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To improve the detection performance of surveillance 
radars with polarization diversity, we developed an 
adaptive polarimetric processor and compared it with 
other polarimetric processors. We derived our adaptive 
polarimetric processor, called the polarization 
discontinuity detector (PDD), from the generalized 
likelihood ratio (GLR) test principle for the unspecified 
target component. We derived closed-form expressions of 
its probabilities of detection and false alarm, and 
compared its performance to that of the adaptive 
polarization canceller (APC) and Kelly’s GLR processor. 
The PDD had a performance similar to Kelly’s GLR in 
Gaussian clutter, and both the PDD and Kelly’s GLR, 
which have embedded constant false alarm rates (CFARs), 
outperformed the APC, especially when the target 
polarization state was close to the clutter’s polarization 
state. The important difference is that the PDD is much 
simpler than Kelly’s GLR for hardware/software 
implementation, because the PDD does not require a 
costly two-parameter filter bank to cover the unknown 
target polarization state as Kelly’s GLR does. 
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I. Introduction 

The use of polarimetric processing techniques for signal 
detection [1] and parameter estimation [2] is well known, and 
an excellent tutorial for various radar applications can be found 
in [3]. For radar target detection in clutter environments, 
polarimetric processing is a valuable approach, especially 
when targets are slowly or tangentially moving or Doppler 
ambiguous [4], [5]. Our investigation aimed to improve 
detection performance of surveillance radars through adaptive 
processing of receiver-polarization-diversity data. For this 
application, both the adaptive polarization canceller (APC) [6] 
and Kelly’s generalized likelihood ratio detector (GLR) [7] can 
be used. While the APC is much simpler than Kelly’s GLR, it 
suffers from the so-called signal cancellation problem [4] when 
the target polarization state is close to the clutter’s polarization 
state, since the null depth of the APC is not adjustable. On the 
other hand, the application of Kelly’s GLR for polarimetric 
processing requires the formation of a two-parameter filter 
bank to cover the unknown target polarization state, resulting in 
a significantly increased implementation complexity. The 
objective of this paper therefore is to develop a well performing, 
yet sufficiently simple, polarimetric processor for the stated 
application. 

II. Data Model 

Consider a radar receiver of two orthogonally polarized 
channels, i.e., one horizontally (H) polarized and the other 
vertically (V) polarized. Each channel has its conventional 
preprocessing and produces an I- and Q-channel output pair, 
which is sampled for polarimetric processing. Thus, the dual-
polarized receiver output can be represented by a sequence of 
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2×1 complex data vectors, traditionally called range-cell 
samples. Target signal detection is sought in one range-cell at 
a time, and the data vector for that range cell is called the 
primary data vector denoted by .px  The secondary data 
vectors Kkks ..,.,2,1),( =x  are collected from the adjacent 
range cells, which are assumed to be free of any target 
component, and independently and identically distributed. 

Under hypothesis H0, i.e., the target signal absent 
hypothesis, the primary data vector px  is assumed to be 
independent of the secondary data vectors, all of which have 
the same complex Gaussian distribution with a zero mean for 
the clutter and receiver noise components. The clutter-plus-
noise covariance is denoted by 
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where δ  is seen as the correlation coefficient between H 
and V channels, r the clutter power ratio of H and V channels, 

2
cσ  the H channel clutter power, and 2

nσ  the channel noise 
power. The superscript H denotes the complex conjugate 
transpose. 

Under H1, i.e., the target signal present hypothesis, the 
primary data vector px  is assumed to contain a target 
component [ ] ,T

VH aa=a  which makes the mean of the 
primary data become { } .ax =pE  We will derive a new 
adaptive polarimetric processor by applying the generalized 
likelihood ratio (GLR) test principle with both the covariance 
matrix R and the target component a being unknown. The 
resulting processor, called the polarization discontinuity 
detector (PDD), is thus different from Kelly’s GLR processor 
[7], which is derived under the assumption that the target 
component is known up to a scalar. 

III. Polarization Discontinuity Detector and Its 
Analytical Performance Expressions 

The PDD test statistics, as derived in Appendix A, is given by 
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Under H0, by the theorem of T 2 statistic [12], the PDD is 
equivalent to 
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where 2t has the central 2χ  distribution with the degrees of 
freedom (df) equal to 4, and τ2 has the central 2χ  
distribution with the df equal to 2(K–1). Therefore, the 
probability of false alarm is 
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where the probability density functions (pdf) of t and τ are 
given by 

( ) ( )ttHtft −= exp0               (6) 
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The inner integral of (5) can be completed as 
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Substituting the above into (5) yields 
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The above expression indicates that the PDD test has a 
desirable embedded constant false alarm rate (CFAR) feature 
as PF does not depend on the clutter-plus-noise covariance 
matrix. 

Under H1, 2t has a non-central 2χ  distribution with df 
equal to 4 and non-centrality parameter .22 -1aRaHµ =  The 
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pdf of t is thus given by 
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Since the pdf of the secondary data vectors is the same as 
under H0, the pdf of τ2 remains the same. Thus, the 
probability of detection given a is 
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Since the inner integral may be written as 

,
)!2(

)/exp()(
2

0
2

0

0
2

1/ 0
∑∫

−

=
−−

−−∞

−−
−

=
K

j
jK

jK

ηt
τ

ηjK
ηttτdHτf      (12) 

substituting the above expression into (11) yields 
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Similar to the finite sum formula [8], the above equation may 
be expressed as 
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For the case of a random target polarization, the overall 
detection probability can be obtained by a statistical average 
over .-1aRaHµ =  In the following, we model the target 
polarization state a by the complex Gaussian with the 
covariance matrix .2Isσ Let ,2

1
-1 ∑ == H

jjjj λ vvR  where 

jλ and vj are the j-th eigenvalue and eigenvector of R-1. Then 
µ can be expressed as 
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where .av H
jju =  The pdf of µ is given by 
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Therefore, the probability of detection with the above model 
of the random target polarization state is 
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where ( ) ( ) .2,1,/11/1 2
0 =σ++=γ kλη ksk  

IV. Detection Performance Comparison 

We will compare the detection performance of the APC, 
PDD, and Kelly’s GLR for the case of deterministic target 
polarization. The exact test statistics of the APC and Kelly’s 
GLR to be used in the comparison are specified in 
Appendices B and C along with their probabilities of false 
alarm and detection. Without the loss of generality, we 
assume the transmitter employs the V channel. The statistical 
average of the clutter polarization is assumed to be circular 
with the phase of the H channel leading the phase of the V 
channel by 90 degrees, i.e., the clutter-plus-noise covariance 
matrix R has the form 
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Following the definition of the degree of polarization in [9], 
δ  in (18) is the clutter degree of polarization (CDP). With 

12 =nδ  for all comparison work in this section, the input 
clutter-to-noise ratio (CNRi) is thus equal to 2

cσ  which will 
be fixed at 30 dB. 

For the target polarization state, we choose 

a=ξ e jθ [1   e jφ]T,                (19) 

i.e., the case of equal H and V magnitudes. The input signal-
to-clutter-plus-noise ratio (SCNRi) is then 

.
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The parameter φ in (19) adjusts the spherical distance (SD) 
between the target and clutter on the Poincaré sphere [10], i.e., 
the separation of the target and clutter in the polarization 
domain. From (18) and (19) we have −= ο90SD φ. 

The following table shows the four cases of our primary 
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interest in the performance comparison, classified according 
to the CDP and SD. 
 

Table 1. Cases for numerical evaluations. 

 small SD (φ = 85°) large SD (φ = –60°) 
High CDP  
( 9.0=δ ) 

Case 1 Case 2 

Low CDP    
( 3.0=δ ) 

Case 3 Case 4 

 

 
The performance measure is the probability of detection PD. 

In all comparisons, we set the thresholds of the three 
processors to arrive at the same probability of false alarm of 
PF=10-5, with the size of the secondary data set K=20. As a 
performance bound, we also include the optimum processor 
in our comparison, whose test statistic and detection 
performance are summarized in Appendix D. 

Figures 1 and 2 represent the detection performance of 
Kelly’s GLR, the PDD, and the APC for Cases 1 and 2. The 
PDD and Kelly’s GLR outperform the APC significantly in 
Case 1 where the target and clutter have a similar polarization 
state, while in Case 2, where the target and clutter are well 
separated in the polarization domain, there is no significant 
performance difference. 

Figure 3 shows the detection performance when the CDP 
is low. The performance degradation of the APC is even 
more significant than that seen in Fig. 1 where the CDP is 
high. 
 

 

APC 

Fig. 1. Performance comparison for Case 1: small spherical 
distance (SD) and high clutter degree of polarization 
(CDP). 
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 Fig. 2. Performance comparison for Case 2: large SD and 
high CDP. 
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 Fig. 3. Performance comparison for Case 3: small SD and 
low CDP. 
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As Fig. 4 shows, there is again no significant performance 
difference among the three processors when the target and 
clutter are well separated. 

The APC’s performance degradation with a small target-
clutter separation stems from the fact that its clutter 
suppression is accomplished by nulling, without any 
adjustment of the null depth. Therefore, it unnecessarily 
overattenuates a nearby target component, and the problem is 
more serious when the clutter is less polarized. 

In contrast, the PDD and Kelly’s GLR are essentially free 
of this problem. 

Both the PDD and Kelly’s GLR offer near optimal 
performance with the latter slightly better than the former, as 
the latter is assumed to know the target polarization state. 
However, the implementation of Kelly’s GLR is much more 
costly than that of the PDD. This is because a two-parameter 
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filter bank on a sufficiently fine grid must be used to cover 
the actually unknown target polarization state a0 for Kelly’s 
GLR in surveillance applications (See Appendix C). For 
example, if we use a two-dimensional filter bank with a step 
size of 5° in the angle domain and 0.1 in the amplitude 
domain, respectively, in (41), the computational complexity 
of the Kelly’s GLR is roughly 720 times larger than that of 
our PDD processor. 
 

 Fig. 4. Performance comparison for Case 4: large SD and 
low CDP. 
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Nevertheless, Kelly’s GLR has an advantage over the PDD 
for some applications where the clutter pdf may significantly 
depart from the assumed Gaussian distribution. As shown in 
[11], Kelly’s GLR is very robust in non-Gaussian interference, 
and we have not seen this feature with the PDD. Therefore, 
one should not always prefer the PDD, solely based on its 
much simpler implementation. 

Finally, we like to point out that, because of the 
performance approximation of the APC as specified in 
Appendix B, its actual performance is below what is shown 
in Figs. 1 to 4. In addition, the APC’s CFAR performance can 
be maintained only if K is so large that the APC’s weight can 
be nearly perfectly estimated. Therefore, the PDD is a better 
choice than the APC for surveillance radar applications. 

V. Conclusion 

We have shown that our proposed PDD processor has a 
detection performance very similar to Kelly’s GLR in 
Gaussian clutter, and both the PDD and Kelly’s GLR, which 
have embedded CFARs, outperform the APC, especially 
when the target polarization state is close to the clutter’s 
polarization state. An important advantage of the PDD over 
Kelly’s GLR is the PDD’s low implementation complexity, 

as it does not require a two-parameter filter bank to cover the 
actually unknown target polarization state. The computational 
complexity of Kelly’s GLR is typically a few hundred times 
larger than that of the PDD processor. 

Appendix A: Derivation of the PDD 

It is assumed that we obtain a primary data vector xp and K 
secondary data vectors ,..,.,2,1),( Kkks =x by time-filtering 
a single radar return. Under H0, the joint pdf of all data 
vectors is given by 
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where ⋅  and tr(·) denote the determinant and trace, 
respectively, and 
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which is proportional to the covariance matrix estimate. 
Under H1, the primary data vector is biased by the presence 

of an unspecified target polarization vector a and the joint pdf 
becomes 
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By definition of the GLR procedure for the hypothesis test 
of { } 0:0 =pEH x  vs. { } 0:1 ≠pEH x [12], we now 
maximize the above )(0 ⋅f  and )(1 ⋅f  over the unknown 
covariance matrix R and target polarization vector a. As 
shown in [12], )(0 ⋅f  attains its maximization at R=T0 and 

)(1 ⋅f  at R=T1 for fixed a. The resulting maxima are 
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and 
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Since )(0 ⋅f  is not a function of a and cK+1 is a 
monotonically increasing function for ,0≥c  the GLR of 
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Using the determinant equality, we can obtain 

( ) ( )p
H
pK xRxRT -1

0
2 ˆ1ˆ1 +=+         (29) 

( ) { }.)(ˆ)(1ˆ1 -1
1

2 axRaxRT −−+=+ p
H

pK    (30) 

Note that ( ) ( )axRax −− p
H

p
-1ˆ  of (30) is non-negative 

definite. Thus, the denominator of (28) becomes 
minimal when ax =p  as seen in (30). Thus, (28) 
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Appendix B: Adaptive Polarization Canceller-Based 
Detector (APC) and Its Detection Performance 

This appendix specifies the test statistic of the adaptive 
polarization canceller [6] followed by a Cell Averaging-
CFAR processor. The canceller coefficient [ ]T

VH ww ˆˆˆ =w  
is obtained from the clutter-plus-noise covariance matrix 
estimate as 
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The output of the canceller is 
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The decision rule with the Cell Averaging-CFAR detector is 
then 
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Obviously, ŵ  is a random variable depending on the 
secondary data ,..,.,2,1),(s Kkk =x which makes the 
detection performance difficult to derive. However, for large 
secondary data sets, for example, 20≥K , ŵ should have 
little randomness, especially with highly polarized clutter. 
Thus, we will approximate ŵ with the canceller coefficient 
from the true covariance matrix in the detection performance 
comparison of this paper. With this approximation, the 
detection performance for the deterministic target can be 
easily found as 
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Appendix C: Kelly’s GLR as a Polarimetric 
Processor 

Kelly’s GLR [7] can be applied to the polarization domain 
with its steering vector being replaced by the expected target 
polarization state. It should be noted that Kelly’s GLR is for 
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the hypothesis test of { } 0:0 =pEH x  vs. { } ax =pEH :1  
prespecified target polarization state (up to an unspecified 
deterministic scalar). We select this processor in our 
comparison as it possesses good detection performance with 
an embedded CFAR feature. 

Following [7], the test statistic of Kelly’s GLR is 
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where the “steering” vector a0 is specified as 

a0 = [1  αe jφ]T.                (41) 

The above form of a0 implies that two parameters, α  and 
φ, are required to set up the “filter” bank when the target 
polarization state is unknown. This is in contrast to the 
applications of Kelly’s GLR in the spatial or Doppler domain, 
where only a single parameter is required to set up the filter 
bank. 

The probability of false alarm of Kelly’s GLR is 
independent of the clutter-plus-noise covariance matrix and 
given by 
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Following [7], the probability of detection for the 
deterministic target of a=ξ a0 = ξ[1  αe jφ]T is 
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where 0
-1

0
2 aRaHξβ =  with ξ  being a positive constant 

representing the target magnitude in the reference H channel 
and the pdf of ρ given by 

.)( 1−= K
ρ ρKρf                 (44) 

Appendix D: Optimum Processor and Its 
Performance 

For convenience of reference, we summarize below the 
results on the optimum processor, which assumes that the 
covariance matrix R is known and that the target polarization 

state is known up to a deterministic scalar. The test statistic of 
the optimum processor is 
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where 0
-1

0 aRaH  is selected for the denominator to achieve 
CFAR. Under 0H , η2  has the central 2χ distribution 
with the df equal to 2 and the pdf of η is 

( ) ( ).exp0 ηHηfη −=               (46) 

The probability of false alarm is then 

.)exp( 0ηPF −=                 (47) 

Under H1, η2 has the non-central 2χ  distribution with 
the df equal to 2 and the non-centrality parameter 

0
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0
222 aRaHξµ =  and .0aa ξ=  The pdf of η is thus 

given by 
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and the probability of detection conditioned on ξ  is 
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