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A multimedia SoC often requires a large internal buffer, 
because it must store the whole search window to reduce 
the huge I/O bandwidth of motion estimation. However, the 
silicon area of the internal buffer increases tremendously as 
the search range becomes larger. This paper proposes a new 
method that greatly reduces the internal buffer size of a 
multimedia SoC while the computational cost, I/O 
bandwidth, and image quality do not change. In the 
proposed method, only the overlapped parts of search 
windows for consecutive macroblocks are stored in the 
internal buffer. The proposed method reduces the internal 
buffer size to 1/5.0 and 1/8.8 when the search range is 
±64×±64 and ±128×±128, respectively. 
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I. Introduction 

Block-matching motion estimation [1] is widely used in 
many image compression standards [2], [3] because of its 
simplicity and high efficiency. The highest compression ratio 
can be obtained with the full search algorithm (FS) [1], which 
exhaustively matches all possible candidates in the search 
range. However, as the search range becomes larger, the 
computational cost and the I/O bandwidth greatly increase, 
which is a serious problem in multimedia system-on-a-chip 
(SoC) design. To overcome these problems, many papers 
have reported fast algorithms [4]-[8] that reduce the 
computational cost substantially. However, they do not 
efficiently improve the I/O bandwidth requirement. Recently, 
in many multimedia SoCs, researchers have tried to alleviate 
the I/O bandwidth problem by storing the whole search 
window in an internal buffer [9]-[13], but a significant part of 
the silicon area is occupied by the large internal buffer when 
the search range is large. 

In this paper, we propose a pipelined macroblock processing 
(PMP) method that efficiently reduces the internal buffer size 
of multimedia SoCs without increasing the I/O bandwidth. It 
performs motion estimation on several consecutive 
macroblocks in parallel. Because the search windows of these 
consecutive macroblocks overlap, only their overlapped part 
needs to be stored in the internal buffer. This efficiently reduces 
the internal buffer size without increasing the I/O bandwidth 
and can be applied to various multimedia SoCs exploiting the 
motion estimation. 

Pipelined Macroblock Processing to 
Reduce Internal Buffer Size of 

Motion Estimation in Multimedia SoCs 

 Seongsoo Lee  
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II. The I/O Bandwidth and the Internal Buffer Size of 
Motion Estimation in a Multimedia SoC 

In multimedia applications, the search range for motion 
estimation should be large enough to cover the motion 
displacements of fast-moving objects. Figure 1 shows the peak 
 
 

Fig. 1. PSNR performance of the MPEG-2 motion estimation
for various search ranges. 
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signal-to-noise ratio (PSNR) performance of the MPEG-2 
motion estimation, where the picture format is CCIR601 
(720×480 pixels, 30 frames/s) and 45 frames are simulated 
for each sequence. From the simulation results, appropriate 
search ranges of P-pictures are ±64×±64, and for sequences 
of one P-picture followed by two B-pictures, they are 
±128×±128. 

Both the computational cost and the I/O bandwidth of the 
full search algorithm become too large for SoC implementation 
if the search range exceeds ±64×±64 (Fig. 2). To reduce the 
computational cost, various researchers have proposed fast 
algorithms, such as the 4:1 alternate subsampling search 
(4:1AS) [6] algorithm, the 4:1 search window subsampling 
search (4:1SS) [8] algorithm, the one-dimensional full search 
(1DFS) [5] algorithm, and the three-stage hierarchical block-
matching algorithm (3HBMA) [7]. As Table 1 shows, these 
fast algorithms reduce the computational cost to 1/4–1/163, but 
the required I/O bandwidth is not much reduced, assuming no 
internal buffer is exploited to store pixel data. 

The I/O bandwidth is greatly reduced if the search window 
 
 

Fig. 2. Computational cost and I/O bandwidth of the MPEG-2 motion
estimation for various search ranges. 
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Table 1. Computational cost, I/O bandwidth, and PSNR performance for various motion estimation algorithms. 

Algorithm FS 4:1AS 4:1SS 1DFS 3HBMA 

Computational cost (ops) 5.10×1011 1.28×1011 1.28×1011 1.19×1010 3.49×109 

I/O bandwidth (bps) 6.80×109 7.13×109 2.09×109 2.41×109 7.05×109 
±64×±64 search range 

(MPEG2 P-picture 
without B-pictures) PSNR performance (dB) 28.85 28.52 28.29 28.13 27.25 

Computational cost (ops) 2.04×1012 5.10×1011 5.10×1011 2.38×1010 1.25×1010 

I/O bandwidth (bps) 2.41×1010 2.73×1010 7.13×109 4.40×109 2.43×1010 
±128×±128 search range 

(MPEG2 P-picture 
with two B-pictures) PSNR performance (dB) 26.57 26.16 25.95 25.38 25.00 
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Table 2. I/O bandwidth and internal buffer size when the search window data are stored in an internal buffer. 

Algorithm FS,4:1AS,1DFS,3HBMA 4:1SS 

I/O bandwidth (bps) 8.29×108 2.70×108 ±64×±64 search range 
(MPEG2 P-picture 
without B-pictures) Internal buffer size (kbit) 188.4 50.2 

I/O bandwidth (bps) 1.49×109 4.35×108 ±128×±128 search range 
(MPEG2 P-picture 

with two B-pictures) Internal buffer size (kbit) 630.8 160.8 
 

 

 

Fig. 3. Overlap of the search window when the search range is ±64×±64. 
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data are stored in an internal buffer (Table 2). However, the size 
of the internal buffer is so large that its silicon area becomes 
dominant in SoC implementation if the search range exceeds 
±64×±64. Consequently, a new algorithm with a substantially 
reduced internal buffer size is required. 

III. The Pipelined Macroblock Processing Method 

In the conventional multimedia SoC design, motion 
estimation for each macroblock is processed sequentially on a 
macroblock basis. For a search range of ±M×±M pixels and a 
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macroblock size of N×N pixels, the current macroblock and 
its whole search window data of (2M+N)×(2M+N) pixels 
must be stored in the internal buffer for the motion estimation 
of the current macroblock. The next macroblock and its 
additional search window data of N×(2M+N) pixels must be 
imported into the internal buffer before starting motion 
estimation on it. Therefore, the required internal buffer size is 
2{N2+(M+N)×(2M+N)} pixels. 

In this paper, we propose an effective method for internal 
buffer reduction called pipelined macroblock processing 
(PMP), in which 2M/N macroblocks are processed in parallel. 
The internal buffer size can be reduced by using the fact that 
the search windows of consecutive macroblocks overlap. 
Figure 3 illustrates the overlap of the search window when the 
search range is ±64×±64 (M=64) and the macroblock size is 
16×16 (N=16). 

The search operation for a column of search positions is 
performed over 2M/N macroblocks in parallel. Because N× 
(2M+N) pixels of the search windows are overlapped for 
2M/N macroblocks, only consecutive macroblocks of 2M×N 
pixels and the overlapped search windows of the N×(2M+N) 
pixels need to be stored in the internal buffer. Additional search 
window data of 2M+N pixels must be imported into the 
internal buffer before starting the search operation for the next 
column of search positions. Similarly, the next macroblock of 
 

N2 pixels must be imported before starting the motion 
estimation for the next macroblock. Therefore, the total internal 
buffer size is reduced to (2N+1)×(2M+N) pixels. The 
reduction ratio of the internal buffer size is (2N+1)×(2M+N)/ 
2{N2+(M+N)×(2M+N)}, while the computational cost, the 
I/O bandwidth, and the PSNR degradation do not increase at 
all. Figure 4 shows the internal buffer reduction when the 
search range is ±64×±64 (M=64) and the macroblock size is 
16×16 (N=16). 

In the proposed method, the search operation is performed 
column by column, that is, the leftmost column of search 
positions (–M,–M) – (–M,M–1) is processed first, then the next 
column of search positions (–M+1,–M) – (–M+1,M–1) is 
processed, and so on. Therefore, the proposed method can be 
applied to all motion estimation algorithms in which the search 
operation is performed column by column. Although it is 
applied only to the full search algorithm in this paper, with only 
minor modification, it can also be applied to many fast 
algorithms (Table 3). Table 4 shows the reduction of internal 
buffer sizes when the proposed method is applied to various 
motion estimation algorithms. The internal buffer size for the 
full search algorithm is reduced to 1/5.0 and 1/8.8 of the 
original sizes when the search range is ±64×±64 and 
±128×±128, respectively. 

The proposed method can be applied to various motion 
 

 

Fig. 4. Reduction of the internal buffer size when the search range is ±64×±64. 
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Table 3. Motion estimation algorithms to which the proposed method can be applied. 

The proposed method can be 
fully applied to: 

The proposed method can be 
partially applied to: 

The proposed method 
cannot be applied to: 

• full search [1] 
• 4:1 alternate subsampling search [6] 
• 4:1 search window subsampling search [8] 

• three-stage hierarchical block-matching [7] 
(only first stage) 

• one-dimensional full search [5] 
• three-step search [4] 
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Table 4. Reduction of the internal buffer size for various motion estimation algorithms. 

Algorithm FS, 4:1AS, 3HBMA 4:1SS 1DFS 

Conventional method (kbit) 188.4 50.2 188.4 ±64×±64 search range 
(MPEG2 P-picture 
without B-pictures) Proposed method (kbit) 38.0 23.6 N/A 

Conventional method (kbit) 630.8 160.8 630.8 ±128×±128 search range 
(MPEG2 P-picture 

with two B-pictures) Proposed method (kbit) 71.8 44.6 N/A 
 

 
estimation algorithms, so the possible implementation methods 
depend on the basis algorithm (=original motion estimation 
algorithm before applying the proposed method). In general, 
the hardware and software overhead of the proposed method is 
not large, since only the dataflow control part is modified. 
When n processing elements are used in the basis algorithm, 
the proposed method also employs the same number and same 
type of processing elements. In most cases, the processing 
elements occupy the majority of the silicon area. The overhead 
of the dataflow control part is not negligible, but it is unlikely to 
increase the total silicon area too much when compared to the 
conventional algorithms. 

In Fig. 4, the internal buffers import the pixel data for the 
next macroblock from frame memory while processing the 
current 8 macroblocks (shaded area in Fig. 4). The amount of 
the memory access of the proposed method is the same as the 
conventional algorithms, but the order of the memory access of 
the search window data is different. As shown in Fig. 4, the 
proposed method accesses the search window data in 1×143 
order, i.e., (0,0)-(0,1)-(0,2)-…-(0,142), while conventional 
algorithms access in 16×143 order, i.e., (0,0)-(1,0)-…-(15,0)-
(0,1)-(1,1)-…-(15,1)-(0,2)-…-(15,142). 

IV. The Detailed Operations of the Pipelined 
Macroblock Processing Method 

Figure 5 illustrates how to process the first 16 columns of the 
search positions of macroblock L. When the column 0 of the 
search positions is processed, macroblocks E-L are stored in 
the reference block buffer, and the search window data 
corresponding to the column 0 of the search positions of 
macroblock L are stored in the search window buffer. At this 
time, the search positions of x = –64 of macroblock L are 
processed. Simultaneously, the search positions of x = 48, x = 
32, x = 16, x = 0, x = –16, x = –32, and x = –48 of macroblocks 
E, F, G, H, I, J, and K are processed, respectively. Note that the 
search window data are common although the search positions 
of x displacement are different for macroblocks E-L. 

When the column 1 of the search positions is processed, the 

 

Fig. 5. Operations for the first 16 columns of search positions.
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search window data corresponding to the column 1 of the 
search positions of macroblock L are stored in the search 
window buffer. At this time, the search positions of x = –63 of 
macroblock L are processed. Simultaneously, the search 
positions of x = 49, x = 33, x = 17, x = 1, x = –15, x = –31, and 
x = –47 of macroblocks E, F, G, H, I, J, and K are processed, 
respectively. 

Similarly, the columns 2 to 15 of the search positions of 
macroblock L are processed. When the column 15 of the 
search position is processed, the search window data 
corresponding to the column 15 of the search positions of 
macroblock L are stored in the search window buffer. At this 
time, the search positions of x = –49 of macroblock L are 
processed. Simultaneously, the search positions of x = 63, x = 47, 
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x = 31, x = 15, x = –1, x = –17, and x = –33 of macroblocks E, F, 
G, H, I, J, and K are processed, respectively. 

Figure 6 illustrates how to process the macroblock change in 
the reference block buffer. When the column 15 of the search 
positions is processed, macroblock E is finished. After that, the 
column 16 of the search positions is processed, and macroblock 
M begins. At this time, macroblocks F-M are stored in the 
reference block buffer, and the search positions of x = –48 of 
macroblock L are processed. Simultaneously, the search positions 
of x = 48, x = 32, x = 16, x = 0, x = –16, x = –32, and x = –64 of 
macroblocks F, G, H, I, J, K, and M are processed, respectively. 
 

 

Fig. 6. Operations for the macroblock change in the reference
block buffer. 
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Figure 7 illustrates how to process the last 16 columns of the 
search positions of macroblock L. When the column 127 of the 
search positions is processed, macroblocks L-S are stored in 
the reference block buffer, and the search window data 
corresponding to the column 127 of the search positions of 
macroblock L are stored in the search window buffer. At this 
time, search positions of x = 63 of macroblock L are processed. 
Simultaneously, the search positions of x = 47, x = 31, x = 15, 
x = –1, x = –17, x = –33, and x = –49 of macroblocks M, N, O, 
P, Q, R, and S are processed, respectively. After processing the 
column 127 of the search positions, all the search positions of 
macroblock L are finished, and macroblock L is eliminated 
from the reference block buffer. 

 

Fig. 7. Operations for the last 16 columns of search positions.
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The proposed method has no additional latency at the frame 
boundary, since it does not perform motion estimation when 
the search position exceeds the frame boundary. Figure 8 
illustrates how to process macroblock H at the rightmost frame 
boundary, where T is the time required to perform the search 
operations for one column of search positions. For t ranging 
from 65T to 79T, no motion estimation is performed, and 
during this interval, the new search window data for 
macroblock I, J, K, L, and M are transferred into the search 
window buffer. 

V. Conclusion 

In this paper, we proposed an effective method that reduces 
the internal buffer size of the multimedia SoC. Our method 
exploits the overlap of search windows of consecutive 
macroblocks. The proposed method stores only the overlapped 
parts of the search windows in the internal buffer and performs 
motion estimation for consecutive macroblocks in parallel. It 
reduces the internal buffer size of multimedia SoCs to 1/5.0 
and 1/8.8 times when the search range is ±64×±64 and 
±128×±128, respectively. It does not increase the 
computational cost or the I/O bandwidth. It does not degrade 
the PSNR performance nor does it require any additional 
latency at the frame boundary. The proposed method makes it 
feasible to design high-performance multimedia SoCs with a 
large search range. 
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Fig. 8. Operations in the frame boundary. 

(a) Search window buffer stores the rightmost part of a frame. (b) Search window buffer transits from the rightmost
to leftmost part of a frame. 

(c) Search window buffer stores leftmost part of a frame.
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