
ETRI Journal, Volume 25, Number 4, August 2003 Jae Won Lee et al. 219

This paper describes a rule-based approach for syntactic
disambiguation used by the English sentence parser in E-
TRAN 2001, an English-Korean machine translation
system. We propose Parser’s Ambiguity Type Information
(PATI) to automatically identify the types of ambiguities
observed in competing candidate trees produced by the
parser and synthesize the types into a formal
representation. PATI provides an efficient way of encoding
knowledge into grammar rules and calculating rule
preference scores from a relatively small training corpus.
In the overall scoring scheme for sorting the candidate
trees, the rule preference scores are combined with other
preference functions that are based on statistical
information. We compare the enhanced grammar with the
initial one in terms of the amount of ambiguity. The
experimental results show that the rule preference scores
could significantly increase the accuracy of ambiguity
resolution.

Manuscript received May 16, 2002; revised Jan. 18, 2003.
This work was financially supported by Hansung University in the year of 2002.
Jae Won Lee (phone: 82 2 920 7610, email: jwlee@cs.sungshin.ac.kr) and Do-Hyung Kim

(email: dkim@cs.sungshin.ac.kr) are with School of Computer Science and Information,
Sungshin Women’s University, Seoul, Korea.

Sung-Dong Kim (email: sdkim@hansung.ac.kr) is with Department of Computer System
Engineering, Hansung University, Seoul, Korea.

Jinseok Chae (email: jschae@incheon.ac.kr) is with Department of Computer Science and
Engineering, University of Incheon, Incheon, Korea.

Jongwoo Lee (email: jwlee44@daisy.kw.ac.kr) is with Department of Computer
Engineering, Kwangwoon University, Seoul, Korea.

I. Introduction

E-TRAN 2001 [1] is an English-Korean machine translation
system developed for domain-independent translation that
requires both broad coverage and high accuracy. Increasing
coverage usually also increases the number of parse trees for
sentences previously covered and results in a lower accuracy
for these sentences. We address two issues to increase both
parsing coverage and accuracy. The first aims to reduce
ambiguity by managing grammar rules in a more efficient way
or improving parsing technology. The other aims to use rational
criteria for sorting candidate trees in a preference order.
Reference [2] reduced ambiguity using constraint functions
that prevent a structure from being built for a given syntactic
context. However, it was not clear which kinds of structures
could be prevented without any loss of coverage. The study in
[3] also tried to reduce the amount of ambiguity using strong
constraints. Given a fixed amount of ambiguity, the accuracy of
ambiguity resolution ultimately depends on an estimation
function (in probabilistic approaches) or a preference function
(in rule-based approaches). The problem of ambiguity
resolution is also important in the area of speech recognition [4].

Many earlier probabilistic approaches used less constraining
grammars to increase coverage and relied on an estimation
function based on the probabilities of constituents to choose the
most likely interpretation. They usually learned statistical
parameters automatically from tagged corpora [5], [6].
However, the variety of parse types generated by these systems
was limited and creating the requisite training corpus was
difficult. Probabilistic parsers combined with hand-coded
linguistically fine-grained grammars have seen considerable
progress in recent years [7], [8]. However, such attempts have

English Syntactic Disambiguation Using
Parser’s Ambiguity Type Information

Jae Won Lee, Sung-Dong Kim, Jinseok Chae,
Jongwoo Lee, and Do-Hyung Kim

220 Jae Won Lee et al. ETRI Journal, Volume 25, Number 4, August 2003

so far been confined to relatively small-scale applications.
Rule-based parsers generally use a preference function for

ambiguity resolution to rank competing candidate analyses, but
when applied to large-scale applications, they usually fail to
offer satisfactory performance because it is quite difficult to
acquire and manage reasonable preference functions. Wang [9]
tried to associate the syntactic preference function, first
described in [10], with the semantic preference functions. This
attempt apparently failed to achieve a practical performance for
open domain applications [11], [12]. One remarkable study by
Alshawi et al. on integration of various preference functions
[13] encouraged the development of a more practical analysis
system. In particular, that study proved that the notion of mean
distance for the evaluation of lexical collocation preference
functions, which considers frequencies in badly parsed trees,
was very effective.

Extending the mean distance method to a syntactic
preference function, we propose Parser’s Ambiguity Type
Information (PATI) as a new way of coping with ambiguity in
rule-based natural language analysis. PATI is a weighted,
directed graph that represents the differences in applied
grammar rules among candidate trees. In PATI, the directions
of edges represent priority relations among rule sets and the
weights represent the frequencies of those relations. It can
identify the target of syntactic disambiguation more definitely
and provide helpful information for designing and
implementing a strategy for disambiguation. E-TRAN 2001
uses a general chart parser with a grammar formalism based on
the Generalized Phrase Structure Grammar [14]. PATI is
automatically constructed using information extracted from
candidate trees, one of which is marked as the correct one with
its constituent structure. PATI guides the hand tuning of the
initial grammar to reduce the amount of ambiguity, which
could considerably save the human efforts in the tuning by
providing clues about the essential knowledge to be encoded
into the rules. PATI is then used to calculate the rule preference
scores that are based on the frequency information of the rules.
The scoring function is different from those in previous studies
in that it uses the rule frequencies from all the candidate trees
produced by the system, not only from the best tree.
Experimental results show that PATI is useful for developing a
large-scale grammar and for identifying various kinds of
ambiguity types. It also maintains the accuracy of the
ambiguity resolution.

The rest of the paper is organized as follows:
Section II: Definition and construction of PATI
Section III: The grammar tuning process
Section IV: The rule preference function
Section V: Experimental results
Section VI: Conclusion and future work

II. Overview of PATI

1. Definition of PATI

We start with preliminary definitions for comparing
candidate trees of a sentence.

Definition 1. Let nttt ,,, 21 Λ be n candidate trees produced
by analyzing a sentence s; let Rk be a multiset of rules applied
for building)1(nktk ≤≤ ; and let)1(nctc ≤≤ be the
correctly parsed tree. Rule set difference i

jD is defined as
)(ji

i
j RRD −= 1) and priority pair c

iP is defined as
),(c

i
i
c

c
i DDP = , where icji ≠≠ , and nji ≤≤ ,1 . Finally,

the priority pair set of s,)(sPS , is defined as the set of 1−n
priority pairs and the difference set)(sDS as the set of

)1(2 −n rule set differences.
For example, let us examine a famous sentence with

ambiguities.
s1: Time flies like an arrow.
Figure 1 shows two candidate trees generated from

analyzing the above sentence.

Fig. 1. Candidate trees of s1.

t1(correct analysis):

SENT(r8)

NP(r1) VP(r7)

VP(r5) PP(r4)

PREP NP(r2)

DET NOUN

Time flies like an arrow

t2(wrong analysis):

SENT(r8)

NP(r3) VP(r6)

VP(r5)

DET NOUN

Time flies like an arrow

NOUN NP(r1) NP(r2)

The rules applied to analyze a sentence s1 are as follows:

r1: NP → NOUN r2: NP → DET NOUN
r3: NP → NOUN NP r4: PP → PREP NP
r5: VP → VERB r6: VP → VP NP
r7: VP → VP PP r8: SENT → NP VP

R1 is the rule set for the candidate tree t1 and R2 is for t2, so
R1={r1, r2, r4, r5, r7, r8} and R2={r1, r2, r3, r5, r6, r8}. The rule
set differences are =1

2D {r4, r7} and =2
1D {r3, r6}. The

priority pair is =1
2P ({r3, r6}, {r4, r7}), the priority pair set is

1) In this paper, the symbol ‘-’ denotes the difference set of two multisets. The difference set

A-B contains elements of A whose multiplicity in A is larger than that in B. The multiplicity of
matching elements is the difference between the multiplicities in A and B.

ETRI Journal, Volume 25, Number 4, August 2003 Jae Won Lee et al. 221

},{)(1
21 PsPS = and the difference set is },{)(2

1
1
21 DDsDS = .

Definition 2. Suppose we analyze a corpus C using a rule set
R. The priority relation graph is a directed, weighted graph

),(EVG = , where),(C sDSV sΥ ∈=),(C sPSE sΥ ∈= and the
weight w of an edge is the frequency at which the edge
appears in the analyses of C.

Figure 2 shows a priority relation graph of s1 when the
frequency of the priority pair is one.

Fig. 2. Priority relation graph of s1.

1
r3

r6

r4

r7

Though a priority relation graph can represent types of
ambiguity, it includes some redundant information. For
example, let’s consider the following sentences.

s2,1: I know that you are happy.
s2,2: He sees sleeping babies.
s2,3: I ate a fish with bones.
s2,4: I know that it contains operating systems for my PC.

Figure 3 shows the priority pairs of the above sentences. The
rules applied to analyze sentences from s2,1 to s2,4 are as
follows:

r1: RLCL → SENT r2: NP → NP RLCL
r3: VP → VP NP r4: RLCL → PRON SENT
r5: VP → VP RLCL r6: VP → VP PRESP
r7: NP → PRESP NP r8: VP → VP PP
r9: NP → NP PP

In Fig. 3, four priority pairs from (a) to (d) result from the
analyses of the sentences from s2,1 to s2,4, respectively. The
difference sets of priority pairs in (a) to (c) also appear in (d).
The priority pair (d) can be regarded as the combination of the
three priority pairs (a) to (c). To get a more compact
representation of ambiguity types, it is desirable to remove
edges and vertices like (d). For this, we need some more
definitions.

Definition 3. Let),(21
ii

i vve = and),(21
jj

j vve = be two
distinct edges of a priority relation graph. If ji vv 11 ⊆ 2) and

ji vv 22 ⊆ , then ei is defined to subsume ej, which is denoted as
ji ee π .

2) In this paper, the symbol ‘⊆’ denotes the subset relation between multisets. Multiset A is a

subset of multiset B if the multiplicity of matching elements in B is greater than or equal to their
multiplicity in A.

(a)

r1

r2

r4

r5

r3

r6 r7

(b)

r8 r9

(c)

r1

r2

r3

r6

r8

r4

r5

r7

r9

(d)

Fig. 3. Priority pairs from s2,1 to s2,4.

In Fig. 3, the edges of (a), (b), and (c) subsume the edge of
(d). It is a generalization of the priority relation that regards one
edge as a specialized form of the other edges.

Definition 4. For an edge Evve ∈=),(21 , if there is no
Ee ∈′ such that ee π′ , then e is a minimal edge and v1, v2

are minimal vertices.

In Fig. 3, the edges and vertices of (a), (b), and (c) are
minimal edges and minimal vertices, but the edge and vertices
of (d) are not. Finally, the definition of PATI is as follows.

Definition 5. Given a priority relation graph),(EVG = ,
PATI is)ˆ,ˆ(ˆ EVG = where,

=V̂ {v | v ∈V and v is a minimal vertex},
=Ê {e | e ∈E and e is a minimal edge},

∑ ′+=
∈′′ Eeee

ewewew
,

)()()(ˆ
φ

,

and the ambiguity type is a pair of vertices connected with at
least one edge.

2. Construction of PATI

Figure 4 shows the construction process of PATI. The
English sentence parser analyzes sentences of a corpus and
generates a parsed corpus. Human experts build a marked
corpus by marking a correct one among candidate trees in the
parsed corpus. A priority relation graph is generated from the
marked corpus by comparing the correct trees with other
candidates. Finally, PATI is constructed using the priority
relation graph.

222 Jae Won Lee et al. ETRI Journal, Volume 25, Number 4, August 2003

sentences s1: Time flies like an arrow.
s2: …

Corpus

s1 s2 …
t1 t2 … tn

candidate
trees

s1 (t1 is correct) s2 …
t1 t2 … tn

Parsing

Marking

n r3 r4
r6 r7

PATI

Parsed corpus

Marked corpus

Priority relation
graph

priority
relation
graph

Fig. 4. Construction process of PATI.

Figures 5 and 6 show the algorithms for constructing the
priority relation graph and PATI.

We constructed a parsed corpus by analyzing 3,500 English
sentences and used a manually built context-free grammar
containing about 300 rules. We extracted 133 ambiguity types
using the above algorithms. The appendix presents four groups
of example ambiguity types. The notation format explaining
each ambiguity type is as follows:

Difference set 1

Difference set 2

Main
Causes Type

Number
Example Sentences

III. Grammar Tuning
The appropriateness of linguistic knowledge encoded into

grammar rules is a major factor affecting performance of the
rule-based approach for ambiguity resolution, but it is quite
difficult to determine what is the essential knowledge to be
encoded for a grammar under development. The frequency
information of PATI provides an efficient way for refining
grammar rules. We present two representative methods,
constraint strengthening and rule splitting.

The purpose of constraint strengthening is to reduce the
occurrences of ungrammatical candidate trees. Consider the
following example.

procedure make_priority_relation_graph
/* C is an input corpus, S is a sentence, T is a set of candidate trees,
tc and ti are candidate trees, c

iD and i
cD are rule set differences,

and),(EVG = is the resulting priority relation graph. */
begin

V ← ∅, E ← ∅
for all S in C do

get T by parsing S
if there is more than one candidate tree then

c ← index of the correctly parsed candidate tree
for all it ∈ T − { ct } do

get c
iD and i

cD by comparing tc with ti
V ← V ∪ { c

iD , i
cD }

if (c
iD , i

cD) ∉ E then
E ← E ∪ {(c

iD , i
cD)},)),((i

c
c
i DDw ← 1

else)),((i
c

c
i DDw ←)),((i

c
c
i DDw + 1

endif
endfor

endif
endfor
return),(EVG =

end

Fig. 5. Algorithm for constructing priority relation graph.

procedure make_PATI
/*),(EVG = is the input priority relation graph and)ˆ,ˆ(ˆ EVG = is
the resulting PATI. */
begin

V̂ ← ∅, Ê ← ∅
for all (vi, vj) ∈ E do

subsumed ← 0
for all (vk, vl) ∈ E – (vi, vj) do

if ki vv ⊆ and lj vv ⊆ then
subsumed ← 1

endif
endfor
if subsumed = 0 then

},{ˆˆ
ji vvVV Υ← ,),(ˆˆ

ji vvEE Υ←
)),(()),((ˆ jiji vvwvvw ←

endif
endfor
for all (vi, vj) ∈ Ê do

for all (vk, vl) ∈ EE ˆ− do
if ki vv ⊆ and

lj vv ⊆ then
)),(()),((ˆ)),((ˆ lkjiji vvwvvwvvw +←

endif
endfor

endfor
return)ˆ,ˆ(ˆ EVG =

end

Fig. 6. Algorithm for constructing PATI.

[sent [pp Out of the subjects she is taking at] [sent [np
school], [sent two are required and three are elective]].]

This analysis can be produced by the rule SENT → NP
PUNC SENT and SENT → PP SENT. The former rule is for

ETRI Journal, Volume 25, Number 4, August 2003 Jae Won Lee et al. 223

analyzing sentences that contain vocatives. In order to prevent
the above ungrammatical analysis, the latter rule is modified as
SENT → PP SENT[−VOCAT] by the method of constraint
strengthening. The strengthened constraint ‘–VOCAT’ may
contribute to reducing the total number of candidate analyses.
PATI automatically provides such candidates using the
frequency ratio of two vertices, FR, which is defined as:








=

,0

,
),()),(ˆ),,(ˆ(

)),(ˆ),,(ˆ(

jiij

jiij

ji vvwvvwmax

vvwvvwmin

vvFR

.otherwise

,ˆ),(
andˆ),(if

Evv
Evv

ji

ij

∈
∈

We extract ambiguity types with an FR value of 0 and
investigate the sentences related to those types for constraint
strengthening.

If the FR of two vertices is not 0, two edges exist between
the two vertices. An FR near 1.0 implies that the corresponding
ambiguity type cannot be effectively resolved by any syntactic
preference function. For example, a prepositional phrase
attachment problem is represented by the following two
vertices using PATI.

v1 = {NP → NP PP}
v2 = {VP → VP PP}.

Intuitively we can guess that),(21 vvFR may be near 1.0
and that other kinds of preference functions, such as the lexical
collocation function, are needed to resolve this ambiguity type.
In the rest of this paper, we refer to this kind of ambiguity type
as a high FR (HFR) type. On the other hand, an FR value near
0 means that syntactic information can play an important role
in resolving that ambiguity type. Rule preference functions can
be very effective for disambiguation in this case. Constraint
strengthening is a more active method in the sense that it can
prevent ungrammatical trees from being produced.

Rule splitting can make grammar rules more suitable for
efficient ambiguity resolution by reducing the overall portion
of HFR types in PATI. As explained above, if HFR types are
reduced, syntactic preference functions work better in
integration with other kinds of preference functions. Let’s
consider again the PP attachment problem. The rule in v2
attaches PP to VP3). By adding subcategorization information
of the predicate of VP into the constraints of the rule, we can
expect HFR to decrease for ambiguity types related to the PP
attachment. More generally, for a current rule (a) shown below,
a new constraint ci+1 is considered in addition for splitting, and
the resulting rules (b) and (c) will have ci+1 and ┐ci+1,
respectively, as their new constraints. Ambiguity types with
HFR greater than a certain threshold can be extracted from
PATI and rule splitting is considered.

3) Here, for simplicity, the current content of constraints on the non-terminals is not presented.

(a)],,,[10 icccA Λ
(b)],,,,[110 +ii cccc'A Λ
(c) ,,,,[10 iccc''A Λ ┐ci+1]

edge 1
C

D

A

B

E

A[c0,c1,…,ci]
A' [c0,c1,…,ci,ci+1]

A'' [c0,c1,…,ci,┐ci+1]

edge 2

A'

B

A''

C

D

E

Fig. 7. Concept and consequence of rule splitting.

edge 3

edge 4

Figure 7 shows the concept and consequence of rule splitting.
For example, let’s consider following sentences and rules.

s3,1: The bus driver made John stop.
s3,2: She made holiday plans.

r1: INFCL → VP
r2: VP[+OCOMP4)] → VP[+OBJ] INFCL
r3: NP → NOUN[–PLURAL] NP
r4: NP → NOUN[–PLURAL, +HUMAN] NP
r5: NP → NOUN[–PLURAL, –HUMAN] NP

Two edges of different directions in the original ambiguity
type come from the parsed results of sentences s3,1 and s3,2. By
splitting r3 with the additional constraint HUMAN, we get r4
and r5 and the resulting ambiguity types. This rule splitting
process is shown in Fig. 8.

VP(r2) (correct)

VP INFCL(r1)

VP NP VP

VP (wrong)

NP(r3)

VP NOUN NP
made John stop

Original type

VP (correct)
NP(r3)

VP NOUN NP
made holiday plans

VP (r2)(wrong)

INFCL(r1)

VP NP VP
made holiday plans

VP

r4
r5

r3 rule splitting

resulting types

Fig. 8. Example of rule splitting.

made John stop

r2

r1
r3

r2

r1 r4

r5

4) Object complement.

224 Jae Won Lee et al. ETRI Journal, Volume 25, Number 4, August 2003

As we can see in the above examples, PATI indicates
candidate rules to be refined, and this alleviates the human
efforts of grammar tuning. Constraint strengthening and rule
splitting are the same in spirit, that is, they give a description
of rules in more detail. The difference is that the aim of the
former is to prevent ungrammatical structures already found
from occurring, whereas the latter makes the syntactic
preference function (explained in section IV) more
effective.

IV. Rule Preference Function and Overall Scoring
Scheme

In large-scale rule-based analysis systems, various kinds of
preference functions are chosen and combined to produce a
score for selecting the best parsed candidate tree. Some
functions are based on lexical or semantic collocations while
others are based on syntactic information.

In this paper, we focus on the latter though we also have
functions based on lexical probabilities or collocations.
Syntactic preference functions may simply count particular
constructs, such as adjunct and attachment, or estimate
probabilities of rules. Assuming that various aspects of
syntactic structures are already reflected in PATI, this paper
adopts a syntactic preference function that is only based on the
rule preference function, RP(r), defined as follows:

),(ln)(ln)(rfrfrRP lh −=

,))((ˆ)(
ˆ),(,

∑=
∈∈ Evvvr

h

iji

ij ,vvwrf

,))((ˆ)(
ˆ),(,

∑=
∈∈ Evvvr

l

jii

ji ,vvwrf

where r is a rule, fh(r) is the sum of the weights of incoming
edges into the vertices containing r, and fl(r) is the sum of the
weights of outgoing edges. This function is different from
conventional rule probability functions in two ways. First, it
considers only the frequencies from PATI, not the total
frequencies. Second, it also incorporates the term ‘ln fl(r)’
representing the frequencies from badly parsed trees, that is,
negative examples.

Figure 9 shows a sample PATI for illustrating the calculation
of rule preference scores. Using this PATI, RP(r) is calculated
as follows:

fh(r1) = 1230 + 922 = 2152, fl(r1) = 507 + 678 = 1185,
RP(r1) = ln 2152 – ln 1185 = 7.67 – 7.08 = 0.59

fh(r2) = 1230, fl(r2) = 507,
RP(r2) = ln 1230 – ln 507 = 7.11 – 6.23 = 0.88

fh(r3) = 507 + 922 = 1429, fl(r3) = 1230 + 678 = 1908,
RP(r1) = ln 1429 – ln 1908 = 7.67 – 7.08 = –0.29

fh(r4) = 1230 + 678 = 1908, fl(r4) = 507 + 922 = 1429,
RP(r4) = ln 1908 – ln 1429 = 7.08 – 7.67 = 0.29

fh(r5) = 507, fl(r5) = 1230,
RP(r5) = ln 507 – ln 1230 = 6.23 – 7.11 = –0.88

fh(r6) = 1321, fl(r6) = 1020,
RP(r6) = ln 1321 – ln 1020 = 7.19 – 6.93 = 0.26

fh(r7) = 1020 + 922 = 1942, fl(r7) = 1321 + 678 = 1999,
RP(r7) = ln 1942 – ln 1999 = 7.57 – 7.60 = –0.03

fh(r8) = 466 + 678 = 1144, fl(r8) = 874 + 922 = 1796,
RP(r8) = ln 1144 – ln 1796 = 7.04 – 7.49 = –0.45.

(a)r1

r2

r3

r5
r4

507

1230

r6
1020

1321
r7

(b)

(c)r1

r3

r4

r8
r7

678

922

r8
874

466
r9

(d)

Fig. 9. Sample PATI.

The syntactic preference function, SP(t), is defined as
follows:

,)()(
)(

∑=
∈ tPRr

rRPtSP

where t is a candidate tree and PR(t) is the set of rules
participating in building the tree. For example, s1 in Fig. 1
has two candidate trees. Thus, SP(t) is calculated as
follows:

SP(t1) = RP(r1) + RP(r2) + RP(r4) + RP(r5) + RP(r7) + RP(r8)
= 0.59 + 0.88 + 0.29 – 0.88 – 0.03 – 0.45 = 0.40

SP(t2) = RP(r1) + RP(r2) + RP(r3) + RP(r5) + RP(r6) + RP(r8)
= 0.59 + 0.88 – 0.29 – 0.88 + 0.26 – 0.45 = 0.11.

In the above calculation, SP(t1) is greater than SP(t2).
Therefore, the candidate tree t1 is selected as the correct one in
view of the syntactic preference function.

ETRI Journal, Volume 25, Number 4, August 2003 Jae Won Lee et al. 225

The syntactic preference function is combined with other
preference functions to produce evaluating scores for candidate
trees. We use a lexical preference function that is based on part-
of-speech probabilities and two semantic collocation functions
[15], [16]. All the preference functions are combined by the
method proposed in [13].

V. Experiments

In this section, we present two types of experimental results.
One supports the usefulness of PATI for grammar development
in a large-scale rule-based natural language analysis system.
The other shows that PATI can increase the accuracy of
ambiguity resolution.

We developed a general purpose parser implemented by C
language on a Unix machine. The coverage of the parser, the
percentage of the test sentences for which a correct parse was
found, was 97.1%. For broad coverage of the analysis, the
initial grammar rules were constructed with minimal
constraints. PATI was constructed using information extracted
from the initial grammar and the corpus in Table 1.

Table 2 shows the statistics of the initial PATI. In the table,
“Sum of Frequencies” represents the sum of weights of edges
corresponding to an ambiguity type. The ambiguity complexity
(AC) represents the amount of ambiguity in the sentence
analysis and is defined as follows:

Table 1. Corpus for constructing PATI.

Sentence
Length Area-1 Area-2 Area-3 Total

1–10 542 411 340 1,293

11–20 410 457 417 1,284

21–30 248 282 393 923

Total 1,200 1,150 1,150 3,500

Area-1: High School English Textbook
Area-2: IBM Manual ‘SQL/DS Concepts and Facilities’
Area-3: USA Today

|corpusainsentences|
PATIin weights∑=AC

Using the initial PATI, the grammar is tuned as described in
section III. A new PATI is constructed after constraint
strengthening and rule splitting. Table 3 gives the statistics of
PATI using the tuned grammar.

The increase in the number of ambiguity types is due to the
increase in the number of rules by the rule splitting process, but
the ratio of ambiguity types with FR values under 0.2 becomes
larger. This implies that a larger portion of all the ambiguity
types could be effectively resolved by the syntactic preference

Table 2. Statistics of ambiguity types from the initial grammar.

FR ≤ 0.2 FR > 0.2 Total
Area Number of

Types
Sum of

Frequencies
Number of

Types
Sum of

Frequencies
Number of

Types
Sum of

Frequencies

Ambiguity
Complexity

Area-1 38 4,203 95 11,820 133 16,023 13.35

Area-2 43 4,808 90 13,028 133 17,836 15.51

Area-3 41 5,560 92 15,893 133 21,453 18.65

Table 3. Statistics of ambiguity types from the tuned grammar.

FR ≤ 0.2 FR > 0.2 Total
Area Number of

Types
Sum of

Frequencies
Number of

Types
Sum of

Frequencies
Number of

Types
Sum of

Frequencies

Ambiguity
Complexity

Area-1 114 3,478 177 5,745 291 9,223 7.69

Area-2 108 3,810 173 6,317 291 10,127 8.81

Area-3 119 4,011 172 7,091 291 11,102 9.65

226 Jae Won Lee et al. ETRI Journal, Volume 25, Number 4, August 2003

Table 4. Test corpus.

Sentence
Length Area-1 Area-2 Area-3 Total

1–10 134 120 148 402

11–20 181 185 245 611

21–30 180 194 213 487

function. In addition, because many ungrammatical candidates
are prevented from being built, the sum of frequencies
decreases while the number of ambiguity types increases. This
is important because it can contribute to reducing the total
amount of ambiguity.

We also constructed a test corpus using sentences from the
three areas used in constructing PATI. Table 4 shows the
statistics of the test corpus. Table 5 shows the accuracies of
ambiguity resolution using the initial grammar and the tuned
grammar. The results using the initial grammar demonstrate
that the performance of our syntactic preference function is
superior to that of simple rule probabilities.

The rule probability is calculated for each non-terminal (NP,
VP, SENT, …). In constructing the parsed corpus described in
section II, the rule count is summed respectively for each non-
terminal in the correct parse trees. The probability of each rule
is calculated as:

,
||

||
)(

∑
=

k

i

i

i n

j

j
N

k
Nk

N

r

r
rp

where k
N ir is the k-th rule that has Ni as a left-hand side non-

terminal, and nk is the number of occurrences of the k-th rule.
On the other hand, PATI contains information from all the
candidate trees, including the badly parsed trees. This may give

rise to a better performance of SP. As expected, we obtained
more enhanced disambiguation accuracies using the tuned
grammar. In this case, the accuracies using SP are also higher
than those using rule probabilities.

In the table, the column ‘Combine’ shows the accuracies
using the overall scoring scheme combining SP and other
kinds of preference functions described in section IV with a
sentence segmentation technique [17], [18]. Long sentences
are analyzed in a segment-by-segment parsing method.
They are segmented into several segments before parsing,
and then each segment is parsed. The parse tree is built by
combining the analysis results of each segment. With the
help of the above method, the parsing complexity can be
reduced.

VI. Conclusion

We proposed PATI as an efficient way of developing
grammar rules for large-scale applications and providing a
syntactic preference function for ambiguity resolution. An
initial PATI was constructed from an initial grammar and a
parsed corpus. The grammar was enhanced with the help of
PATI and a new PATI was constructed to get a syntactic
preference function.

The PATI contains information about more ambiguity types
with reduced ambiguity complexity of the analysis. We
achieved a very high accuracy of ambiguity resolution for an
open domain test corpus. We also verified that the syntactic
preference function based on PATI contributes significantly to
this problem.

All kinds of ambiguous situations, not only the well known
cases, such as the PP attachment problem, but also cases that
have never been treated with formal linguistic descriptions,
could be identified by PATI. Furthermore, PATI can be
obtained directly from a comparatively small parsed corpus
and at a low cost of human effort.

Table 5. Performance comparison of preference functions.

Disambiguation Accuracy (%)
(using the initial grammar)

Disambiguation Accuracy (%)
(using the tuned grammar) Sentence

Length
Number of
Sentences

Average Number
of Candidates

Rule Prob. SP Rule Prob. SP Combine

1–10 402 3.71 48.73 69.65 52.42 86.72 92.25

11–20 611 5.33 31.17 59.92 33.70 74.50 89.68

21–30 487 13.58 14.22 28.90 15.91 43.24 82.83

Total 1,500 7.57 30.37 52.46 32.94 67.63 88.14

ETRI Journal, Volume 25, Number 4, August 2003 Jae Won Lee et al. 227

For future work, we plan two kinds of studies. We will
develop tools supporting grammar tuning to reduce human
efforts. Machine learning techniques will be adopted for more
effective integration of the syntactic preference function with
other kinds of preference functions. We expect this will
improve the accuracy of ambiguity resolution.

Appendix

Group A: Grammatical function change of verb phrases

PP → PREP3 NP4 VP → VP1 PP2

NP → NOUN1 NP2 VP → VP3 NP4

Part of speech
ambiguity 1

Time1 flies2 like3 an arrow4.

NP → NOUN4 NP5

NP → NP2 CONJ3 NP5

SENT → NP4 VP5

SENT → SENT1 CONJ3 SENT5

Part of speech
ambiguity,
conjunction

(and)
2

It provides1 utilities2 and3 communication4 files5.

VP → VP1 CONJ3 VP4

NP → NP2 CONJ3 NP4

Part of speech
ambiguity,
conjunction

(or) 3

Light cannot curve1 around the earth2 or3 travel4.

SENT → NP3 VP4 SUBCL→ CONJ2 SENT4

VP → VP1 SUBCL4

NP → NOUN3 NP4 PP → PREP1 NP4
VP → VP1 PP4

Part of speech
ambiguity,
conjunction

(as)
4

I desire1 money as2 people3 desire4.

SENT → NP2 VP3 RLCL → SENT3

VP → VP1 RLCL3

NP → NOUN2 NP3 VP → VP1 NP3

Part of speech
ambiguity,
verb phrase

(show)
5

A survey shows1 the rate2 fall3 to 7.86 percent.

NP → NOUN2 NP3

INFCL → VP3

VP[+OCOMP] → VP[+OBJ]1 INFCL3

Part of speech
ambiguity,
verb phrase

(make)
6

He thanked Clinton for making1 the three-hour2 stop3 at Kigali.

VP → VP4 NP5 INFCL → PREP3 VP4

NP → NP2 INFCL4

NP → AJP4 NP5 PP → PREP3 NP5

VP → VP1 PP5

Part of speech
ambiguity,
to infinitive

phrase
(make)

7

They guaranteed1 the right of slave owners2 to3 own4 slaves5.

VP → VP2 NP3

NP → NP1 PASTP2

Part of speech
ambiguity,

past participle
phrase

8

The boy1 called2 names3.

SENT→ NP4 VP5

SENT → SENT1 CONJ3 SENT5

NP → NP2 CONJ3 NP4 NP → NP2 PASTP5

Conjunction
(and),

past participle
phrase

9

Pierre fell1 in love with this bright girl2 and3 they4 got5 married.

SENT→NP3 VP4 RLCL→SENT4

VP→VP2 RLCL4

VP→VP2 NP3 NP→NP1 PASTP2

Past participle
phrase 10

The boy1 said2 the girl3 played4.

VP→VERB2 VP3 SENT→PP1 PUNC4 SENT5

SENT→PRESP3 PUNC4 SENT5
SENT→PP1 SENT5

Comma,
present participle

phrase 11

Out of the subjects1 she is2 taking3 at school, 4 two are required and5 three
are elective.

VP→VERB1 VP2

VP→VP1 PRESP2

Present participle
phrase 12

He is1 working2.

NP→PRESP2 NP3

VP→VP1 PRESP2

Present participle
phrase 13

It contains1 operating2 systems3.

VP→VP2 NP3 PP→PREP1 PRESP2

NP→PRESP2 NP3 PP→PRESP1 NP3

Present participle
phrase 14

This bill is not primarily about1 fixing2 America’s infrastructure3.

VP→VP1 NP2 SENT→INFCL1 VP3

SENT→NP2 VP3 SENT→INFCL1 SENT3

to infinitive
phrase 15

To desire1 food or2 drink is3 lust.

228 Jae Won Lee et al. ETRI Journal, Volume 25, Number 4, August 2003

RLCL→SENT2 NP→NP1 RLCL2
SENT→PP1 PUNC3 SENT4

SENT→SENT2 PUNC3 SENT4
SENT→PP1 SENT3

Comma,
relative clause

16

Out of the subjects1 she is taking2 at school, 3 two are required and4 three
are elective.

(VP→VP2 CONJ3 VP4)

(VP→VP1 CONJ3 VP4)

Conjunction
(and),

relative pronoun
(who) 17

Her children showed1 their gratitude to her who raised2 and3 educated4 them.
I saw1 him steal2 a pound of butter and3 put4 it in his hat.

Group B: Nucleus change of verb phrases

PP→PREP2 NP3 VP→VP1 PP3

VP→VP1 AVP2 VP→VP1 NP3

Part of speech
ambiguity 1

Light cannot curve1 around2 the earth or3 travel.

SENT→AVP2 SENT3 VP→VP1 SENT3

SUBCL→CONJ2 SENT3 VP→VP1 SUBCL3

Part of speech
ambiguity 2

I know1 where2 your book is3.

RLCL→PRON3 SENT4 NP→NP2 RLCL4

SUBCL→CONJ3 SENT4 VP→VP1 SUBCL4

Part of speech
ambiguity 3

I know1 the place2 where3 your book is4.

VP→VP1 AJP2

VP→VP1 NP2

Part of speech
ambiguity 4

I got1 red2.

NP→AJP1 NP2

VP→AVP2 VP3

Part of speech
ambiguity 5

This1 light2 cannot curve3.

NP→NOUN1 NP2

VP→AVP2 VP3

Part of speech
ambiguity 6

Sun1 light2 cannot curve3.

7 VP→VP1 AVP2
Part of speech

ambiguity

VP→VP1 NP2

I said1 Tuesday2.

RLCL→PRON1 SENT3

NP→AJP1 NP2 RLCL→SENT3

Part of speech
ambiguity 8

One reason is that1 light2 cannot curve3.

VP→VP1 AJP2

VP→VP1 AVP2

Part of speech
ambiguity 9

The market was1 lower2.

RLCL→PRON2 SENT3 VP→VP1 RLCL2

RLCL→SENT3 NP→NP2 RLCL3
VP→VP1 NP2

Part of speech
ambiguity 10

One reason is1 that2 light cannot curve3.

VP[+IOBJ]→VP1 NP2

VP[+OBJ]→VP1 NP2
Verb phrase

11

He told1 Clinton2.

(NP→NOUN1 NP2)

(NP→NOUN2 NP3)
Noun phrase

12

I showed a book1 name2 people3 know.

(VP→VP2 NP3)

(VP→VP1 NP3)

Conjunction,
verb phrase 13

He saluted and1 held2 the book3.

NP→NOUN2 NP3

VP→VP1 NP3

Preposition
phrase 14

They mate1 for family2 groups3.

Group C: Additional word change of verb phrases

NP→PRESP1 NP2

VP→NOUN1 NP2

Part of speech
ambiguity 1

I heard beating1 drums2.

2 NP→AJP1 NP2
Part of speech

ambiguity

ETRI Journal, Volume 25, Number 4, August 2003 Jae Won Lee et al. 229

VP→NOUN1 NP2

One1 reason2 is that you cannot go.

NP→NOUN2 NP3

VP→VP1 AVP2

Part of speech
ambiguity 3

I like1 Saturday2 parties3.

SENT→AVP1 SENT3

NP→AVP1 NP2
Adverbial phrase

4

Also1 the companies2 grow3.

AJP→AVP2 AJP3

VP→VP1 AVP2
Adverbial phrase

5

She is1 so2 beautiful3.

VP→VP1 PP3

NP→NP2 PP3

Preposition
phrase 6

I eat1 a fish2 with a fork3.

VP→VP1 INFCL3

NP→NP2 INFCL3

to infinitive
phrase 7

He put1 off his hat2 to sleep3.

VP→VP1 PRESP3

NP→NP2 PRESP3

Present participle
phrase 8

He saw1 the flowers2 walking3 there.

Group D: Rule application scope change

(VP→VP1 AVP3)

(VP→VP2 AVP3)

Conjunction,
adverbial phrase1

They study or1 work2 abroad3.

(PP→PREP1 NP2)

(PP→PREP1 NP3)

Conjunction,
preposition

phrase 2

He used songs of1 birds2 and3 others

(SENT→PP1 PUNC2 SENT4) 3

(SENT→PP1 PUNC2 SENT3)

Conjunction,
preposition

phrase

At home1, 2 she slept3, 4 he worked.

(NP→NP1 PUNC2 NP3)

(NP→NP1 PUNC2 NP4)

Conjunction,
noun phrase 4

I like music1, 2 art3, and4 dance.

(VP→VP1 PUNC2 VP3)

(VP→VP1 PUNC2 VP4)

Conjunction,
verb phrase 5

I wake1 up, 2 eat3, and4 sleep.

(NP→PRESP1 NP2)

(NP→PRESP1 NP3)

Conjunction,
present participle

phrase 6

We used sleeping1 bags2 or3 boots.

References

[1] http://www.easytran.com.
[2] K.L. Baker, A.M. Franz, and P.W. Jordan, “Coping with

Ambiguity in Knowledge-based Natural Language Analysis,”
Proc. of COLING-94, 1994, pp. 90-94.

[3] S. Kwasny and N.K. Sondheimer, “Relaxation Theories for
Parsing Ill-Formed Input,” American Journal of Computational
Linguistics, vol. 7, no. 2, 1981, pp. 99-108.

[4] Ho-Young Jung, Mansoo Park, Hoi-Rin Kim, and Minsoo Hahn,
“Speaker Adaptation Using ICA-Based Feature Transformation,”
ETRI J., vol. 24, no. 6, Dec. 2002, pp. 469-472.

[5] E. Charniak, “Statistical Parsing with a Context-Free Grammar
and Word Statistics,” Proc. of the Fourteenth Nat’l Conf. on
Artificial Intelligence (AAAI97), 1997, pp. 598-603.

[6] M. Erasn and E. Charniak, “A Statistical Syntactic
Disambiguation Program and What It Learns,” Symbolic,
Connectionist, and Statistical Approaches to Learning for Natural
Language Processing, 1996, pp. 146-159.

[7] M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler,
“Estimators for Stochastic Unification-Based Grammars,” Proc.
of the 37th Annual Meeting of the Association for Computational
Linguistics (ACL’99), 1999.

[8] S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell, and M.
Johnson, “Parsing the Wall Street Journal Using a Lexical-
Functional Grammar and Discriminative Estimation Techniques,”
Proc. of the 40th Annual Meeting of the Association for
Computational Linguistics, 2002.

[9] J. Wang, “Syntactic Preferences for Robust Parsing with Semantic
Preferences,” Proc. of COLING-92, 1992, pp. 239-245.

[10] J. Kimball, “Seven Principles of Surface Structure Parsing in
Natural Language,” Cognition, vol. 2, 1973, pp. 15-47.

[11] M.G. Dyer, “Symbolic Neuro Engineering and Natural Language
Processing: A Multilevel Research Approach,” Advances in
Connectionist and Neural Computation Theory, vol. 1, Ablex

230 Jae Won Lee et al. ETRI Journal, Volume 25, Number 4, August 2003

Publishing Corp., 1991, pp. 32-68.
[12] D.L. Waltz and J.B. Pollack, “Massive Parallel Parsing: A

Strongly Interactive Model of Natural Language Interpretation,”
Cognitive Science, vol. 9, 1985, pp. 51-74.

[13] H. Alshawi and D. Carter, “Training and Scaling Preference
Functions for Disambiguation,” Computational Linguistics, vol.
20, no. 4, 1994, pp. 635-648.

[14] G. Gazdar, E. Klein, G. Pullum, and I. Sag, Generalized Phrase
Structure Grammar, Blackwell, 1985.

[15] K.S. Shim, Structural Disambiguation of to-infinitives Using
Augmented Collocations, Ph.D. thesis, Department of Computer
Engineering, Seoul National University, 1994.

[16] S.J. Chun, A Study on Prepositional Phrase Attachment and the
Transfer of the Preposition Using Semantic Hierarchy, Master
thesis, Department of Computer Engineering, Seoul National
University, 1994.

[17] S.D. Kim, “Reducing Parsing Complexity by Intra-Sentence
Segmentation Based on Maximum Entropy Model,” Joint
SIGDAT Conf. on Empirical Methods in Natural Language
Processing and Very Large Corpora, 2000.

[18] S.D. Kim, B.T. Zhang, and Y.T. Kim, “Learning-Based
Intrasentence Segmentation for Efficient Translation of Long
Sentences,” Machine Translation, vol. 16. no. 3, 2001, pp. 151-
174.

Jae Won Lee has been a full-time Instructor of
the School of Computer Science and
Information at Sungshin Women’s University in
Seoul, Korea since 1999. He received his BS,
MS, and PhD degrees in computer engineering
from Seoul National University in 1990, 1992,
and 1998. He received the best paper award at

the 7th Pacific Rim International Conference on Artificial Intelligence
(PRICAI-02). His current research interests include computational
finance, artificial intelligence, machine learning, natural language
processing, and computer music.

Sung-Dong Kim has been an Assistant
Professor of the Department of Computer
System Engineering at Hansung University in
Seoul, Korea since 2001. He received his BS,
MS, and PhD degrees in computer engineering
from Seoul National University in 1991, 1993,
and 1999. He received the best paper award at

the 7th Pacific Rim International Conference on Artificial Intelligence
(PRICAI-02). His current research interests include machine
translation, natural language processing, computational finance,
machine learning, and data mining.

Jinseok Chae is an Assistant Professor of
Department of Computer Science and
Engineering at the University of Incheon, Korea.
He received BS, MS, and PhD degrees in
computer engineering from Seoul National
University in 1990, 1992, and 1998. Formerly,
he was an Assistant Staff of the Engineering

Laboratory at Seoul National University from 1992 to 1997 and Senior
Researcher of the Korea Research Information Center from 1997 to
1998. His research interests include internet software, markup
languages and digital library.

Jongwoo Lee is an Assistant Professor of
Computer Engineering at Kwangwoon
University in Seoul, Korea. He received his BS,
MS, and PhD degrees in Computer Engineering
from Seoul National University in 1990, 1992,
and 1996. From 1996 to 1999, he worked for
Hyundai Electronics Industries, Co. He was an

Assistant Professor of Division of Information and Telecommunication
Engineering at Hallym University in Chooncheon, Korea from 1999 to
2002. His research interests include computational finance, cluster
computing, parallel and distributed systems, and system software.

Do-Hyung Kim received his BE in computer
engineering in 1985 from Seoul National
University and MS and PhD in computer
science in 1987 from Korea Advanced Institute
of Science and Technology (KAIST). After
short period (from Mar. 1992 to Aug. 1992) as a
Member of Research Staff at the Information
and Electronics Research Institute (IERI) in

KAIST, he joined the faculty of the School of Computer Science and
Engineering, Sungshin Women’s University in September 1992. He
primarily teaches courses on programming languages and compiler
construction. His research interests include: broadly, programming
language design, compiler construction, logic programming; more
specifically, parallel execution of logic programs. He also has some
interests in algorithm analyses.

