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The notion of pseudorandomness is the theoretical 
foundation on which to consider the soundness of a basic 
structure used in some block ciphers. We examine the 
pseudorandomness of the block cipher KASUMI, which 
will be used in the next-generation cellular phones. First, we 
prove that the four-round unbalanced MISTY-type 
transformation is pseudorandom in order to illustrate the 
pseudorandomness of the inside round function FI of 
KASUMI under an adaptive distinguisher model. Second, 
we show that the three-round KASUMI-like structure is not 
pseudorandom but the four-round KASUMI-like structure 
is pseudorandom under a non-adaptive distinguisher model. 
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I. INTRODUCTION 

A block cipher is a family of permutations on a message 
space indexed by a secret key. Luby and Rackoff [1] 
introduced a theoretical model for the security of block ciphers 
by using the notion of pseudorandom and super-pseudorandom 
permutations. A pseudorandom permutation can be interpreted 
as a block cipher that cannot be distinguished from a truly 
random permutation regardless of how many polynomial 
encryption queries an attacker makes. A super-pseudorandom 
permutation can be interpreted as a block cipher that cannot be 
distinguished from a truly random permutation regardless of 
how many polynomial encryption and decryption queries an 
attacker makes. 

Luby and Rackoff used a Feistel-type transformation defined 
by the typical two-block structure of the block cipher DES in 
order to construct pseudorandom and super-pseudorandom 
permutations from pseudorandom functions [1]. They showed 
that the Feistel-type transformation with three rounds yields a 
2n-bit pseudorandom permutation and with four rounds it 
yields a 2n-bit super-pseudorandom permutation under the 
assumption that each round function is an n-bit pseudorandom 
function. Patarin [2] proved that one could obtain similar 
results by using only a single pseudorandom function. Naor 
and Reingold [3] revisited the revised constructions of Luby 
and Rackoff and simplified their proofs of security. 

There were also some noticeable results for the 
pseudorandomness of a MISTY-type transformation defined 
by another typical two-block structure of the block cipher 
MISTY [4], [5] different from the Feistel-type. Sakurai and 
Zheng [6] showed that the three-round MISTY-type 
transformation does not give a pseudorandom permutation and 
the four-round does not give a super-pseudorandom 
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permutation. Gilbert and Minier [7] and Kang et al. [8] showed 
independently that the four-round MISTY-type transformation 
yields a pseudorandom permutation. Iwata et al. [9] and Gilbert 
and Minier [7] also independently proved that the five-round 
MISTY-type yields a super-pseudorandom permutation. 
Recently, Iwata et al. [10] provided an improved result on the 
super-pseudorandomness of the MISTY-type transformation 
by proving that the second round permutation in the five-round 
MISTY-type transformation did not need to be cryptographic at 
all. 

The overall structure of KASUMI [11] is of a Feistel-type, 
but its round function FO is composed of a three-round 
MISTY-type transformation; this is not a pseudorandom 
function according to the result in [6]. Thus, we cannot 
straightforwardly apply the Luby-Rackoff result to KASUMI. 
The FO function within KASUMI has the FI function as its 
component function; it consists of a four-round unbalanced 
MISTY-type transformation. We show that the structure of the 
FI function is a pseudorandom permutation. Based on the 
pseudorandomness of the FI function, we prove that the three-
round KASUMI-like structure is not a pseudorandom 
permutation, but a four-round KASUMI-like structure is a 
pseudorandom permutation. 

A KASUMI-like structure is a mixed structure, while Feistel-
type and MISTY-type transformations are compounded. In this 
paper, we define a KASUMI-like structure as a simplified 4n-
bit block structure with its round functions being n-bit 
permutations. In order to investigate the properties of the round 
function, we consider a security model for adaptive 
distinguishers similar to that in the approach of Naor and 
Reingold [3]. This provides more detail than previous results 
such as [7] and [8]. However we consider the non-adaptive 
distinguisher model to examine the pseudorandomness of the 
overall KASUMI-like structure, since under the adaptive 
distinguisher model there are so many factors involved in 
controlling a 4n-bit block structure. We found some flaws in 
the proof of Theorem 1 of [12] and revise them in this paper. 

Within the security architecture of the 3rd Generation 
Partnership Project (3GPP) system [11], there are two 
standardized functions, the confidentiality function f8 and the 
integrity function f9. These two functions are based on the 
block cipher KASUMI [11]. Thus, the pseudorandomness of 
KASUMI is the main assumption on which to examine the 
provable security of f8 and f9 [13], [14]. The results of this 
paper provide support for this assumption. 

An analysis of pseudorandomness does not directly lead to 
an attack or a proof of security for the block cipher itself, since 
the security is asymptotically evaluated in terms of its block 
size, and the attacker's information is limited to a number of 
queries and computational time that is polynomial in its block 

size. The pseudorandomness criteria can be used in the 
theoretical study of the soundness of a basic structure used in 
some block ciphers. 

On the other hand, Knudsen [15] proved that any Feistel 
cipher with a bijective round function has the impossible 
characteristics of five rounds, which allows us to distinguish 
the five-round cipher from a randomly chosen permutation. 
Recently, Patarin [16] also discussed a generic distinguishing 
attack on five-round Feistel-type permutations. This 
distinguishing attack can be applied to KASUMI since the 
round functions FO and FL are permutations. Patarin’s attack 
requires O(23n/2) chosen plaintext/ciphertext pairs and O(23n/2) 
computations to distinguish a five-round 2n-bit Feistel-type 
permutation from a 2n-bit random permutation. The mixed 4n-
bit block KASUMI-like structure, which is studied in this paper, 
is different from the 2n-bit block Feistel-type structure, so the 
structures of Patarin’s attack and our analysis are different from 
each other. Note that the number of queries in the practical 
distinguishing attack is exponential in its block size. This point 
is different from an analysis of pseudorandomness. 

II. THE BLOCK CIPHER KASUMI 

The block cipher KASUMI [11] produces a 64-bit output 
from a 64-bit input under the control of a 128-bit key. 
KASUMI is a modified version of the block cipher MISTY1 
[5], and we can classify the structure of KASUMI into the 
following three stages: 

• The overall structure of KASUMI is a 64-bit permutation 
composed of eight rounds of a Feistel-type permutation. The 
round function consists of a non-linear mixing function FO and 
a linear mixing function FL. 

• The FO function is a 32-bit permutation composed of 
three rounds of a MISTY-type transformation with round 
permutation FI. 

• The FI function is a 16-bit permutation which is composed 
of a four-round unbalanced MISTY-type transformation 
obtained from the 7-bit S-box S7 and the 9-bit S-box S9. 

The structure of KASUMI is depicted in Fig. 1. 
A security evaluation of KASUMI was primarily performed 

by the 3GPP Security Algorithms Group of Experts (SAGE) 
[17]. The general conclusion of [17] was that KASUMI is 
based on sound design principles and no practical attacks were 
found. We believe that the notion of pseudorandomness is 
theoretical evidence of the soundness of the basic structure of a 
block cipher. However there was no mention in [17] about the 
pseudorandomness criteria. This provided the motivation of 
our study, in which we examine the pseudorandomness of the 
block structures used in KASUMI. 
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Fig. 1. Structure of KASUMI. 
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Kühn [18] showed that KASUMI with six rounds can be 

breakable by impossible differential attack with complexity of 
255 data and 2100 times, which is less than an exhaustive search. 
Kühn’s attack shows that KASUMI with six rounds is not 
practically secure, whereas we theoretically show that the 
simplified KASUMI with four rounds is pseudorandom where 
the number of queries is polynomially bounded. 

III. PRELIMINARIES FOR 
PSEUDORANDOMNESS 

Let nI  denote the set of all n-bit strings and nΩ  be the set 
of all permutations from nI  to itself where n is a positive 
integer, that is, ππ |:{ nnn II →=Ω  is a bijection }. We 
define an n-bit perfect random permutation as a uniformly 
drawn element of .nΩ  

Definition 1. nΩ  is called the uniform permutation 
ensemble (UPE) if all permutations in nΩ  are uniformly 
distributed, that is, for any permutation ,nΩ∈π  

.)!2(1)Pr( n=π  

We consider the following security model.  Let D  be a 

computationally unbounded distinguisher with an oracle O . 
The oracle O  chooses randomly a permutation π  from the 
UPE nΩ  or from a permutation ensemble nn Ω⊂Λ . For an 
n-bit block cipher, nΛ  is the multiset of permutations 
determined by all the secret keys. Since two or more different 
keys may define the same permutation, here we use the term 
multiset in which some elements can be found two or more 
times. The purpose of the distinguisher D  is to distinguish 
whether the oracle O  implements the UPE nΩ  or .nΛ  

Definition 2. Let D  be a distinguisher, nΩ  be the UPE, 
and nΛ  be a permutation ensemble obtained from a block 
cipher. Then the advantage DADV  of D  is defined by 

,)1outputsPr(
)1outputsPr(

n

nD

OD
ODADV

Λ←−

Ω←=
 

where nO Ω←  and nO Λ←  denote that O  implements 
nΩ  and nΛ , respectively. 

Assume that the distinguisher D  is restricted to make at 
most )(npoly  queries to the oracle O , where )(npoly  is 
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some polynomial in n. We call D  a pseudorandom 
distinguisher if it queries x  and the oracle answers )(xy π= , 
where π  is a randomly chosen permutation by O . We say 
that D  is a super-pseudorandom distinguisher if it is a 
pseudorandom distinguisher and it also can make a query 
y and receives )(1 yx −= π  from the oracle .O  

Definition 3. A function ℜ→Nh :  is called negligible if 
for any constant 0>c  and all sufficiently large Nn ∈ , 

.1)( cnnh <  

Definition 4. Let nΛ  be an efficiently computable 
permutation ensemble. Then nΛ  is called a pseudorandom 
permutation ensemble (PPE) if DADV  is negligible for any 
pseudorandom distinguisher .D  

Definition 5. Let nΛ be an efficiently computable 
permutation ensemble. Then we call nΛ  a super-
pseudorandom permutation ensemble (SPPE) if DADV  is 
negligible for any super-pseudorandom distinguisher D . 

In Definition 4 and 5, a permutation ensemble is efficiently 
computable if all permutations in the ensemble can be 
computed efficiently. See [3] for a rigorous definition of this. It 
is reasonable to assume that nΛ is an efficiently computable 
permutation ensemble if it is obtained from an n-bit block 
cipher. Hence we assume that any permutation ensemble 
obtained from a block cipher is efficiently computable. Now 
we define a family of permutations to be ),( aq -secure in 
order to make a clear description of our results. 

Definition 6. Let nΛ  be an efficiently computable 
permutation ensemble. Then nΛ  is a ),( aq -secure PPE, if 
the distinguisher D  asks at most q  queries, which are 
restricted to aADVD ≤ . 

We define two transformations, Feistel-type and MISTY-
type, which are obtained from two representative structures of 
current block ciphers. Let nΨ  denote the set of all functions 
from nI  to itself. We say f  is an n-bit function (resp. 
permutation) where nf Ψ∈  (resp. nf Ω∈ ). 

Definition 7. For any n-bit function nf Ψ∈ , the 2n-bit 
Feistel-type permutation nfF 2Ω∈  is defined by 

)),(,(),( RfLRRLFf ⊕=  

where nIRL ∈, . 

Definition 8. For any n-bit function nf Ω∈ , the 2n-bit 
MISTY-type permutation nfM 2Ω∈  is defined by 

),)(,(),( RLfRRLM f ⊕=  

where nIRL ∈, . 

Now we can formally describe several important results on 

the pseudorandomness of Feistel-type and MISTY-type 
transformations. Note that a pseudorandom function ensemble 
(PFE) can be similarly defined as in Definition 4 by 
considering a function space instead of a permutation space. 

• 
12 ff FF o  is not a 2n-bit PPE and 

123 fff FFF oo  is not a 
2n-bit SPPE, even if all if 's ( 3,2,1=i ) are independently 
chosen from an n-bit PFE [1]. 

• 
123 fff FFF oo  is a 2n-bit PPE and 

1234 ffff FFFF ooo  
is a 2n-bit SPPE if all if 's ( 4,3,2,1=i ) are independently 
chosen from an n-bit PFE [1]. 

• 
123 fff MMM oo is not a 2n-bit PPE and 

1234 ffff MMMM ooo  is not a 2n-bit SPPE, even if each 

if ( 4,3,2,1=i ) is chosen independently from an n-bit PPE [6], [7]. 
•

1234 ffff MMMM ooo  is a 2n-bit PPE and 

12345 fffff MMMMM oooo  is a 2n-bit SPPE, where all 

if 's ( 5,4,3,2,1=i ) are independently chosen from an n-bit 
PPE [7]-[9]. 

We first show that the structure of the FI function of 
KASUMI is a PPE by examining the pseudorandomness of an 
unbalanced MISTY-type transformation. Second, on the basis 
of the first result, we prove that a three-round KASUMI-like 
structure is not a PPE but a four-round KASUMI-like structure 
is a PPE. Note that the structure of the FO function of 
KASUMI is not a PPE, so it seems that unlike the Luby-
Rackoff cipher, the three-round Feistel-type permutation of a 
KASUMI-like structure is not a PPE. Since the FL function is 
used to mix in the round key, we consider in this paper a 
simplified version of KASUMI without the FL function. 

IV. PSEUDORANDOMNESS OF THE 
UNBALANCED MISTY-TYPE 
TRANSFORMATION 

We describe two simple but useful lemmas, the proofs of 
which are given in [8]. 

Lemma 1. Let π  be a permutation chosen from the UPE 
nΩ . Then for any 21 xx ≠ , nIy ∈ , 



 ≠−

==⊕
otherwise.0

,0if)12(1
))()(Pr( 21

y
yxx

n

ππ  

Lemma 2. Let 1π  and 2π  be two permutations 
independently chosen from the UPE .nΩ Then for any 

,,,, dcba nIy ∈ , 

,
2

1))()()()(Pr( 12211 −<=⊕⊕⊕ nydcba ππππ  

for 2≥n . 
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Now we define two unbalanced MISTY-type transformations 
in order to examine accurately the pseudorandomness of the FI 
function. 

Definition 9. Let n  and m  be two positive integers such 
that nm ≤ . Then for any n-bit permutation f  and m-bit 
permutation g , two )( mn + -bit unbalanced MISTY-type 
transformations mnfM +Ω∈  and mngM +Ω∈ˆ  are defined 
for any mn IIRL ×∈),( , 

,))(,(),(by nmf IIRLfRRLM ×∈⊕=  

and for any nm IIRL ×∈),( , 

mng IIRLgRRLM ×∈⊕= )ˆ)(,(),(ˆby  

where for any n-bit vector x , x̂  denotes the m-bit value 
obtained by discarding the n-m leftmost bits and for any m-bit 
vector y , y  denotes the n-bit value obtained by adding n-m 
zero bits to the left. 

Note that the FI function of KASUMI can be represented as 
a 16-bit permutation 

1234
ˆˆ

ffff MMMM ooo , where 1f , 3f  
are 9-bit permutations and 2f , 4f  are 7-bit permutations. We 
define the permutation ensemble based on the FI function as 
follows. 

Definition 10. mn+Λ  is the (n + m)-bit permutation 
ensemble obtained from the four-round unbalanced MISTY-
type transformation ,ˆˆ

1234 ffff MMMM ooo where 

nff Ω∈31,  and mff Ω∈42 ,  are independently chosen 
from the n-bit and m-bit UPEs, respectively. 

The pseudorandomness of the FI function is guaranteed by 
the following theorem. 

Theorem 1. Let for any positive integers n  and m  with 
nm ≤≤2 , nff Ω∈31, , and mff Ω∈42 ,  be independently 

chosen from two n-bit and m-bit PPEs, respectively. Then the 
four-round unbalanced MISTY-type transformation 

1234
ˆˆ

ffff MMMM ooo  is a ),( aq -secure PPE, where 

.
12

12
2

3
2 1

2









−
+

−
= − mn

qqa  

Recall that a pseudorandom distinguisher D  can make a 
query x  and the oracle O  answers )(xy π= , where π  
is a randomly chosen permutation by O . Now we assume that 
D  makes exactly q  queries and refer to the sequence 

)},(,),,{( )()()1()1( qq yxyx K  of all query-answer pairs as the 
D -transcript, where )(npolyq = . We consider the following 
adaptive pseudorandom distinguisher. 

Definition 11. D  is called an adaptive pseudorandom 
distinguisher if it has a transcript )},(,),,{( )()()1()1( qq yxyx K  
and a function DC  of the D -transcript such that for every 

qi ≤≤2 , 

)}),(,),,({( )1()1()1()1()( −−= ii
D

i yxyxCx K  

and the output of )}),(,),,({( )()()1()1( qq
D yxyxCD K= . 

Under the adaptive distinguisher model, the i-th query of D 
is determined by the first i–1 query-answer pairs and D’s 
output is a function of its transcript. Throughout this paper we 
assume that all queries are distinct. 

For the proof of Theorem 1, we consider an (n + m)-bit 
ensemble mnB +  on the i-th query mn

i Ix +∈)(  of D , when 
the oracle O  implements mnB + , its corresponding answer 

mn
i

R
i

L
i IIyyy ×∈= ),( )()()(  is as follows: 

1. )(iy  is the uniformly chosen (n+m)-bit vector under the 
condition that )()( ji yy ≠  for all ij <≤1 . 

2. )()( j
L

i
L yy ≠ , )()( j

L
i

L yy ≠ , and )()()()( ˆˆ j
R

j
L

i
R

i
L yyyy ⊕≠⊕  

for all ij <≤1 . 

Definition 12. Let )},(,),,{( )()()1()1( qq yxyx K=σ  be a 
D -transcript. 

(i) σ  is called separately distinct if )()( j
L

i
L yy ≠  and 

)()( j
L

i
L yy ≠  for all qji ≤≠≤1 . 
(ii) σ  is called XOR-distinct if )()()()( ˆˆ j

R
j

L
i

R
i

L yyyy ⊕≠⊕  
for all qji ≤≠≤1 . 

Note that the UPE mn+Ω  can provide answers that are not 
separately distinct or not XOR-distinct, but mnB +  always 
provides answers that are separately distinct and XOR-distinct. 

We first prove that the advantage of D  in distinguishing 
between the process UPE mn+Ω  and the process mnB +  is 
negligible. The next step of the proof will be an estimation for 
the advantage of D  in distinguishing between the process 

mnB +  and the process mn+Λ . Now we consider the different 
distributions on the transcript of D  induced by different 
ensembles which are implemented by the oracle O . 

Definition 13. 
mn

T
+Ω , 

mnBT
+

, and 
mn

T
+Λ  are defined by the 

following random variables: 
mn

T
+Ω  is the D-transcript when 

the oracle O  implements the UPE mn+Ω , 
mnBT

+
 is the D-

transcript when the oracle O  implements mnB + , and 
mnBT

+
 

is the D-transcript when the oracle O  implements mn+Λ , 
respectively. 

The following lemma confirms that the advantage of D  in 
distinguishing between the process UPE mn+Ω  and the 
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process mnB +  is small enough. 
Lemma 3. 

.
12

2
12

1
2

|)1)(Pr()1)(Pr(|
2









−
+

−
−

<

=−=
++Ω
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BDD

qq

TCTC
mnmn

 

Proof. Let )(
mn

TG
+Ω  be the event of 

mn
T

+Ω being separately 
distinct and XOR-distinct. Then for any separately distinct and 
XOR-distinct D-transcript σ , 

!2
)!2())(|Pr( mn

mn qTGT
mnmn +

+

ΩΩ
−

==
++

σ  

and 

.
)12()12(2

1)Pr(
+−−

== ++++ q
T mnmnmnB mn L

σ  

Hence the distribution of 
mn

T
+Ω  conditioned on 

mn
T

+Ω  
being separately distinct and XOR-distinct is exactly the 
distribution of .

mnBT
+

Furthermore, we can estimate the 
probability of the event ,)( c

mn
TG

+Ω the complement of 
)(

mn
TG

+Ω , as follows: 

(

{

}
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Therefore the assertion follows by 
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We now have to show that the advantage of D  in 

distinguishing between mnB +  and mn+Λ is also small enough. 
To prove this fact, we first formally define a bad event and 
estimate its probability. 

Definition 14. For any n-bit permutation 1f  and m-bit 
permutation 2f , ),( 21 ffBAD  is defined as the set of all   
D-transcripts )},(,),,{( )()()1()1( qq yxyx K=σ  satisfying,  
for some qji ≤≠≤1 , 

)()(
1

)()(
1 )()( j

R
j

L
i

R
i

L xxfxxf ⊕=⊕  

or 

)()(
1

)(
2

)()(
1

)(
2 )(ˆ)()(ˆ)( j

R
j

L
j

R
i

R
i

L
i

R xxfxfxxfxf ⊕⊕=⊕⊕  

or 

,)()(

)()(
)()(

1
)(

2
)(

)()(
1

)(
2

)(

j
R

j
L

j
R

j
L

i
R

i
L

i
R

i
L

xxfxfy

xxfxfy

⊕⊕⊕=

⊕⊕⊕
 

where mn
i

R
i

L
i IIxxx ×∈= ),( )()()(  for all .1 qi ≤≤  

Lemma 4. Let 1f  and 2f  be chosen independently from 
UPE nΩ  and UPE mΩ , respectively. Then for any D-
transcript )},(,),,{( )()()1()1( qq yxyx K=σ  and ,2≥≥ mn  
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For any fixed ji ≠ , we estimate probabilities of these three 
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Observe that, by a similar result to Lemma 1, 
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since 2≥≥ mn . If )()( j
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L yy = , by Lemma 2, the probability 
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Throughout this section we assume that 2≥≥ mn  for the 
sake of freely using Lemma 4. 

Lemma 5. For any XOR-distinct D-transcript 
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which completes the assertion.

                            

� 
The next lemma guarantees that the advantage of D  in 

distinguishing between mnB +  and mn+Λ  is negligible. 
Lemma 6. 
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Proof. Let Θ  be the set of all XOR-distinct D-transcripts 
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On the other hand, the term (1) is bounded above as follows: 

( ) ( ){ }

( )∑

∑

Θ∈

Θ∈
Λ

∉≤

=−=
++

σ

σ

σ

σσ

),(Pr

PrPr

21 ffBAD

TT
mnmnB

 

( ) ( )σσσ =−∉=⋅
++Λ mnmn BTffBADT Pr),(|Pr 21        (3) 

( )∑
Θ∈

Λ ∈=+
+

σ

σσ ),(,Pr 21 ffBADT
mn

                 (4) 

( ) ( ).Pr),(Pr 21 σσ
σ

=⋅∈+
+∑

Θ∈
mnBTffBAD              (5) 

By Lemma 5, the term (3) is zero and by Lemma 4, the 
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By Lemma 4, the value of (4) is also estimated as 
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since we can easily check that under the condition that 
,σ=

+Λ mn
T  the probability of event ),( 21 ffBAD∈σ  has 
the same upper bound as Lemma 4.                       � 

Proof of Theorem 1: By using Lemma 3 and 6, we complete 
the proof as follows: 
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V. PSEUDORANDOMNESS OF THE 
SIMPLIFIED KASUMI 

From Theorem 1, it is reasonable to assume that the FI 
function of KASUMI is a PPE. In order to investigate the 
pseudorandomness of KASUMI, we use a simplified figure of 
KASUMI. The four-round simplified KASUMI is illustrated in 
Fig. 2, where ),,,( 4321 xxxxx =

r
denotes a 4n-bit input value, 

),,,,(),,,,( 43214321 wwwwwyyyyy ==
rr

 

and ),,,( 4321 zzzzz =
r  denotes the corresponding output of 
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Fig. 2. Simplified four-round KASUMI. 

1x

1f

2x 3x 4x

2f 3f

4f 5f 6f

7f 8f 9f

10f 11f 12f

1w 2w 3w 4w

1y 2y 3y 4y

1z 2z 3z 4z

 
 
the second, third, and fourth round of KASUMI, respectively. 
Each ,,, iii ywx  and iz is an n-bit value. 

By the following theorem, we obtain the fact that three 
rounds of KASUMI is insufficient to be a PPE. 

Theorem 2. The three-round simplified KASUMI is not a 
4n-bit PPE even if the if ’s )9,,1( K=i of Fig. 2 are 
independently chosen from an n-bit PPE. 

Proof. Let n4Λ  be the set of all permutations over nI 4  
obtained from the three-round simplified KASUMI. Consider 
a distinguisher D  such as follows: 
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where 1x  and 2x  are two fixed n-bit values and 
.0 43 xx ≠≠  

2. D  sends these four queries to the oracle O  and 
receives the corresponding answers 
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On the other hand, if O  implements n4Λ , then for the four 
queries ,,, )3()2()1( xxx
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 and ,)4(x

r
we can see from Fig. 2 that 
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where ),( 21 αα  is the 2n-bit output of the first-round function 
corresponding to the input ),( 21 xx . Hence we obtain by an 
argument similar to that of Sakurai and Zheng [6] that 
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which is non-negligible.

                                  

� 

At this point, we consider the non-adaptive distinguisher 
security model, which is different from the one in section IV. 
The non-adaptive distinguisher sends all queries to the oracle at 
the same time, whereas the adaptive distinguisher determines 
the i-th query from the first i–1 query-answer pairs. We have 
experienced that under the adaptive distinguisher model, there 
are many factors involved in controlling a 4n-bit block 
structure. The following theorem guarantees that KASUMI 
with four or more rounds is a pseudorandom permutation 
ensemble under the security model with a non-adaptive 
distinguisher. 

Theorem 3. If if ’s )12,,2,1( K=i in Fig. 2 are 
independently chosen from an n-bit PPE, then the four-round 
simplified KASUMI is a (q,a)-secure PPE, where 

nqqa 2)( 2 −= . 
Proof. Assume that if ’s are independently chosen from the 

UPE nΩ . It suffices to prove the assertion under this 
assumption [1]. Let n4Λ  be the set of all permutations over 
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nI 4  obtained from the simplified four-round KASUMI. 
Suppose that the distinguisher D  makes q  calls to the 
oracle O . In the i-th oracle call, D  sends a 4n-bit query 
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where π  is the randomly chosen permutation by O  from 
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arbitrarily. We separate the following four cases. 

Case 1: .)(
1

)(
1

ji xx ≠  In this case by considering the two 

paths 

15311 wfffx →→→→  

and 

26411 wfffx →→→→ , 

we obtain that 

)( )( ,
2
1Prand

2
1Pr )(

2
)(

2
)(

1
)(

1 n
ii

n
ii wwww ≤=≤=  

since for any n-bit vector b , ( ) ,21Pr 21
nbaa ==⊕ where 

1a  and 2a  are randomly chosen n-bit vectors. 

Case 2: .)(
2

)(
2

ji xx ≠  Consider the path 

.26422 wfffx →→→→  

Then we can see that )(
2
iw  and )(

2
jw  are completely 

random. By considering the path ,1522 wffx →→→  we 
also know that )(

1
iw  and )(

1
jw  are completely random. 

Hence we obtain that 

)( )( .
2
1Prand

2
1Pr )(

2
)(

2
)(

1
)(

1 n
ii

n
ii wwww ≤=≤=  

Case 3: .)(
3

)(
3

ji xx ≠  By considering the path 

,2643 wffx →→→  

we can see that )(
2
iw  and )(

2
jw  are completely random. 

And by considering the path ,143 wfx →→  we also 
obtain that )(

1
iw  and )(

1
jw  are completely random. Hence 

we obtain that 

( ) ( ) .
2
1Prand

2
1Pr )(

2
)(

2
)(

1
)(

1 n
ii

n
ii wwww ≤=≤=  

Case 4: .)(
4

)(
4

ji xx ≠  Consider the path .154 wfx →→  
Then )(

1
iw  and )(

1
jw are completely random. Thus 

( ) n
ii ww

2
1Pr )(

1
)(

1 ≤=  

holds. Similarly we obtain that 

( ) ,
2
1Pr )(

2
)(

2 n
ii ww ≤=  

by considering the path .154 wfx →→  

Therefore, for any case, we obtain that 

( ) ( ) .
2
1Prand

2
1Pr )(

2
)(

2
)(

1
)(

1 n
ii

n
ii wwww ≤=≤=  

This implies that n
D qqADV 2)1( −≤ .              � 

VI. CONCLUSION 

In this work we examined the pseudorandomness of the 
3GPP block cipher KASUMI. We have proved that the 
structure of the FI function within a KASUMI composed of a 
four-round unbalanced MISTY-type structure is a 
pseudorandom permutation under a security model with an 
adaptive distinguisher. We have shown that the simplified 
KASUMI with three rounds is not a pseudorandom 
permutation ensemble, but a four-round simplified KASUMI is 
a pseudorandom permutation ensemble under a non-adaptive 
distinguisher model. Under an adaptive distinguisher model it 
is necessary to consider many factors to control a 4n-bit block 
structure. Thus, we set aside the pseudorandomness of the 
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KASUMI-like structure as an open problem. 
The results of this paper disclose the soundness of the basic 

block structure of KASUMI from the viewpoint of 
pseudorandomness. Within the security architecture of the 
3GPP system there are two standardized functions, the 
confidentiality function f8 and the integrity function f9. These 
two functions are based on the block cipher KASUMI. Thus 
the pseudorandomness of KASUMI is the main assumption on 
which to examine the provable security of f8 and f9. The 
results of this paper provide support for this assumption. 
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