
ETRI Journal, Volume 25, Number 5, October 2003 Seongsoo Lee et al. 297

A multimedia SoC often requires a large internal buffer,
because it must store the whole search window to reduce
the huge I/O bandwidth of motion estimation. However, the
silicon area of the internal buffer increases tremendously as
the search range becomes larger. This paper proposes a new
method that greatly reduces the internal buffer size of a
multimedia SoC while the computational cost, I/O
bandwidth, and image quality do not change. In the
proposed method, only the overlapped parts of search
windows for consecutive macroblocks are stored in the
internal buffer. The proposed method reduces the internal
buffer size to 1/5.0 and 1/8.8 when the search range is
±64×±64 and ±128×±128, respectively.

Keywords: Multimedia, VLSI, SoC, internal buffer size

reduction, motion estimation.

Manuscript received Jan. 15, 2003; revised Mar. 5, 2003.
This work was supported by the Soongsil University Research Fund.
Seongsoo Lee (phone: +82 2 820 0692, email: sslee@e.ssu.ac.kr) is with School of

Electronic Engineering, Soongsil University, Seoul, Korea.

I. Introduction

Block-matching motion estimation [1] is widely used in
many image compression standards [2], [3] because of its
simplicity and high efficiency. The highest compression ratio
can be obtained with the full search algorithm (FS) [1], which
exhaustively matches all possible candidates in the search
range. However, as the search range becomes larger, the
computational cost and the I/O bandwidth greatly increase,
which is a serious problem in multimedia system-on-a-chip
(SoC) design. To overcome these problems, many papers
have reported fast algorithms [4]-[8] that reduce the
computational cost substantially. However, they do not
efficiently improve the I/O bandwidth requirement. Recently,
in many multimedia SoCs, researchers have tried to alleviate
the I/O bandwidth problem by storing the whole search
window in an internal buffer [9]-[13], but a significant part of
the silicon area is occupied by the large internal buffer when
the search range is large.

In this paper, we propose a pipelined macroblock processing
(PMP) method that efficiently reduces the internal buffer size
of multimedia SoCs without increasing the I/O bandwidth. It
performs motion estimation on several consecutive
macroblocks in parallel. Because the search windows of these
consecutive macroblocks overlap, only their overlapped part
needs to be stored in the internal buffer. This efficiently reduces
the internal buffer size without increasing the I/O bandwidth
and can be applied to various multimedia SoCs exploiting the
motion estimation.

Pipelined Macroblock Processing to
Reduce Internal Buffer Size of

Motion Estimation in Multimedia SoCs

 Seongsoo Lee

298 Seongsoo Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

II. The I/O Bandwidth and the Internal Buffer Size of
Motion Estimation in a Multimedia SoC

In multimedia applications, the search range for motion
estimation should be large enough to cover the motion
displacements of fast-moving objects. Figure 1 shows the peak

Fig. 1. PSNR performance of the MPEG-2 motion estimation
for various search ranges.

(b)
Search range

8 16 32 64 128 whole
frame

P
S

N
R

 (d
B

)

16

18

20

22

24

26

28

30

32

Football

Flower

Popple

PRL Car

20

22

24

26

28

30

32

34

36

PRL Car

Popple

Flower

Football

(a)

Search range

8 16 32 64 128 whole
frame

P
S

N
R

 (d
B

)

signal-to-noise ratio (PSNR) performance of the MPEG-2
motion estimation, where the picture format is CCIR601
(720×480 pixels, 30 frames/s) and 45 frames are simulated
for each sequence. From the simulation results, appropriate
search ranges of P-pictures are ±64×±64, and for sequences
of one P-picture followed by two B-pictures, they are
±128×±128.

Both the computational cost and the I/O bandwidth of the
full search algorithm become too large for SoC implementation
if the search range exceeds ±64×±64 (Fig. 2). To reduce the
computational cost, various researchers have proposed fast
algorithms, such as the 4:1 alternate subsampling search
(4:1AS) [6] algorithm, the 4:1 search window subsampling
search (4:1SS) [8] algorithm, the one-dimensional full search
(1DFS) [5] algorithm, and the three-stage hierarchical block-
matching algorithm (3HBMA) [7]. As Table 1 shows, these
fast algorithms reduce the computational cost to 1/4–1/163, but
the required I/O bandwidth is not much reduced, assuming no
internal buffer is exploited to store pixel data.

The I/O bandwidth is greatly reduced if the search window

Fig. 2. Computational cost and I/O bandwidth of the MPEG-2 motion
estimation for various search ranges.

Search range

8 16 32 64 128

C
om

pu
ta

tio
na

l c
os

t

0

500

1000

1500

2000

2500

0

5

10

15

20

25

I/O
 b

an
dw

id
th

 (G
bp

s)

Computational cost
I/O bandwidth

Table 1. Computational cost, I/O bandwidth, and PSNR performance for various motion estimation algorithms.

Algorithm FS 4:1AS 4:1SS 1DFS 3HBMA

Computational cost (ops) 5.10×1011 1.28×1011 1.28×1011 1.19×1010 3.49×109

I/O bandwidth (bps) 6.80×109 7.13×109 2.09×109 2.41×109 7.05×109
±64×±64 search range

(MPEG2 P-picture
without B-pictures) PSNR performance (dB) 28.85 28.52 28.29 28.13 27.25

Computational cost (ops) 2.04×1012 5.10×1011 5.10×1011 2.38×1010 1.25×1010

I/O bandwidth (bps) 2.41×1010 2.73×1010 7.13×109 4.40×109 2.43×1010
±128×±128 search range

(MPEG2 P-picture
with two B-pictures) PSNR performance (dB) 26.57 26.16 25.95 25.38 25.00

ETRI Journal, Volume 25, Number 5, October 2003 Seongsoo Lee et al. 299

Table 2. I/O bandwidth and internal buffer size when the search window data are stored in an internal buffer.

Algorithm FS,4:1AS,1DFS,3HBMA 4:1SS

I/O bandwidth (bps) 8.29×108 2.70×108 ±64×±64 search range
(MPEG2 P-picture
without B-pictures) Internal buffer size (kbit) 188.4 50.2

I/O bandwidth (bps) 1.49×109 4.35×108 ±128×±128 search range
(MPEG2 P-picture

with two B-pictures) Internal buffer size (kbit) 630.8 160.8

Fig. 3. Overlap of the search window when the search range is ±64×±64.

E F G H

I J K L

0 15 16 31 32 47 48 63

64 79 80 95 96 111 112 127

64 79 48 95 32 111 16 127

0 143 16 15932 175 48 195

7

- 64 48 63

E F G H I J K L
0 127

CONVENTIONAL ALGORITHMCONVENTIONAL ALGORITHM

PROPOSED ALGORITHMPROPOSED ALGORITHM

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15

E F G H

I J K L

0 15 16 31 32 47 48 63

64 79 80 95 96 111 112 127

-64 79 -48 95 -32 111 -16 127

0 143 16 159 32 175 48 195

7

-64 48 63 195

E F G H I J K L
0 127

PROPOSED ALGORITHM

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15

CONVENTIONAL ALGORITHM

data are stored in an internal buffer (Table 2). However, the size
of the internal buffer is so large that its silicon area becomes
dominant in SoC implementation if the search range exceeds
±64×±64. Consequently, a new algorithm with a substantially
reduced internal buffer size is required.

III. The Pipelined Macroblock Processing Method

In the conventional multimedia SoC design, motion
estimation for each macroblock is processed sequentially on a
macroblock basis. For a search range of ±M×±M pixels and a

300 Seongsoo Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

macroblock size of N×N pixels, the current macroblock and
its whole search window data of (2M+N)×(2M+N) pixels
must be stored in the internal buffer for the motion estimation
of the current macroblock. The next macroblock and its
additional search window data of N×(2M+N) pixels must be
imported into the internal buffer before starting motion
estimation on it. Therefore, the required internal buffer size is
2{N2+(M+N)×(2M+N)} pixels.

In this paper, we propose an effective method for internal
buffer reduction called pipelined macroblock processing
(PMP), in which 2M/N macroblocks are processed in parallel.
The internal buffer size can be reduced by using the fact that
the search windows of consecutive macroblocks overlap.
Figure 3 illustrates the overlap of the search window when the
search range is ±64×±64 (M=64) and the macroblock size is
16×16 (N=16).

The search operation for a column of search positions is
performed over 2M/N macroblocks in parallel. Because N×
(2M+N) pixels of the search windows are overlapped for
2M/N macroblocks, only consecutive macroblocks of 2M×N
pixels and the overlapped search windows of the N×(2M+N)
pixels need to be stored in the internal buffer. Additional search
window data of 2M+N pixels must be imported into the
internal buffer before starting the search operation for the next
column of search positions. Similarly, the next macroblock of

N2 pixels must be imported before starting the motion
estimation for the next macroblock. Therefore, the total internal
buffer size is reduced to (2N+1)×(2M+N) pixels. The
reduction ratio of the internal buffer size is (2N+1)×(2M+N)/
2{N2+(M+N)×(2M+N)}, while the computational cost, the
I/O bandwidth, and the PSNR degradation do not increase at
all. Figure 4 shows the internal buffer reduction when the
search range is ±64×±64 (M=64) and the macroblock size is
16×16 (N=16).

In the proposed method, the search operation is performed
column by column, that is, the leftmost column of search
positions (–M,–M) – (–M,M–1) is processed first, then the next
column of search positions (–M+1,–M) – (–M+1,M–1) is
processed, and so on. Therefore, the proposed method can be
applied to all motion estimation algorithms in which the search
operation is performed column by column. Although it is
applied only to the full search algorithm in this paper, with only
minor modification, it can also be applied to many fast
algorithms (Table 3). Table 4 shows the reduction of internal
buffer sizes when the proposed method is applied to various
motion estimation algorithms. The internal buffer size for the
full search algorithm is reduced to 1/5.0 and 1/8.8 of the
original sizes when the search range is ±64×±64 and
±128×±128, respectively.

The proposed method can be applied to various motion

Fig. 4. Reduction of the internal buffer size when the search range is ±64×±64.

CONVENTIONAL METHOD PROPOSED METHOD
16 pixels 1 pixel

Additional search window data for
next column of search positions are

stored

Next macroblock data are
stored

Additional search window
data for next macroblock

are stored

Next macroblock
data are stored

64
64 63

63

14
3

pi
xe

ls

143 pixels 16 pixels

Table 3. Motion estimation algorithms to which the proposed method can be applied.

The proposed method can be
fully applied to:

The proposed method can be
partially applied to:

The proposed method
cannot be applied to:

• full search [1]
• 4:1 alternate subsampling search [6]
• 4:1 search window subsampling search [8]

• three-stage hierarchical block-matching [7]
(only first stage)

• one-dimensional full search [5]
• three-step search [4]

ETRI Journal, Volume 25, Number 5, October 2003 Seongsoo Lee et al. 301

Table 4. Reduction of the internal buffer size for various motion estimation algorithms.

Algorithm FS, 4:1AS, 3HBMA 4:1SS 1DFS

Conventional method (kbit) 188.4 50.2 188.4 ±64×±64 search range
(MPEG2 P-picture
without B-pictures) Proposed method (kbit) 38.0 23.6 N/A

Conventional method (kbit) 630.8 160.8 630.8 ±128×±128 search range
(MPEG2 P-picture

with two B-pictures) Proposed method (kbit) 71.8 44.6 N/A

estimation algorithms, so the possible implementation methods
depend on the basis algorithm (=original motion estimation
algorithm before applying the proposed method). In general,
the hardware and software overhead of the proposed method is
not large, since only the dataflow control part is modified.
When n processing elements are used in the basis algorithm,
the proposed method also employs the same number and same
type of processing elements. In most cases, the processing
elements occupy the majority of the silicon area. The overhead
of the dataflow control part is not negligible, but it is unlikely to
increase the total silicon area too much when compared to the
conventional algorithms.

In Fig. 4, the internal buffers import the pixel data for the
next macroblock from frame memory while processing the
current 8 macroblocks (shaded area in Fig. 4). The amount of
the memory access of the proposed method is the same as the
conventional algorithms, but the order of the memory access of
the search window data is different. As shown in Fig. 4, the
proposed method accesses the search window data in 1×143
order, i.e., (0,0)-(0,1)-(0,2)-…-(0,142), while conventional
algorithms access in 16×143 order, i.e., (0,0)-(1,0)-…-(15,0)-
(0,1)-(1,1)-…-(15,1)-(0,2)-…-(15,142).

IV. The Detailed Operations of the Pipelined
Macroblock Processing Method

Figure 5 illustrates how to process the first 16 columns of the
search positions of macroblock L. When the column 0 of the
search positions is processed, macroblocks E-L are stored in
the reference block buffer, and the search window data
corresponding to the column 0 of the search positions of
macroblock L are stored in the search window buffer. At this
time, the search positions of x = –64 of macroblock L are
processed. Simultaneously, the search positions of x = 48, x =
32, x = 16, x = 0, x = –16, x = –32, and x = –48 of macroblocks
E, F, G, H, I, J, and K are processed, respectively. Note that the
search window data are common although the search positions
of x displacement are different for macroblocks E-L.

When the column 1 of the search positions is processed, the

Fig. 5. Operations for the first 16 columns of search positions.

x position of search position

Macroblock in
reference block buffer

x position of search window data
in search window buffer

(0,0)

column of
search position

…

E F G H I J K L

51 35 19 3 -13 -29 -45 -61

E F G H I J K L

50 34 18 2 -14 -30 -46 -62

E F G H I J K L

49 33 17 1 -15 -31 -47 -63

E F G H I J K L

48 32 16 0 -16 -32 -48 -64

-64 -49

-63 -48

0

1

2

3

-62 -47

-61 -46

63 47 31 15 -1 -17 -33 -49

E F G H I J K L
-49 -34

15

…

search window data corresponding to the column 1 of the
search positions of macroblock L are stored in the search
window buffer. At this time, the search positions of x = –63 of
macroblock L are processed. Simultaneously, the search
positions of x = 49, x = 33, x = 17, x = 1, x = –15, x = –31, and
x = –47 of macroblocks E, F, G, H, I, J, and K are processed,
respectively.

Similarly, the columns 2 to 15 of the search positions of
macroblock L are processed. When the column 15 of the
search position is processed, the search window data
corresponding to the column 15 of the search positions of
macroblock L are stored in the search window buffer. At this
time, the search positions of x = –49 of macroblock L are
processed. Simultaneously, the search positions of x = 63, x = 47,

302 Seongsoo Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

x = 31, x = 15, x = –1, x = –17, and x = –33 of macroblocks E, F,
G, H, I, J, and K are processed, respectively.

Figure 6 illustrates how to process the macroblock change in
the reference block buffer. When the column 15 of the search
positions is processed, macroblock E is finished. After that, the
column 16 of the search positions is processed, and macroblock
M begins. At this time, macroblocks F-M are stored in the
reference block buffer, and the search positions of x = –48 of
macroblock L are processed. Simultaneously, the search positions
of x = 48, x = 32, x = 16, x = 0, x = –16, x = –32, and x = –64 of
macroblocks F, G, H, I, J, K, and M are processed, respectively.

Fig. 6. Operations for the macroblock change in the reference
block buffer.

x position of search window data
in search window buffer

15

16

Column of
search position

x position of search position

Macroblock
in reference block buffer

M

N

Next reference
block is stored in

this buffer

E F G H I J K L

63 47 31 15 -1 -17 -33 -49

F G H I J K L M

48 32 16 0 -16 -32 -48 -64

-48 -33

-49 -34

31

32

NJ K L M

63 47 31 15 -1 -17 -33 -49

F G H I

G H I J K L M N

48 32 16 0 -16 -32 -48 -64

-32 -17

-33 -18

...

...

O

Figure 7 illustrates how to process the last 16 columns of the
search positions of macroblock L. When the column 127 of the
search positions is processed, macroblocks L-S are stored in
the reference block buffer, and the search window data
corresponding to the column 127 of the search positions of
macroblock L are stored in the search window buffer. At this
time, search positions of x = 63 of macroblock L are processed.
Simultaneously, the search positions of x = 47, x = 31, x = 15,
x = –1, x = –17, x = –33, and x = –49 of macroblocks M, N, O,
P, Q, R, and S are processed, respectively. After processing the
column 127 of the search positions, all the search positions of
macroblock L are finished, and macroblock L is eliminated
from the reference block buffer.

Fig. 7. Operations for the last 16 columns of search positions.

x position of search position

Macroblock
in reference block buffer

x position of search window data
in search window buffer

…

63 78

49 64

48 63

At this time, search
for macroblock L

is ended

112

113

127

Column of
search position

T

U

48 32 16 0 -16 -32 -48 -64

L M N O P Q R S

49 33 17 1 -15 -31 -47 -63

L M N O P Q R S

L M N O P Q R S

63 47 31 15 -1 -17 -33 -49

M N O P Q R S T

48 32 16 0 -16 -32 -48 -64

…

The proposed method has no additional latency at the frame
boundary, since it does not perform motion estimation when
the search position exceeds the frame boundary. Figure 8
illustrates how to process macroblock H at the rightmost frame
boundary, where T is the time required to perform the search
operations for one column of search positions. For t ranging
from 65T to 79T, no motion estimation is performed, and
during this interval, the new search window data for
macroblock I, J, K, L, and M are transferred into the search
window buffer.

V. Conclusion

In this paper, we proposed an effective method that reduces
the internal buffer size of the multimedia SoC. Our method
exploits the overlap of search windows of consecutive
macroblocks. The proposed method stores only the overlapped
parts of the search windows in the internal buffer and performs
motion estimation for consecutive macroblocks in parallel. It
reduces the internal buffer size of multimedia SoCs to 1/5.0
and 1/8.8 times when the search range is ±64×±64 and
±128×±128, respectively. It does not increase the
computational cost or the I/O bandwidth. It does not degrade
the PSNR performance nor does it require any additional
latency at the frame boundary. The proposed method makes it
feasible to design high-performance multimedia SoCs with a
large search range.

References
[1] J. Jain and A. Jain, “Displacement Measurement and its

ETRI Journal, Volume 25, Number 5, October 2003 Seongsoo Lee et al. 303

t=
0T

se
ar

ch
 w

in
do

w
 b

uf
fe

r

re
fe

re
nc

e
bl

oc
k

bu
ffe

r

I

A
B

C
D

E
F

G
H

B
C

D
E

F
G

H

I
J

C
D

E
F

G
H

D
E

F
G

H

E
F

G
H

I
J

K

I
J

K
L

16
T

32
T

48
T

64
T

48
63

32
47

16
31

0
15

A
B

C
D

F
G

H

0
15

B
C

D

0
15

C

I J
I

D
K

J
0

15
I

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

E
F

G
H

E
F

G
H

F
G

H

K
J

48
63

0
15

I
no

t o
pe

ra
te

d
no

t o
pe

ra
te

d
L

E
G

H
no

t o
pe

ra
te

d

D E

32
47

F

-6
4

- 4
9

-4
8

-3
3

-4
8

-3
3

-3
2

-1
7

-3
2

-1
7

-3
2

-1
7

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

- 1
6

-1

- 1
6

-1

- 1
6

-1

E - 1
6

-1

16
31

16
31

16
31

16
31

32
47

32
47

32
47

48
63

48
63

48
63

J
48

63
32

47
16

31
0

15
I

L
E

F
G

H

J
I

L
E

F
G

H

J
I

L
E

F
G

H

F
G

H
K

J
I

M
0

15
-1

6
-1

- 3
2

- 1
7

- 4
8

- 3
3

- 6
4

- 4
9

se
ar

ch
 w

in
do

w
 b

uf
fe

r

re
fe

re
nc

e
bl

oc
k

bu
ffe

r

K
J

K
J

K
J K

L
0

15
-

-
-

-
-

-
-

-

I
J

K
L

E
F

G
H

E
F

G
H

I
J

K
L

I
J

K
L

E
F

G
H

F
G

H
I

J
K

L
M

t=
64

T

65
T

69
T

80
T

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

F
G

K
J

I
L

M

G
H

K
J

I
L

M
N

48
63

16
31

H
K

J
I

L
M

N
O

32
47

K
J

I
L

M
0

15
N

O
P

se
ar

ch
 w

in
do

w
 b

uf
fe

r

re
fe

re
nc

e
bl

oc
k

bu
ffe

r

H
M N O P

t=
80

T

96
T

11
2T

12
8T

I
J

K
L

M
F

G
H

G
H

I
J

K
L

M

H
I

J
K

L
M

O

I
J

K
L

M
O

- 6
4

- 4
9

-
-

- 6
4

- 4
9

-
-

- 6
4

- 4
9

-
-

- 6
4

- 4
9

-
-

- 4
8

- 3
3

-
-

- 4
8

- 3
3

-
-

- 4
8

- 3
3

-
-

- 4
8

- 3
3

-
-

- 3
2

- 1
7

-
-

- 3
2

- 1
7

-
-

- 3
2

- 1
7

-
-

- 3
2

- 1
7

-
-

- 1
6

- 1
-

-

- 1
6

- 1
-

-

- 1
6

- 1
-

-

- 1
6

- 1
-

-

0
15

0
15

0
15

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

no
t o

pe
ra

te
d

16
31

16
31

32
47

no
t o

pe
ra

te
d

Fig. 8. Operations in the frame boundary.

(a) Search window buffer stores the rightmost part of a frame. (b) Search window buffer transits from the rightmost
to leftmost part of a frame.

(c) Search window buffer stores leftmost part of a frame.

Application in Interframe Image Coding,” IEEE Trans. Commun.,
vol. COM-29, no. 12, Dec. 1981, pp. 1799-1808.

[2] ISO/IEC JTC1/SC29/WG11 13818-1, Coding of Moving Pictures
and Associated Audio, Nov. 1994.

[3] CCITT SG XV, Recommendation H.261-Video Codec for
Audiovisual Services at p*64 kbit/s, Aug. 1990.

[4] T. Koga, “Motion Compensated Interframe Coding for Video-
Conferencing,” Proc. National Telecommunication Conf., 1981,
pp. G5.3.1-G5.3.5.

[5] M. Chen, L. Chen, and T. Chiueh, “One-Dimensional Full Search
Motion Estimation Algorithm for Video Coding,” IEEE Trans.
Circuits Syst. for Video Technol., vol. 4, no. 5, Oct. 1994, pp. 504-
509.

[6] B. Liu and A. Zaccarin, “New Fast Algorithms for the Estimation
of Block Motion Vectors,” IEEE Trans. Circuits Syst. Video
Technol., vol. 3, no. 2, Apr. 1993, pp. 148-157.

[7] M. Biering, “Displacement Estimation by Hierarchical Block
Matching,” Proc. SPIE Visual Communication and Image
Processing, 1988, pp. 942-951.

[8] H. Jong, L. Chen, and T. Chiueh, “Accuracy Improvement and
Cost Reduction of 3-Step Search Block Matching Algorithm for
Video Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 4,

no. 1, Feb. 1994, pp. 88-90.
[9] H. Lin and B. Petryna, “A 14 GOPS Programmable Motion

Estimator for H.26x Video Coding,” Proc. Int’l Solid-State
Circuits Conf., 1996, pp. 246-247.

[10] T. Onoye et al., “Single Chip Implementation of Motion Estimator
Dedicated to MPEG2 MP@HL,” IEICE Trans. Fundamentals,
vol. E79-A, no. 8, Aug. 1996, pp. 1210-1216.

[11] M. Mizuno et al., “A 1.5-W Single Chip MPEG-2 MP@ML
Video Encoder with Low Power Motion Estimation and
Clocking,” IEEE J. of Solid-State Circuits, vol. 32, no. 11, Nov.
1997, pp. 1807-1816.

[12] P. Kuhn et al., “A Flexible Low-Power VLSI Architecture for
MPEG-4 Motion Estimation,” Proc. SPIE Visual Communication
and Image Processing, 1999, pp. 883-894.

[13] Y. Lai, “A Memory Efficient Motion Estimator for Three Step
Search Block-Matching Algorithm,” IEEE Trans. Consumer
Electron., vol. 47, no. 3, Aug. 2001, pp. 644-651.

304 Seongsoo Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

Seongsoo Lee received the BS, MS, and PhD
degrees in electrical engineering from Seoul
National University, Korea in 1991, 1993, and
1998. From 1998 to 2000, he was a Research
Associate in the Institute of Industrial Science,
University of Tokyo, Japan. From 1998 to 2002,
he was a Research Professor in Department of

Information Electronics Engineering at Ewha Womans University in
Korea. Since 2002, he has been an Assistant Professor in the School of
Electronics Engineering, Soongsil University, Korea. His research
interests include low-power VLSI systems, low-power wireless
communications, multimedia signal processing, wireless sensor
network, high-speed circuits, and signal integrity.

