorial properties of this correspon-

dence.

2. Definitions and notations

Let A = (A1, ..., Ak), A1 = ... > A, be a partition of n such that Zle A = n.
The partition X can be displayed a Ferrers diagram with the part J; in the
row i. A semi-standard tableau S of shape A is a labeling of the cells of A with
positive integers so that the rows are strictly increasing and the columns are
weakly increasing. Q()) denotes the set of semi-standard tableaux of shape
A

We introduce the external insertion and the external deletion for a semi-
standard tableau ([3],[7]). Let S be a semi-standard tableau of shape A.

The external insertion is the insertion defined by the Knuth [7]. This al-
gorithm inserts an integer z in a semi-standard tableau S in the following

way:

(1) if z is greater than any other labels in the first row, then z is inserted in

the end of the first row,

(2) else if a label y is the smallest element in the first row such that y > z,
then z is inserted in the place of y and y is bumped in the next row and

repeat (1) with = y in the next row.
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(3) the bumping process ends when there is no remaining row in S.

We denote the new tableau obtained after the external insertionby ExtI(S, z).
The inverse process is called external deletion, denoted by ExtD(S, (u,v), x)
or simply ExztD(S, (u,v)), which ends with the expulsion of an integer x out
of S. Moreover, we can simply attach or erase a cell without using an inser-

tion algorithm and a deletion algorithm.

Example 2.1. The following tableau P is a semi-standard tableau. ExtI(P, 6)
inserts 6 in P by the external insertion, and the cell P(2, 3) is deleted and 3 is
excluded from the tableau P by the external deletion ExztD(P, (2, 3), 3).

6]
3
p= O3B

BB

6] 6]

SRET 3
Extl(P6) = ExtD(P,(2,3) 3) =
xt(E6) 51316 B2 = e

Let S, be the set of permutations of [n] =1,2,...,n. A generalized biword #
on [m] is a sequence of vertical pairs of positive integers of [m],

Uy U2 ... Up .
T = ,where u; > up > ... > ug, u; > v; fori = 1,... k,
vl V2 ... Up

and v; > v; if u; = u;. If all of the »;’s and v;’s are pairwise distinct, then 7 is
a biword.

G B denotes the set of generalized biwords. The length of 7 is the number
of pairs of (Z’), or || = n. GB, denotes the set of generalized biwords of
length n.

An oscillating semi-standard tableau of length n is a sequence of semi-
standard tableaux P = (P, P, ..., P,) where P is obtained from P;_; by

an insertion or a deletion of a cell.
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O,, denotes the set of oscillating semi-standard tableaux P = (Fy, Py, ..., P,)

of length n satisfying the following conditions:

(1) the shapes of Fy and P, are 0,

(2) Py is obtained from P,_; by attaching a cell with a label (without using

the insertion algorithms) or a deletion of a cell by external deletion.

3) if z;, x4, ..., T, are inserted respectively in P, P, ..., Pp,i < j < ... <m,
J P y J

thenz; <z; <. < .

The following tableaux belongs to Os. 1 is inserted in Fy to obtain P, 2 is
inserted in P; to obtain P, 2 is inserted in P, to obtain P5 and 5 is inserted in
Pj to obtain Py.

7 2
0 2] 12] 255]) ORkl5] 112 0
Phb PR P P Py P Ps P P

For a P € O,, we define a set of nondecreasing sequences of positive in-
tegers in relation to P, I(P) = Ul,, where I, = {ao,a1,a3,...,an}, a0 = 0 <
a1 < ...<apand ax = zif P, = Py_1 + (u,v) with Pe(u,v) =z forl <k <n.
An I, of the example above is {0,1,2,2,5, a5, ag, a7, ag}, where as, ag, a7, ag

can be any positive integers satisfying 5 < a5 < ag < a7 < as.

0, denotes the set of oscillating tableaux of length n, @ = (Qo, @1, ..., Qn),

satisfying the following conditions:

(1) the shapes of Qo and @, are 0,

(2) Qy is obtained from Q- by erasing of a labelled cell ( without using

the deletion algorithms) or an insertion of a cell by external insertion.

(3) if z;, zj, ..., Tm are deleted respectively from Q;, Q;,..Qm, 1 < j < ... <

m, thenz; > z; > ... > zp.
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We know that P = (Fy, P, ..., P,) € O, ifand only if P = (P, Py_1,..., Po) €
O,.

We define a set of nonincreasing sequences of positive integers in relation
to Q € Oy, J(Q) = Udy, Jy = {b1, bg, ..., b, } satisfying:

Db 2by> ... 2 by

(2) if Qg1 = Qr — (u,v) with Qg (u, v) =y, then by = y.

3. Oscillating semi-standard tableaux

Let N be a set of positive integers. We consider a new alphabet N* = NU{;j(* :
j, h € N} such that

<i<iW i <it1<G+1)V <GB <.,

Uy uz ... Ug

Definition 1 (i) Two line array ( ) is a biword on N* if, for

v1T U2 ... Vg
i=1 ...k u; >v; u;v; € N, up > us > ... > ug, and all of the u;’s and v;’s are
b) b

pairwise distinct.

(i) A standard tableau A on N* of shape X is a labeling of the cells of A with

alphabets of N* so that the rows and columns are strictly increasing.

Now, we show how to standardize a generalized biword to a biword. For

. . . uy U2 ... Up .
a given generalized biword 7 = Jifuj =ujp = 0=
vi U2 ... Up
Ujpm = Vi = Vi = . = Uy, 01 < ig < ... < ik, inm, then we change v;, into
. 1 . +k-1 . . .
uj, v, into ug ), .., Uj into ug.m ). The new two line array is a biword

on N* and we denote it by 7. The transformation from 7 to 7, denoted by

T = (), is bijective.
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Example 3.1.

7765 44\ o 77 6 52 43 40
m = —> T =

55 1 3 4 2 50 5 1 3 4 2
All of the contents of 7 are pairwise distinct, so 7 is a biword on the al-

phabet N*. Here we introduce algorithms that gives a bijection between a

generalized biwords and oscillating semi-standard tableaux.

Algorithm 1.
The input is 7 € GBy. The outputis (P, I) where P = (P, Py, ..., Pay) isan
oscillating semi-standard tableau of length 2n, I = (ig = 0,141,142, ..., i2,) is an

nondecreasing sequence where iy = z if Py = Py_; + (u, v) with Py(u,v) = .

(i) Let 7 = ¢(7) and J = (ip = 0, 41, j2, ---, jon) be an increasing sequence
such that jo = 0 < 71 < jo < ... < jon, and jp € 7 or j € 7 for
1<k <2n.

(i) Let Ty, = 0.

For k from 2nto1:

(a) if the pairs (];) belong to 7, then T}, = ExtI(1},z), and erase the
pair (J;) from 7 to obtain 7_1.
(b) else if there are cells Ty (u,v) = jk, then erase the cell T} (u,v) to

obtainand . Tp_; and 1,1 = 7%

So we find that if T}, = T 1 + (u, v) with Ti(u, v) = a then j; = a.

(i) P = (P, P1,..., Pay,) is obtained from T' = (Ty = 0,...,Ton, = 0) by
removing the exponent of each label if it exists and I is obtained from
J = {jo = 0,71, 2, ..., Jon } by removing the exponent of each content if

it exists.

Algorithm 2.
The inputis P € O,. I = {ip = 0,4y,12,...,i2,} € I(P). The output is a

generalized biword 7 of length n.
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Let my = 0. For from 1 to 2n: if P, = ExtD(P;._1,x), then add the pair (1;)

to obtain 7, else T, = mg_1.

Finally, we obtain 7 = m,,.

In the following we have an oscillating semi-standard tableaux correspond-

ing with biword 7 given in Example 3.1.

J: 0 1 2 3 4 4 4@ 5 50 5@ ¢ 7 W
o S
rmilcs
ro0 @B B Ghm oew ow Bl G 6 B g
o Tv Ty T, T Ts Tg T; T3 Ty Ty Tu T
I 0 1 2 3 4 4 4 5 5 5 6 7 7

]
r o @ i Bk Phw mm mm ?%I(o

PR PP P P P P P P R Py Py Py P

Figure 3.1

According to Algorithm 1 and Algorithm 2, we pronounce the following
theorem.

Theorem 1 There is a bijection ® from m of GB,, to (P, 1) with oscillating semi-
standard tableaux P of Oqy, and I = {ig, 1,12, ..., 12n} being un increasing se-

quence of numbers in N such that i, = a when P, = ExtI(P,_y, a).

Theorem 2 Let 7 be a generalized biword of length n. There is a bijection ® gg from

™€ GByto{(P,1),(Q, 12))} of Us[{On (@ — B)xI(P)} x{On(0 — B)xJ(Q)}].

Proof: According to Theorem 1, we get (Py =0, ..., P, P11, Pop, = 0) and
I = {ig,t1,...in, .., i2n}. We have the result by taking (P, I1) = (P, P1, ..., Py
(of shape ), {1, 11, ..., in}) with Iy € I(P), and (Q, I2) = ((P2n, P2n—1, .-, Py
(of shape ), {ion, i2n—1, ..., in}) With 5 € J(Q). O
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4. Geometric representation of a generalized biword

We represent a generalized biword in the the first quadrant of the Cartesian
plane and we investigate the combinatorial properties of the geometric rep-
resentation of a generalized biword.

Utz ) ety = (). we
V1 V2 .. Up

represent 7 instead of 7 in the part {0,1,2, ...,n} x {0, 1, ..., n} of the Cartesian

For a given generalized biword 7 = (

plane as follows:

o Define amap ¥ : abscissas z (x =0,1,2,...,n) —» {u1 + 1} UT by

u + 1 ifx=0
T(z)={

zth greatest element of 7 else

o Defineamap I': abscissas y (y = 0,1,2,...,n) —» {0} U7 by

0 ify=20
I(y) =
yt" lowest element of 7 else

e We define valid domain which is the set of points (z,y) such that ¥(z) >
I'(y).

Definition 2 The shadow S(7) of a generalized biword T on N* is the set of points
(x,y) such that there is a point (z', y') of the representation of T with 2’ < z, 3y’ < y.

Shadow lines of 7 are defined recursively. The first shadow line L; of 7
is the boundary of S(7). To construct the shadow line L;;; of 7 remove the
points of the representation of 7 lying on L; and construct the shadow line
of the remaining points. This procedure ends when there is no remaining
point on the plane. The SW-corners of a shadow line are the points of the
representation of 7 located on this line. The N E-corners of a shadow line are
the points (z,y) of the shadow line such that (z + 1,y) and (z,y + 1) are not
a part of this shadow line [8].
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Following, we give a generalized biword 7 of GBg¢ and 7 = ¢(7) in exam-
ple 3.1. and their geometric representations with white circles. The geometric
representation 7 is transformed bijectively into a geometric representation of
T = () by lengthening axis from the geometric representation of 7. The
white circles in geometric representation of T are two by two disjoint and the
only one circle lie on the line z = k (k = 1, ...,6). The limit of valid domain,

the dashed line, is slightly extended on the figure.

TT 65 4 4\ W7 6 53 42 40
m = > T =
5 5 1 3 4 2 50 5 1 3 4 2

Iy) y
Foy 50 6 F—A--F-q-- a!
1
5 5 & 5 5 :
1
4 4 4 4 Smh I
|
3 3 3 3 !
AN |
2 2 2 2 N Ly
1
1 1 1 1 : Ly
1
0 0 0 0 L
0 1 2 3 4 ¢ 0 1 2 3 4 5 6 x
8 7 6 5 4 # 8 7T 7 6 5@ 4@ 4 g(y)

Figure 4.1. Geometric representation of 7 and 7 = ()

The shadow lines L, Ly and L3 are described with thick lines. The white

circles mark SW-corners of shadow lines.

Iy) y

s epr—gr—tr-4-- !

5 5 |

4 4 N
3 3 :

2 2 LI,
11 : L
0 0 {

01 2 3 4 5 6 =2
§ 77 6 524040 g

Figure 4.2. Shadow diagram of 7 = ¢(7)
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The following algorithms show how to make an oscillating semi-standard

tableau from the geometric representation of a generalized biword.

Algorithm 1. (a) let A = {¥(z;)}i=1.n and B = {['(y;) }i=0.n. We line
up {¥(z;)}i=1.n and B = {I'(y;)}i=0..n in increasing order and denote it by
J = {jo, ey J2n b

(b) For k from 2n to 1:

if 5. € A and (I71(jx),y) is SW-corner of a Shadow line, then Ty_; =
ExtI(Ty, I'(y)),

else if j, € B and (z,T'!(ji)) is SW-corner of a Shadow line, then T},_; =
Tr — (u,v) with Ty (u,v) = jk.

Algorithm 2. The input is 7" an oscillating standard tableaux on N* from
to 0 of length 2n. J = {jo = 0, j1, j2, ..., Jan} an increasing sequence of length
2n such that j;, = z when Ty, = T _1 + (u, v), with Ty (u,v) = z.

The output is a biword 7 on N* of length n.

Let 75 = 0.
For k from 1 to 2n:
if Ty = ExtD(Ty_1, (¢, v'), z), then add the pair (ji, ) to 7,_; to obtain 7.

Finally, we obtain 7 = 7,.

Algorithm 1 and Algorithm 2 prove the bijection from the set of biwords of
length n on N* to the set of (T, J) with T" an oscillating standard tableaux on
N* from 0 to @ of length 2n, J = {jo = 0, j1, ja, ..., jan} an increasing sequence
of length 2n and j, = = when T}, = T}, 1 + (u,v), with Ty(u,v) = z. So
Algorithm 1 and Algorithm 2 prove again the Theorem 1 and Theorem 2 in
the section 3 by using the geometric description. Here we investigate the

combinatorial properties of the shadow diagram.

Definition 3 Let A = {¥(z;)}i—1.n, B = {I'(yi) }i=o0..n. Define a function s :
AUDB — Nby s(z) = k if z is k' lowest element of AU B.
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Applying algorithm 1 to the shadow diagram in Figure 4.2, we find again
the oscillating semi-standard tableau T2, 111, ..., Tp in figure 3.1.

The shadow line L; in Figure 4.2 describes the behavior of the first cell of
the first row during the construction of T3, 711, ..., Tp. The shadow line L
has three SW-corners at (1,6), (2,5) and (3,1). For the SW-corner (1,6), with
(1) = 70 and I'(6) = 5, followed by (2,5) with ¥(2) = 7 and I'(5) = 5.
During the construction of the tableaux 71 to Tp, the first cell of first row is
created during step s(7(})) = 12 with label 5, this label is replaced during
step s(7) = 11 by the label 5. The label 5 is replaced during step s(6) = 10 by
the label 1, because ¥(3) = 6 and I'(1) = 1. The cell is deleted during step
s(1)y =1L

Theorem 3 The shadow lines of the shadow diagram describe the behavior of the
first row of the tableaux Toy,, ...Tp in the following rules:

1. a SW-corner (z,y) of L; indicates that, during the step s(¥(x)), the it cell of
the first row is labeled with T'(y),

2. if the line L; leaves the valid domain through (x,y), it" cell of the first row is
deleted during the step s(I'(y)),

3. otherwise, the cell in the first row remains unchanged.

Proof: Inductonk, 1 < k < n for the line z = k. if k = 1, then a SW-corner
(1,y1) of Ly exists on the abscissa = 1. T3, = { and during the step s(¥(1)),
['(y1) is inserted in the first cell of the first row of T3, to obtain T5,_;. So the
result holds for £ = 1.

Assume that the result holds for the restriction of the shadow lines to the
points having abscissa lower than or equal to k¥ — 1 and consider the line
x=k.

Let (k, yx) be a SW-corner of the shadow line L;. We have following two

cases :

1. if the SW-corner (k — 1,yx_1) on the line z = k — 1 is on the shadow

line L;_1, then, by assumption, the 7 — 1th cell of first row of Ty is
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labeled with I'(yx_1), that is , T(q,(k)) = E.’Etl(TS(q,(k))_l, I'(yx—1)). So
we have the inequality I'(yx—1) < I'(yx), which implies that I'(yy) is

inserted in the it" cell of the first row Ty (k)1

2. if the SW-corner (k — 1,y,—1) is on the shadow line L;, then, by as-
sumption, the i** cell of first row Ts(w(k)) is labeled with I'(yx_1). We
have I'(yx_1) > T'(yx) because I'(yx—1) € L; and I'(yx)L;. Therefore,

I'(yx) is inserted in the i" cell of the first row to obtain Ty(ky-1-

On the other hand, a shadow line L; leaves the valid domain through a
point (k,y), k < n, if and only if ¥(k + 1) < I'(y) < ¥(k). So the only
operation performed is the suppression of the cell having I'(y) during the
step s(I'(y)) , by the Algorithm 1, to obtain Ty ;. ¢
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