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This paper describes a rule-based approach for syntactic 
disambiguation used by the English sentence parser in E-
TRAN 2001, an English-Korean machine translation 
system. We propose Parser’s Ambiguity Type Information 
(PATI) to automatically identify the types of ambiguities 
observed in competing candidate trees produced by the 
parser and synthesize the types into a formal 
representation. PATI provides an efficient way of encoding 
knowledge into grammar rules and calculating rule 
preference scores from a relatively small training corpus. 
In the overall scoring scheme for sorting the candidate 
trees, the rule preference scores are combined with other 
preference functions that are based on statistical 
information. We compare the enhanced grammar with the 
initial one in terms of the amount of ambiguity. The 
experimental results show that the rule preference scores 
could significantly increase the accuracy of ambiguity 
resolution. 
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I. Introduction 

E-TRAN 2001 [1] is an English-Korean machine translation 
system developed for domain-independent translation that 
requires both broad coverage and high accuracy. Increasing 
coverage usually also increases the number of parse trees for 
sentences previously covered and results in a lower accuracy 
for these sentences. We address two issues to increase both 
parsing coverage and accuracy. The first aims to reduce 
ambiguity by managing grammar rules in a more efficient way 
or improving parsing technology. The other aims to use rational 
criteria for sorting candidate trees in a preference order. 
Reference [2] reduced ambiguity using constraint functions 
that prevent a structure from being built for a given syntactic 
context. However, it was not clear which kinds of structures 
could be prevented without any loss of coverage. The study in 
[3] also tried to reduce the amount of ambiguity using strong 
constraints. Given a fixed amount of ambiguity, the accuracy of 
ambiguity resolution ultimately depends on an estimation 
function (in probabilistic approaches) or a preference function 
(in rule-based approaches). The problem of ambiguity 
resolution is also important in the area of speech recognition [4]. 

Many earlier probabilistic approaches used less constraining 
grammars to increase coverage and relied on an estimation 
function based on the probabilities of constituents to choose the 
most likely interpretation. They usually learned statistical 
parameters automatically from tagged corpora [5], [6]. 
However, the variety of parse types generated by these systems 
was limited and creating the requisite training corpus was 
difficult. Probabilistic parsers combined with hand-coded 
linguistically fine-grained grammars have seen considerable 
progress in recent years [7], [8]. However, such attempts have 
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so far been confined to relatively small-scale applications. 
Rule-based parsers generally use a preference function for 

ambiguity resolution to rank competing candidate analyses, but 
when applied to large-scale applications, they usually fail to 
offer satisfactory performance because it is quite difficult to 
acquire and manage reasonable preference functions. Wang [9] 
tried to associate the syntactic preference function, first 
described in [10], with the semantic preference functions. This 
attempt apparently failed to achieve a practical performance for 
open domain applications [11], [12]. One remarkable study by 
Alshawi et al. on integration of various preference functions 
[13] encouraged the development of a more practical analysis 
system. In particular, that study proved that the notion of mean 
distance for the evaluation of lexical collocation preference 
functions, which considers frequencies in badly parsed trees, 
was very effective. 

Extending the mean distance method to a syntactic 
preference function, we propose Parser’s Ambiguity Type 
Information (PATI) as a new way of coping with ambiguity in 
rule-based natural language analysis. PATI is a weighted, 
directed graph that represents the differences in applied 
grammar rules among candidate trees. In PATI, the directions 
of edges represent priority relations among rule sets and the 
weights represent the frequencies of those relations. It can 
identify the target of syntactic disambiguation more definitely 
and provide helpful information for designing and 
implementing a strategy for disambiguation. E-TRAN 2001 
uses a general chart parser with a grammar formalism based on 
the Generalized Phrase Structure Grammar [14]. PATI is 
automatically constructed using information extracted from 
candidate trees, one of which is marked as the correct one with 
its constituent structure. PATI guides the hand tuning of the 
initial grammar to reduce the amount of ambiguity, which 
could considerably save the human efforts in the tuning by 
providing clues about the essential knowledge to be encoded 
into the rules. PATI is then used to calculate the rule preference 
scores that are based on the frequency information of the rules. 
The scoring function is different from those in previous studies 
in that it uses the rule frequencies from all the candidate trees 
produced by the system, not only from the best tree. 
Experimental results show that PATI is useful for developing a 
large-scale grammar and for identifying various kinds of 
ambiguity types. It also maintains the accuracy of the 
ambiguity resolution. 

The rest of the paper is organized as follows: 
Section II: Definition and construction of PATI 
Section III: The grammar tuning process 
Section IV: The rule preference function 
Section V: Experimental results 
Section VI: Conclusion and future work 

II. Overview of PATI 

1. Definition of PATI 

We start with preliminary definitions for comparing 
candidate trees of a sentence. 

Definition 1. Let nttt  ,,, 21 Λ be n candidate trees produced 
by analyzing a sentence s; let Rk be a multiset of rules applied 
for building )1( nktk ≤≤ ; and let )1( nctc ≤≤  be the 
correctly parsed tree. Rule set difference i

jD  is defined as 
)( ji

i
j RRD −= 1) and priority pair c

iP  is defined as 
),( c

i
i
c

c
i DDP = , where icji ≠≠  ,  and nji ≤≤ ,1 . Finally, 

the priority pair set of s, )(sPS , is defined as the set of 1−n  
priority pairs and the difference set )(sDS  as the set of 

)1(2 −n  rule set differences. 
For example, let us examine a famous sentence with 

ambiguities. 
s1: Time flies like an arrow. 
Figure 1 shows two candidate trees generated from 

analyzing the above sentence. 
 

 

Fig. 1. Candidate trees of s1. 

t1(correct analysis):

SENT(r8)

NP(r1) VP(r7)

VP(r5) PP(r4)

PREP NP(r2)

DET NOUN

Time flies  like  an   arrow 

t2(wrong analysis):

SENT(r8) 

NP(r3) VP(r6)

VP(r5) 

DET NOUN

Time    flies   like  an   arrow

NOUN NP(r1) NP(r2)

 
 

The rules applied to analyze a sentence s1 are as follows: 

r1: NP → NOUN        r2: NP → DET NOUN 
r3: NP → NOUN NP      r4: PP → PREP NP 
r5: VP → VERB         r6: VP → VP NP 
r7: VP → VP PP         r8: SENT → NP VP 

R1 is the rule set for the candidate tree t1 and R2 is for t2, so 
R1={r1, r2, r4, r5, r7, r8} and R2={r1, r2, r3, r5, r6, r8}. The rule 
set differences are =1

2D {r4, r7} and =2
1D {r3, r6}. The 

priority pair is =1
2P ({r3, r6}, {r4, r7}), the priority pair set is 

                                                               
1) In this paper, the symbol ‘-’ denotes the difference set of two multisets. The difference set 

A-B contains elements of A whose multiplicity in A is larger than that in B. The multiplicity of 
matching elements is the difference between the multiplicities in A and B. 



ETRI Journal, Volume 25, Number 4, August 2003  Jae Won Lee et al.   221 

},{)( 1
21 PsPS = and the difference set is },{)( 2

1
1
21 DDsDS = . 

Definition 2. Suppose we analyze a corpus C using a rule set 
R. The priority relation graph is a directed, weighted graph 

),( EVG = , where ),(C sDSV sΥ ∈= ),(C sPSE sΥ ∈= and the 
weight w of an edge is the frequency at which the edge 
appears in the analyses of C. 

Figure 2 shows a priority relation graph of s1 when the 
frequency of the priority pair is one. 
 

 
Fig. 2. Priority relation graph of s1. 

1 
r3 

r6 

r4 

r7 

 
 

Though a priority relation graph can represent types of 
ambiguity, it includes some redundant information. For 
example, let’s consider the following sentences. 

s2,1: I know that you are happy. 
s2,2: He sees sleeping babies. 
s2,3: I ate a fish with bones. 
s2,4: I know that it contains operating systems for my PC. 

Figure 3 shows the priority pairs of the above sentences. The 
rules applied to analyze sentences from s2,1 to s2,4 are as 
follows: 

r1: RLCL → SENT       r2: NP → NP RLCL 
r3: VP → VP NP        r4: RLCL → PRON SENT 
r5: VP → VP RLCL      r6: VP → VP PRESP 
r7: NP → PRESP NP      r8: VP → VP PP 
r9: NP → NP PP 

In Fig. 3, four priority pairs from (a) to (d) result from the 
analyses of the sentences from s2,1 to s2,4, respectively. The 
difference sets of priority pairs in (a) to (c) also appear in (d). 
The priority pair (d) can be regarded as the combination of the 
three priority pairs (a) to (c). To get a more compact 
representation of ambiguity types, it is desirable to remove 
edges and vertices like (d). For this, we need some more 
definitions. 

Definition 3. Let ),( 21
ii

i vve =  and ),( 21
jj

j vve =  be two 
distinct edges of a priority relation graph. If ji vv 11 ⊆ 2) and 

ji vv 22 ⊆ , then ei is defined to subsume ej, which is denoted as 
ji ee π . 

                                                               
2) In this paper, the symbol ‘⊆’ denotes the subset relation between multisets. Multiset A is a 

subset of multiset B if the multiplicity of matching elements in B is greater than or equal to their 
multiplicity in A. 

 

(a)

r1

r2

r4

r5

r3

r6 r7

(b) 

r8 r9

(c) 

r1

r2

r3

r6

r8

r4 

r5 

r7 

r9 

(d) 

Fig. 3. Priority pairs from s2,1 to s2,4.  
 

In Fig. 3, the edges of (a), (b), and (c) subsume the edge of 
(d). It is a generalization of the priority relation that regards one 
edge as a specialized form of the other edges. 

Definition 4. For an edge Evve ∈= ),( 21 , if there is no 
Ee ∈′  such that ee π′ , then e is a minimal edge and v1, v2 

are minimal vertices. 

In Fig. 3, the edges and vertices of (a), (b), and (c) are 
minimal edges and minimal vertices, but the edge and vertices 
of (d) are not. Finally, the definition of PATI is as follows. 

Definition 5. Given a priority relation graph ),( EVG = , 
PATI is )ˆ,ˆ(ˆ EVG = where, 

=V̂ {v | v ∈V and v is a minimal vertex}, 
=Ê {e | e ∈E and e is a minimal edge}, 

∑ ′+=
∈′′ Eeee

ewewew
,

)()()(ˆ
φ

, 

and the ambiguity type is a pair of vertices connected with at 
least one edge. 

2. Construction of PATI 

Figure 4 shows the construction process of PATI. The 
English sentence parser analyzes sentences of a corpus and 
generates a parsed corpus. Human experts build a marked 
corpus by marking a correct one among candidate trees in the 
parsed corpus. A priority relation graph is generated from the 
marked corpus by comparing the correct trees with other 
candidates. Finally, PATI is constructed using the priority 
relation graph. 
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sentences s1: Time flies like an arrow. 
s2: … 

Corpus

s1              s2 … 
t1  t2 … tn 

candidate 
trees 

s1 (t1 is correct)   s2 … 
t1  t2 … tn 

Parsing 

Marking 

n r3 r4 
r6 r7 

PATI

Parsed corpus

Marked corpus

Priority relation
graph 

priority 
relation 
graph 

Fig. 4. Construction process of PATI.  
 

Figures 5 and 6 show the algorithms for constructing the 
priority relation graph and PATI. 

We constructed a parsed corpus by analyzing 3,500 English 
sentences and used a manually built context-free grammar 
containing about 300 rules. We extracted 133 ambiguity types 
using the above algorithms. The appendix presents four groups 
of example ambiguity types. The notation format explaining 
each ambiguity type is as follows: 
 

Difference set 1 

Difference set 2 

Main 
Causes Type 

Number 
Example Sentences 

III. Grammar Tuning 
The appropriateness of linguistic knowledge encoded into 

grammar rules is a major factor affecting performance of the 
rule-based approach for ambiguity resolution, but it is quite 
difficult to determine what is the essential knowledge to be 
encoded for a grammar under development. The frequency 
information of PATI provides an efficient way for refining 
grammar rules. We present two representative methods, 
constraint strengthening and rule splitting. 

The purpose of constraint strengthening is to reduce the 
occurrences of ungrammatical candidate trees. Consider the 
following example. 

 

procedure make_priority_relation_graph 
/* C is an input corpus, S is a sentence, T is a set of candidate trees, 
tc and ti are candidate trees, c

iD and i
cD are rule set differences,  

and ),( EVG = is the resulting priority relation graph. */ 
begin 

V ← ∅, E ← ∅ 
for all S in C do 

get T by parsing S 
if there is more than one candidate tree then 

c ← index of the correctly parsed candidate tree 
for all it ∈ T − { ct } do 

get c
iD and i

cD by comparing tc with ti 
V ← V ∪ { c

iD , i
cD } 

if ( c
iD , i

cD ) ∉ E then 
E ← E ∪ {( c

iD , i
cD )}, )),(( i

c
c
i DDw ← 1 

else )),(( i
c

c
i DDw ← )),(( i

c
c
i DDw + 1 

endif 
endfor 

endif 
endfor 
return ),( EVG =  

end 

Fig. 5. Algorithm for constructing priority relation graph.  
 

 

procedure make_PATI 
/* ),( EVG = is the input priority relation graph and )ˆ,ˆ(ˆ EVG =  is
the resulting PATI. */ 
begin 

V̂ ← ∅, Ê ← ∅  
for all (vi, vj) ∈ E do 

subsumed ← 0 
for all (vk, vl) ∈ E – (vi, vj) do 

if ki vv ⊆  and lj vv ⊆  then 
subsumed ← 1 

endif 
endfor 
if subsumed = 0 then 

},{ˆˆ
ji vvVV Υ← , ),(ˆˆ

ji vvEE Υ←  
)),(()),((ˆ jiji vvwvvw ←  

endif 
endfor 
for all (vi, vj) ∈ Ê  do 

for all (vk, vl) ∈ EE ˆ−  do 
if ki vv ⊆  and 

lj vv ⊆  then 
)),(()),((ˆ)),((ˆ lkjiji vvwvvwvvw +←  

endif 
endfor 

endfor 
return )ˆ,ˆ(ˆ EVG =  

end 

Fig. 6. Algorithm for constructing PATI.  
 

[sent [pp Out of the subjects she is taking at] [sent [np 
school], [sent two are required and three are elective]].] 

This analysis can be produced by the rule SENT → NP 
PUNC SENT and SENT → PP SENT. The former rule is for 
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analyzing sentences that contain vocatives. In order to prevent 
the above ungrammatical analysis, the latter rule is modified as 
SENT → PP SENT[−VOCAT] by the method of constraint 
strengthening. The strengthened constraint ‘–VOCAT’ may 
contribute to reducing the total number of candidate analyses. 
PATI automatically provides such candidates using the 
frequency ratio of two vertices, FR, which is defined as: 








=

,0

,
),( )),(ˆ),,(ˆ(

)),(ˆ),,(ˆ(

jiij

jiij

ji vvwvvwmax

vvwvvwmin

vvFR   

.otherwise

,ˆ),(
andˆ),(if

Evv
Evv

ji

ij

∈
∈

 

We extract ambiguity types with an FR value of 0 and 
investigate the sentences related to those types for constraint 
strengthening. 

If the FR of two vertices is not 0, two edges exist between 
the two vertices. An FR near 1.0 implies that the corresponding 
ambiguity type cannot be effectively resolved by any syntactic 
preference function. For example, a prepositional phrase 
attachment problem is represented by the following two 
vertices using PATI. 

v1 = {NP → NP PP} 
v2 = {VP → VP PP}. 

Intuitively we can guess that ),( 21 vvFR  may be near 1.0 
and that other kinds of preference functions, such as the lexical 
collocation function, are needed to resolve this ambiguity type. 
In the rest of this paper, we refer to this kind of ambiguity type 
as a high FR (HFR) type. On the other hand, an FR value near 
0 means that syntactic information can play an important role 
in resolving that ambiguity type. Rule preference functions can 
be very effective for disambiguation in this case. Constraint 
strengthening is a more active method in the sense that it can 
prevent ungrammatical trees from being produced. 

Rule splitting can make grammar rules more suitable for 
efficient ambiguity resolution by reducing the overall portion 
of HFR types in PATI. As explained above, if HFR types are 
reduced, syntactic preference functions work better in 
integration with other kinds of preference functions. Let’s 
consider again the PP attachment problem. The rule in v2 
attaches PP to VP3). By adding subcategorization information 
of the predicate of VP into the constraints of the rule, we can 
expect HFR to decrease for ambiguity types related to the PP 
attachment. More generally, for a current rule (a) shown below, 
a new constraint ci+1 is considered in addition for splitting, and 
the resulting rules (b) and (c) will have ci+1 and ┐ci+1, 
respectively, as their new constraints. Ambiguity types with 
HFR greater than a certain threshold can be extracted from 
PATI and rule splitting is considered. 
                                                               

3) Here, for simplicity, the current content of constraints on the non-terminals is not presented. 

(a) ],,,[ 10 icccA Λ  
(b) ],,,,[ 110 +ii cccc'A Λ  
(c) ,,,,[ 10 iccc''A Λ ┐ci+1] 

 

 

edge 1
C

D

A

B

E

A[c0,c1,…,ci]
A' [c0,c1,…,ci,ci+1] 

A'' [c0,c1,…,ci,┐ci+1] 

edge 2

A' 

B 

A'' 

C

D

E

Fig. 7. Concept and consequence of rule splitting. 

edge 3

edge 4 

 
 

Figure 7 shows the concept and consequence of rule splitting. 
For example, let’s consider following sentences and rules. 

s3,1: The bus driver made John stop. 
s3,2: She made holiday plans. 

r1: INFCL → VP 
r2: VP[+OCOMP4)] → VP[+OBJ] INFCL 
r3: NP → NOUN[–PLURAL] NP 
r4: NP → NOUN[–PLURAL, +HUMAN] NP 
r5: NP → NOUN[–PLURAL, –HUMAN] NP 

Two edges of different directions in the original ambiguity 
type come from the parsed results of sentences s3,1 and s3,2. By 
splitting r3 with the additional constraint HUMAN, we get r4 
and r5 and the resulting ambiguity types. This rule splitting 
process is shown in Fig. 8. 
 

 

VP(r2) (correct)

VP INFCL(r1)

VP   NP     VP

VP (wrong) 

NP(r3) 

VP    NOUN   NP
made   John    stop

Original type

VP (correct) 
NP(r3)

VP   NOUN   NP 
made  holiday   plans

VP (r2)(wrong) 

INFCL(r1)

VP   NP     VP 
made  holiday   plans

VP 

r4 
r5 

r3 rule splitting

resulting types

Fig. 8. Example of rule splitting. 

made  John   stop

r2

r1
r3 

r2

r1 r4 

r5 

 
                                                               

4) Object complement. 
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As we can see in the above examples, PATI indicates 
candidate rules to be refined, and this alleviates the human 
efforts of grammar tuning. Constraint strengthening and rule 
splitting are the same in spirit, that is, they give a description 
of rules in more detail. The difference is that the aim of the 
former is to prevent ungrammatical structures already found 
from occurring, whereas the latter makes the syntactic 
preference function (explained in section IV) more 
effective. 

IV. Rule Preference Function and Overall Scoring 
Scheme 

In large-scale rule-based analysis systems, various kinds of 
preference functions are chosen and combined to produce a 
score for selecting the best parsed candidate tree. Some 
functions are based on lexical or semantic collocations while 
others are based on syntactic information. 

In this paper, we focus on the latter though we also have 
functions based on lexical probabilities or collocations. 
Syntactic preference functions may simply count particular 
constructs, such as adjunct and attachment, or estimate 
probabilities of rules. Assuming that various aspects of 
syntactic structures are already reflected in PATI, this paper 
adopts a syntactic preference function that is only based on the 
rule preference function, RP(r), defined as follows: 

),(ln)(ln)( rfrfrRP lh −=  

,))((ˆ)(
ˆ),(,

∑=
∈∈ Evvvr

h

iji

ij ,vvwrf  

,))((ˆ)(
ˆ),(,

∑=
∈∈ Evvvr

l

jii

ji ,vvwrf  

where r is a rule, fh(r) is the sum of the weights of incoming 
edges into the vertices containing r, and fl(r) is the sum of the 
weights of outgoing edges. This function is different from 
conventional rule probability functions in two ways. First, it 
considers only the frequencies from PATI, not the total 
frequencies. Second, it also incorporates the term ‘ln fl(r)’ 
representing the frequencies from badly parsed trees, that is, 
negative examples. 

Figure 9 shows a sample PATI for illustrating the calculation 
of rule preference scores. Using this PATI, RP(r) is calculated 
as follows: 

fh(r1) = 1230 + 922 = 2152,  fl(r1) = 507 + 678 = 1185, 
RP(r1) = ln 2152 – ln 1185 = 7.67 – 7.08 = 0.59 

fh(r2) = 1230,  fl(r2) = 507, 
RP(r2) = ln 1230 – ln 507 = 7.11 – 6.23 = 0.88 

fh(r3) = 507 + 922 = 1429,  fl(r3) = 1230 + 678 = 1908, 
RP(r1) = ln 1429 – ln 1908 = 7.67 – 7.08 = –0.29 

fh(r4) = 1230 + 678 = 1908,  fl(r4) = 507 + 922 = 1429, 
RP(r4) = ln 1908 – ln 1429 = 7.08 – 7.67 = 0.29 

fh(r5) = 507, fl(r5) = 1230, 
RP(r5) = ln 507 – ln 1230 = 6.23 – 7.11 = –0.88 

fh(r6) = 1321, fl(r6) = 1020, 
RP(r6) = ln 1321 – ln 1020 = 7.19 – 6.93 = 0.26 

fh(r7) = 1020 + 922 = 1942,  fl(r7) = 1321 + 678 = 1999, 
RP(r7) = ln 1942 – ln 1999 = 7.57 – 7.60 = –0.03 

fh(r8) = 466 + 678 = 1144,  fl(r8) = 874 + 922 = 1796, 
RP(r8) = ln 1144 – ln 1796 = 7.04 – 7.49 = –0.45. 

 

 

(a)r1

r2

r3

r5
r4

507

1230

r6 
1020 

1321 
r7

(b) 

(c)r1

r3

r4

r8
r7

678

922

r8 
874 

466 
r9

(d) 

Fig. 9. Sample PATI.  
 

The syntactic preference function, SP(t), is defined as 
follows: 

,)()(
)(

∑=
∈ tPRr

rRPtSP  

where t is a candidate tree and PR(t) is the set of rules 
participating in building the tree. For example, s1 in Fig. 1 
has two candidate trees. Thus, SP(t) is calculated as 
follows: 

SP(t1) = RP(r1) + RP(r2) + RP(r4) + RP(r5) + RP(r7) + RP(r8) 
= 0.59 + 0.88 + 0.29 – 0.88 – 0.03 – 0.45 = 0.40 

SP(t2) = RP(r1) + RP(r2) + RP(r3) + RP(r5) + RP(r6) + RP(r8) 
= 0.59 + 0.88 – 0.29 – 0.88 + 0.26 – 0.45 = 0.11. 

In the above calculation, SP(t1) is greater than SP(t2). 
Therefore, the candidate tree t1 is selected as the correct one in 
view of the syntactic preference function. 
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The syntactic preference function is combined with other 
preference functions to produce evaluating scores for candidate 
trees. We use a lexical preference function that is based on part-
of-speech probabilities and two semantic collocation functions 
[15], [16]. All the preference functions are combined by the 
method proposed in [13]. 

V. Experiments 

In this section, we present two types of experimental results. 
One supports the usefulness of PATI for grammar development 
in a large-scale rule-based natural language analysis system. 
The other shows that PATI can increase the accuracy of 
ambiguity resolution. 

We developed a general purpose parser implemented by C 
language on a Unix machine. The coverage of the parser, the 
percentage of the test sentences for which a correct parse was 
found, was 97.1%. For broad coverage of the analysis, the 
initial grammar rules were constructed with minimal 
constraints. PATI was constructed using information extracted 
from the initial grammar and the corpus in Table 1. 

Table 2 shows the statistics of the initial PATI. In the table, 
“Sum of Frequencies” represents the sum of weights of edges 
corresponding to an ambiguity type. The ambiguity complexity 
(AC) represents the amount of ambiguity in the sentence 
analysis and is defined as follows: 
 

Table 1. Corpus for constructing PATI. 

Sentence 
Length Area-1 Area-2 Area-3 Total 

1–10 542 411 340 1,293 

11–20 410 457 417 1,284 

21–30 248 282 393 923 

Total 1,200 1,150 1,150 3,500 

Area-1: High School English Textbook 
Area-2: IBM Manual ‘SQL/DS Concepts and Facilities’ 
Area-3: USA Today 

 

|corpusainsentences|
PATIin  weights∑=AC  

Using the initial PATI, the grammar is tuned as described in 
section III. A new PATI is constructed after constraint 
strengthening and rule splitting. Table 3 gives the statistics of 
PATI using the tuned grammar. 

The increase in the number of ambiguity types is due to the 
increase in the number of rules by the rule splitting process, but 
the ratio of ambiguity types with FR values under 0.2 becomes 
larger. This implies that a larger portion of all the ambiguity 
types could be effectively resolved by the syntactic preference 
 

Table 2. Statistics of ambiguity types from the initial grammar. 

FR ≤ 0.2 FR > 0.2 Total 
Area Number of 

Types 
Sum of 

Frequencies 
Number of 

Types 
Sum of 

Frequencies 
Number of 

Types 
Sum of 

Frequencies 

Ambiguity 
Complexity 

Area-1 38 4,203 95 11,820 133 16,023 13.35 

Area-2 43 4,808 90 13,028 133 17,836 15.51 

Area-3 41 5,560 92 15,893 133 21,453 18.65 
 

 

Table 3. Statistics of ambiguity types from the tuned grammar. 

FR ≤ 0.2 FR > 0.2 Total 
Area Number of 

Types 
Sum of 

Frequencies 
Number of 

Types 
Sum of 

Frequencies 
Number of 

Types 
Sum of 

Frequencies 

Ambiguity 
Complexity 

Area-1 114 3,478 177 5,745 291 9,223 7.69 

Area-2 108 3,810 173 6,317 291 10,127 8.81 

Area-3 119 4,011 172 7,091 291 11,102 9.65 
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Table 4. Test corpus. 

Sentence 
Length Area-1 Area-2 Area-3 Total 

1–10 134 120 148 402 

11–20 181 185 245 611 

21–30 180 194 213 487 

 

 
function. In addition, because many ungrammatical candidates 
are prevented from being built, the sum of frequencies 
decreases while the number of ambiguity types increases. This 
is important because it can contribute to reducing the total 
amount of ambiguity. 

We also constructed a test corpus using sentences from the 
three areas used in constructing PATI. Table 4 shows the 
statistics of the test corpus. Table 5 shows the accuracies of 
ambiguity resolution using the initial grammar and the tuned 
grammar. The results using the initial grammar demonstrate 
that the performance of our syntactic preference function is 
superior to that of simple rule probabilities. 

The rule probability is calculated for each non-terminal (NP, 
VP, SENT, …). In constructing the parsed corpus described in 
section II, the rule count is summed respectively for each non-
terminal in the correct parse trees. The probability of each rule 
is calculated as: 

,
||

||
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∑
=
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i

i n

j

j
N

k
Nk
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r
rp  

where k
N ir  is the k-th rule that has Ni as a left-hand side non-

terminal, and nk is the number of occurrences of the k-th rule. 
On the other hand, PATI contains information from all the 
candidate trees, including the badly parsed trees. This may give 
 

rise to a better performance of SP. As expected, we obtained 
more enhanced disambiguation accuracies using the tuned 
grammar. In this case, the accuracies using SP are also higher 
than those using rule probabilities. 

In the table, the column ‘Combine’ shows the accuracies 
using the overall scoring scheme combining SP and other 
kinds of preference functions described in section IV with a 
sentence segmentation technique [17], [18]. Long sentences 
are analyzed in a segment-by-segment parsing method. 
They are segmented into several segments before parsing, 
and then each segment is parsed. The parse tree is built by 
combining the analysis results of each segment. With the 
help of the above method, the parsing complexity can be 
reduced. 

VI. Conclusion 

We proposed PATI as an efficient way of developing 
grammar rules for large-scale applications and providing a 
syntactic preference function for ambiguity resolution. An 
initial PATI was constructed from an initial grammar and a 
parsed corpus. The grammar was enhanced with the help of 
PATI and a new PATI was constructed to get a syntactic 
preference function. 

The PATI contains information about more ambiguity types 
with reduced ambiguity complexity of the analysis. We 
achieved a very high accuracy of ambiguity resolution for an 
open domain test corpus. We also verified that the syntactic 
preference function based on PATI contributes significantly to 
this problem. 

All kinds of ambiguous situations, not only the well known 
cases, such as the PP attachment problem, but also cases that 
have never been treated with formal linguistic descriptions, 
could be identified by PATI. Furthermore, PATI can be 
obtained directly from a comparatively small parsed corpus 
and at a low cost of human effort. 
 

Table 5. Performance comparison of preference functions. 

Disambiguation Accuracy (%) 
(using the initial grammar) 

Disambiguation Accuracy (%)  
(using the tuned grammar) Sentence 

Length 
Number of 
Sentences 

Average Number  
of Candidates 

Rule Prob. SP Rule Prob. SP Combine 

1–10 402 3.71 48.73 69.65 52.42 86.72 92.25 

11–20 611 5.33 31.17 59.92 33.70 74.50 89.68 

21–30 487 13.58 14.22 28.90 15.91 43.24 82.83 

Total 1,500 7.57 30.37 52.46 32.94 67.63 88.14 
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For future work, we plan two kinds of studies. We will 
develop tools supporting grammar tuning to reduce human 
efforts. Machine learning techniques will be adopted for more 
effective integration of the syntactic preference function with 
other kinds of preference functions. We expect this will 
improve the accuracy of ambiguity resolution. 
 
 
 
 

Appendix 

Group A: Grammatical function change of verb phrases 
 

PP → PREP3 NP4  VP → VP1 PP2 

NP → NOUN1 NP2  VP → VP3 NP4 

Part of speech 
ambiguity 1 

Time1 flies2 like3 an arrow4. 

 
NP → NOUN4 NP5 

NP → NP2 CONJ3 NP5 

SENT → NP4 VP5 

SENT → SENT1 CONJ3 SENT5 

Part of speech 
ambiguity, 
conjunction 

(and) 
2 

It provides1 utilities2 and3 communication4 files5. 

 

VP → VP1 CONJ3 VP4 

NP → NP2 CONJ3 NP4 

Part of speech 
ambiguity, 
conjunction 

(or) 3 

Light cannot curve1 around the earth2 or3 travel4. 

 
SENT → NP3 VP4  SUBCL→ CONJ2 SENT4 

VP → VP1 SUBCL4 

NP → NOUN3 NP4  PP → PREP1 NP4 
VP → VP1 PP4 

Part of speech 
ambiguity, 
conjunction 

(as) 
4 

I desire1 money as2 people3 desire4. 

 
SENT → NP2 VP3  RLCL → SENT3 

VP → VP1 RLCL3 

NP → NOUN2 NP3  VP → VP1 NP3 

Part of speech 
ambiguity, 
verb phrase 

(show) 
5 

A survey shows1 the rate2 fall3 to 7.86 percent. 

 

NP → NOUN2 NP3 

INFCL → VP3 

VP[+OCOMP] → VP[+OBJ]1 INFCL3 

Part of speech 
ambiguity, 
verb phrase 

(make) 
6 

He thanked Clinton for making1 the three-hour2 stop3 at Kigali. 

VP → VP4 NP5  INFCL → PREP3 VP4 

NP → NP2 INFCL4 

NP → AJP4 NP5  PP → PREP3 NP5 

VP → VP1 PP5 

Part of speech 
ambiguity, 
to infinitive 

phrase 
(make) 

7 

They guaranteed1 the right of slave owners2 to3 own4 slaves5. 

 

VP → VP2 NP3 

NP → NP1 PASTP2 

Part of speech 
ambiguity, 

past participle 
phrase 

8 

The boy1 called2 names3. 

 
SENT→ NP4 VP5 

SENT → SENT1 CONJ3 SENT5 

NP → NP2 CONJ3 NP4  NP → NP2 PASTP5 

Conjunction 
(and), 

past participle 
phrase 

9 

Pierre fell1 in love with this bright girl2 and3 they4 got5 married. 

 
SENT→NP3 VP4  RLCL→SENT4 

VP→VP2 RLCL4 

VP→VP2 NP3  NP→NP1 PASTP2 

Past participle 
phrase 10

The boy1 said2 the girl3 played4. 

 

VP→VERB2 VP3  SENT→PP1 PUNC4 SENT5 

SENT→PRESP3 PUNC4 SENT5 
SENT→PP1 SENT5 

Comma, 
present participle 

phrase 11

Out of the subjects1 she is2 taking3 at school, 4 two are required and5 three 
are elective. 

 

VP→VERB1 VP2 

VP→VP1 PRESP2 

Present participle 
phrase 12

He is1 working2. 

 

NP→PRESP2 NP3 

VP→VP1 PRESP2 

Present participle 
phrase 13

It contains1 operating2 systems3. 

 

VP→VP2 NP3  PP→PREP1 PRESP2 

NP→PRESP2 NP3  PP→PRESP1 NP3 

Present participle 
phrase 14

This bill is not primarily about1 fixing2 America’s infrastructure3. 

 

VP→VP1 NP2  SENT→INFCL1 VP3 

SENT→NP2 VP3  SENT→INFCL1 SENT3 

to infinitive 
phrase 15

To desire1 food or2 drink is3 lust. 
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RLCL→SENT2  NP→NP1 RLCL2 
SENT→PP1 PUNC3 SENT4 

SENT→SENT2 PUNC3 SENT4 
SENT→PP1 SENT3 

Comma, 
relative clause 

16 

Out of the subjects1 she is taking2 at school, 3 two are required and4 three 
are elective. 

 

(VP→VP2 CONJ3 VP4) 

(VP→VP1 CONJ3 VP4) 

Conjunction 
(and), 

relative pronoun 
(who) 17 

Her children showed1 their gratitude to her who raised2 and3 educated4 them. 
I saw1 him steal2 a pound of butter and3 put4 it in his hat. 

 
 

Group B: Nucleus change of verb phrases 

 

PP→PREP2 NP3  VP→VP1 PP3 

VP→VP1 AVP2  VP→VP1 NP3 

Part of speech 
ambiguity 1 

Light cannot curve1 around2 the earth or3 travel. 

 

SENT→AVP2 SENT3  VP→VP1 SENT3 

SUBCL→CONJ2 SENT3  VP→VP1 SUBCL3 

Part of speech 
ambiguity 2 

I know1 where2 your book is3. 

 

RLCL→PRON3 SENT4  NP→NP2 RLCL4 

SUBCL→CONJ3 SENT4  VP→VP1 SUBCL4 

Part of speech 
ambiguity 3 

I know1 the place2 where3 your book is4. 

 

VP→VP1 AJP2 

VP→VP1 NP2 

Part of speech 
ambiguity 4 

I got1 red2. 

 

NP→AJP1 NP2 

VP→AVP2 VP3 

Part of speech 
ambiguity 5 

This1 light2 cannot curve3. 

 

NP→NOUN1 NP2 

VP→AVP2 VP3 

Part of speech 
ambiguity 6 

Sun1 light2 cannot curve3. 

 

7 VP→VP1 AVP2 
Part of speech 

ambiguity 

VP→VP1 NP2  

I said1 Tuesday2. 

 

RLCL→PRON1 SENT3 

NP→AJP1 NP2  RLCL→SENT3 

Part of speech 
ambiguity 8 

One reason is that1 light2 cannot curve3. 

 

VP→VP1 AJP2 

VP→VP1 AVP2 

Part of speech 
ambiguity 9 

The market was1 lower2. 

 

RLCL→PRON2 SENT3  VP→VP1 RLCL2 

RLCL→SENT3  NP→NP2 RLCL3 
VP→VP1 NP2 

Part of speech 
ambiguity 10

One reason is1 that2 light cannot curve3. 

 

VP[+IOBJ]→VP1 NP2 

VP[+OBJ]→VP1 NP2 
Verb phrase 

11

He told1 Clinton2. 

 

(NP→NOUN1 NP2) 

(NP→NOUN2 NP3) 
Noun phrase 

12

I showed a book1 name2 people3 know. 

 

(VP→VP2 NP3) 

(VP→VP1 NP3) 

Conjunction, 
verb phrase 13

He saluted and1 held2 the book3. 

 

NP→NOUN2 NP3 

VP→VP1 NP3 

Preposition 
phrase 14

They mate1 for family2 groups3. 

 
Group C: Additional word change of verb phrases 
 

NP→PRESP1 NP2 

VP→NOUN1 NP2 

Part of speech 
ambiguity 1 

I heard beating1 drums2. 

 

2 NP→AJP1 NP2 
Part of speech 

ambiguity 
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VP→NOUN1 NP2   

One1 reason2 is that you cannot go. 

 

NP→NOUN2 NP3 

VP→VP1 AVP2 

Part of speech 
ambiguity 3 

I like1 Saturday2 parties3. 

 

SENT→AVP1 SENT3 

NP→AVP1 NP2 
Adverbial phrase

4 

Also1 the companies2 grow3. 

 

AJP→AVP2 AJP3 

VP→VP1 AVP2 
Adverbial phrase

5 

She is1 so2 beautiful3. 

 

VP→VP1 PP3 

NP→NP2 PP3 

Preposition 
phrase 6 

I eat1 a fish2 with a fork3. 

 

VP→VP1 INFCL3 

NP→NP2 INFCL3 

to infinitive 
phrase 7 

He put1 off his hat2 to sleep3. 

 

VP→VP1 PRESP3 

NP→NP2 PRESP3 

Present participle 
phrase 8 

He saw1 the flowers2 walking3 there. 

 
Group D: Rule application scope change 
 

(VP→VP1 AVP3) 

(VP→VP2 AVP3) 

Conjunction, 
adverbial phrase1 

They study or1 work2 abroad3. 

 

(PP→PREP1 NP2) 

(PP→PREP1 NP3) 

Conjunction, 
preposition 

phrase 2 

He used songs of1 birds2 and3 others 

 

(SENT→PP1 PUNC2 SENT4) 3 

(SENT→PP1 PUNC2 SENT3) 

Conjunction, 
preposition 

phrase 

At home1, 2 she slept3, 4 he worked. 

 

(NP→NP1 PUNC2 NP3) 

(NP→NP1 PUNC2 NP4) 

Conjunction, 
noun phrase 4 

I like music1, 2 art3, and4 dance. 

 

(VP→VP1 PUNC2 VP3) 

(VP→VP1 PUNC2 VP4) 

Conjunction, 
verb phrase 5 

I wake1 up, 2 eat3, and4 sleep. 

 

(NP→PRESP1 NP2) 

(NP→PRESP1 NP3) 

Conjunction, 
present participle 

phrase 6 

We used sleeping1 bags2 or3 boots. 
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