
464   Seungyun Lee et al. ETRI Journal, Volume 25, Number 6, December 2003 

Component-based development leverages software 
reusability and reduces development costs. Enterprise 
JavaBeans (EJB) is a component model developed to 
reduce the complexity of software development and to 
facilitate reuse of components. However, EJB does not 
support component assembly by a plug-and-play technique 
due to the hard-wired composition at the code level. To cope 
with this problem, an architecture for EJB component 
assembly is defined at the abstract level and the 
inconsistency between the system architecture and its 
implementation must be eliminated at the implementation 
level. We propose a component-based application 
development tool named the COBALT assembler that 
supports the design and implementation of EJB component 
assembly by a plug-and-play technique based on the 
architecture style. The system architecture is first defined by 
the Architecture Description Language (ADL). The 
wrapper code and glue code are then generated for the 
assembly. After the consistency between the architecture 
and its implementation is checked, the assembled EJB 
components are deployed in an application server as a new 
composite component. We use the COBALT assembler for 
a shopping mall system and demonstrate that it can 
promote component reuse and leverage the system 
maintainability. 
 

Keywords: Component assembler, architecture, CASE 
tool, COBALT assembler, Enterprise JavaBeans (EJB). 
                                                               

Manuscript received Jan, 21, 2003; revised May 20, 2003. 
This work was supported by the National Research Laboratory (NRL) Program of the 

Ministry of Science and Technology of Korea. 
Seungyun Lee (phone:+82 42 860 1186, email: coral@etri.re.kr), Oh-Cheon Kwon (email: 

ockwon@etri.re.kr), and Gyu-Sang Shin (email: gsshin@etri.re.kr) are with Computer & 
Software Research Laboratory, ETRI, Daejeon, Korea. 

I. Introduction 

There has been considerable work on component-based 
development (CBD) in the software industry. Component 
models such as Enterprise JavaBeans (EJB) [1], component 
object model (COM+) and common object request broker 
architecture (CORBA) [2] component model (CCM) have 
emerged to reduce the complexity of software development 
and to facilitate reuse of components [3]. By using a 
component model, a piece of software can be plugged into 
many different systems. CBD allows integration of external, 
off-the-shelf software and supports a plug-and-play technique 
which makes building and replacing software easier [4], [5]. As 
a component model of the server side, EJB was developed 
with the intention of reusing components on various platforms 
without code modification or a re-compiling process. 

However, it is difficult to assemble various EJB components 
provided by third parties using a plug-and-play technique for 
the following reasons. Firstly, since a component model has a 
wide variety of vendor specific methods for implementing an 
infrastructure or middleware, it is difficult to assemble the 
components generated from different infrastructures or 
middleware. Secondly, the plug-and-play assembly of the EJB 
components and the flexible reconfiguration of a system model 
built by the assembly process are difficult since methods have 
to be directly invoked for the interactions between the EJB 
components. This means that the method of a component 
should be invoked at a client level where the component is 
reused, and the client code should have method invocation 
logics for components’ interactions [6]. 

In order to solve the first problem with assembling the EJB 
components, [7] suggested the enterprise application 
integration (EAI) technique. The EAI technique attempts to 

Visual Component Assembly and Tool Support 
Based on System Architecture 

 Seungyun Lee, Oh-Cheon Kwon, and Gyu-Sang Shin  



ETRI Journal, Volume 25, Number 6, December 2003  Seungyun Lee et al.   465 

integrate legacy systems into an enterprise system. However, 
since the system integration techniques developed by various 
vendors are different, the component models and EAI 
techniques are dependent on the vendors that develop the 
infrastructure and middleware for supporting the models. 
Although this critical defect can be overcome by connecting 
the various middleware and application server platforms [8], 
there still remains the problem of assembling the EJB 
components themselves. 

For the second problem, the architecture technology is used 
for the component assembly by a plug-and-play technique at 
the abstract level. A well-defined architecture can be used to 
analyze, refine, and test functions of the software system to be 
developed. Accordingly, if the EJB components are assembled 
using the architecture, the assembled EJB components can be 
exactly connected and operated through modeling, analyzing, 
and refining the architecture. The architecture consists of 
components and connectors, and each component is regarded 
as an independent piece of software. A connector plays the role 
of controller in the system architecture, and each component 
communicates with other components through the connector. 
When the component is considered independent in the system, 
it can be assembled or replaced by plug-and-play without 
influencing other components. Furthermore, by expressing the 
interacting EJB components in the Architecture Description 
Language (ADL), which is independent of the code, the 
interactions among EJB components can be managed 
separately from the EJB implementation. In this way, EJB 
components can easily communicate with each other and a 
component can be replaced with a new component without 
changing the code. The architecture for component assembly is 
defined in the system design phase and any inconsistencies 
between system design and implementation can be eliminated 
at the implementation phase by assembling the components 
using the architecture [9]. 

We propose the component-based application development 
tool (COBALT) assembler to support the design and 
implementation for component assembly, enabling a visual 
description of the system’s architecture and flexible 
reconstruction of the EJB component system. It assembles pre-
built components into specific application software or a large-
grained component (i.e., a composite component). The 
generated architecture is expressed by ADL corresponding to 
the C2 architectural style, which consists of components and 
connectors [10]-[12]. The components and connectors have 
defined top and bottom ports. The components communicate 
with each other by passing messages through the connectors. 
The message-based communication of the C2 architectural 
style makes components independent from other components 
and simplifies the problem of integration. The architecture 

description plays a role in generating wrapper and glue code 
for assembling the components. The COBALT assembler 
checks the consistency between the architecture and 
implementation and ensures the ‘communication integrity’ of 
the system [13]. Connecting a composite component to a client 
program implements the application system. 

This paper is organized as follows. Section II outlines 
previous work. Section III presents the method for EJB 
component assembly and the overall structure and its 
implementation as a subsystem of the COBALT assembler. 
Section IV describes how our case study using a shopping mall 
system evaluates our tool. Finally, section V describes our 
conclusions and planned future work. 

II. Previous Work 

There has been little work on component assembly using 
architectural styles and supporting tools. Rosenblum put 
architectural concerns in JavaBeans component interoperability 
and implemented the tool, ARABICA [14]. It supports 
JavaBeans component assembly according to the C2 
architectural style. Using a wrapping method, ARABICA maps 
JavaBeans components to C2 components. It also provides an 
editor for handling JavaBeans’ attributes, methods, and events. 
However, this approach has a weakness in that the JavaBeans 
component model supports not server side components but 
GUI components. JavaBeans components can be assembled 
with other GUI components without adding business logic to 
its defined properties. In the case of assembling EJB 
components at the server level, however, each component must 
handle the business logic. Furthermore, multiple beans can be 
packaged together. In this case, the properties of beans and their 
interoperability in the EJB Jar need to be considered when EJB 
Jar components are assembled. ARABICA supports JavaBeans 
component assembly by a plug-and-play style, but it limits the 
scope to the components at the GUI level, not at the server 
level. 

Hong proposed the architectural style, DSIAS, to integrate 
COTS components in distributed environments and built a 
guideline for the system design using DSIAS [15]. DSIAS 
supports wrapping and adapting technology to reuse COTS 
components in various platforms. It defines two coordinators, 
the UI generator and task coordination controller. Since the 
coordinators are in charge of a communication port between 
users and COTS components, they simplify interactions of 
components. However, this work does not provide a guideline 
for connecting system designs to system implementations. 
Since the system designs based on DSIAS do not guide an 
implementation process or a technique, assembling COTS 
components is still difficult at the implementation phase. 



466   Seungyun Lee et al. ETRI Journal, Volume 25, Number 6, December 2003 

Although this work proposes an architectural style, it does not 
describe a well-defined architecture using ADL. Its weakness 
lies in defining, analyzing, refining, and testing the architecture. 

For developing new systems by assembling EJB 
components, an assembly environment by plug-and-play is 
required. To achieve this goal, we propose the COBALT 
assembler, a tool that supports the assembly of EJB 
components and describes the architecture by the ADL 
according to the C2 architectural style and generates a wrapper 
and glue code for assembling components. 

III. COBALT Assembler 

This section describes the COBALT assembler, which 
supports the design and implementation of the EJB component 
assembly process. This tool makes it possible to describe the 
system architecture and component structure at the abstract 
level using ADL and to generate code for the assembly that 
conforms to the defined architecture. 

1. Method for Component Assembly 

To develop an application system by assembling 
components, information about domain and user requirements 
is necessary. A domain analysis phase supports domain 
modeling and component identification for the system 
development. Component identification has recently been done 
by the intuition and experience of domain experts. A systematic 
method was proposed and implemented in the COBALT 
constructor that was developed in parallel with the COBALT 
assembler and provides many features such as component 
identification, component modeling, component 
implementation, component deployment and testing [16]. The 
identified components make up the application system 
architecture. The design phase is divided into two steps: one is 
for the system architecture design, which shows the big 
picture of the system and the interaction of the components; 
the other is for the component structure design, which 
supports plug-and-play assembly and provides the basis for an 
implementation technique. ADL describes the system 
architecture and component structure. The descriptions of 
these structures are used to generate the wrapper and glue 
code in the implementation phase of component assembly 
after verifying architectural properties. Figure 1 shows the 
process of the component assembly. 

System architecture defines the complex interaction among 
components at the abstract level. A connector manages the 
interfaces of the components. The connector supports plug-
and-play assembly by keeping components in the system 
independent. The component structure design acts as an 

  

 

 

Fig. 1. Process of component assembly. 

1) Components’ interaction modeling 
2) Define component’s interface and 

connector 
3) Describe architecture using the ADL 

1) Analyze component’s characteristics 
2) Define component’s interface based on 

message passing mechanism 
3) Define component’s behavior  
4) Describe component structure using 

the ADL 

1) Generate wrapper code based on 
framework 

2) Generate glue code and a composite
component based on framework 

3) Deploy and test a composite component 

Domain analysis and modeling Domain analysis 

System architecture design

Component structure design

Component assembly & 
system implementation 

Architectural reasoning 
1) Check communication integrity between 

architecture and implementation 

 
 
intermediary for implementing the interface of message-based 
components. The plug-and-play assembly of EJB components 
cannot be done by method invocation. For easy and flexible 
assembly, method invocations among components should be 
changed into messages by a message passing mechanism. 
Using information of an EJB component’s code, a component 
structure design defines a component’s ports and expresses a 
component’s interfaces, methods, and behaviors at the abstract 
level. After describing a system architecture and a component 
structure, communication integrity among the assembled EJB 
components should be verified. The wrapper code is generated 
from a flawless component description. The glue code is 
generated from the interaction of the sound components. The 
composite component is implemented for reusing the system 
architecture and tested in the run time environment. 

2. Architectural Description for EJB Component Assembly 
Since interactions among EJB components are made by 

method invocations, the plug-and-play component assembly 
and the flexible reconfiguration of a system model are very 
difficult. Therefore, components’ interaction should be defined 
at the abstract level, not at the implementation. 

To abstract the definition of EJB components, architectural 
concerns should be implied in the component assembly and 
system development. The system architecture consists of 
components and connectors. Components communicate with 
each other by passing messages through connectors. For each 
component, internal methods and interfaces are defined. When 
a component gets a message from the outside through the 
interface, it performs the action stated in its behavior. This 
makes it possible for clients not to invoke a component’s 



ETRI Journal, Volume 25, Number 6, December 2003  Seungyun Lee et al.   467 

internal method directly. Since components’ interaction 
through the interface is implemented by the connector, it 
enables easy substitution and independent execution of 
components. 

We described our system architecture for the EJB 
component assembly using ADL according to the C2 
architectural style. The C2 architecture was developed by the 
University of California at Irvine. Figure 2 shows the block 
diagram that represents the C2 architectural style. 
 

  

 

 

Fig. 2. C2 architectural style. 

component 

connector 
communication link 

 
C1 

 
C2 

 
C3 

requests 
notifications

 
C4 

in/out  

in/out  

 

 
The C2 architectural style, as with most other styles of 

architecture, consists of components and connectors. The C2 
components are connected to each other through connectors 
and have two ports: top and bottom ports. A C2 connector can 
have multiple top or bottom ports. The top of a component 
may be linked to the bottom of a single connector, and the 
bottom of a component may be linked to the top of a single 
connector. 

When a C2 component receives messages incoming from the 
outside via the top or bottom ports, it may invoke its own 
methods and may also generate messages that go out to the 
outside via the top or bottom ports. There are two types of 
messages: a notification and a request. As shown in Fig. 2, a 
notification is sent downward through C2 architecture via the 
bottom out/top in port of a component, while a request is sent up 
via the top out/bottom in port. The style has no restrictions on 
the implementation language or the granularity of components 
and connectors. Its message-based communication simplifies 
the problem of control integration and facilitates 
interchangeability of components. These features make it 
possible to assemble EJB components by plug-and-play. 

We redefined the C2SADL, which is an ADL developed by 
the University of California at Irvine, to achieve EJB 

  

 

 

Fig. 3. Syntactic structure of the ADL. 

type

*

type 

top bottom
Brick 

instance

* 

*

* comp_ decl * topologyConn_decl * 

*

*

ADN Model

Connector Port

Method

Behavior

top

bottom

* *

Note

*

Message

out in

IDN Model

*

*

Package

TypeImport

ADL 

Architecture Component 

Component 
instance 

Connector 
instance Binding

 
 
components assembly based on architecture. Figure 3 shows 
the syntactic structure of our redefined ADL described in 
Unified Modeling Language [17]. 

As the figure shows, ADL consists of two types of notations: 
architecture description notation (ADN) and component 
interface definition notation (IDN). The two notations of the 
ADL, ADN and IDN, correspond to those of C2SADL. We 
specified the ADL in LL(1) grammar to support recursive-
descent parsing. We redefined the C2SADL syntax and 
semantics to increase the expressive power of the EJB 
component specification. The redefined features of the ADL 
(IDN description) are as follows: 1) mapping relations between 
the formal parameters of received messages and the actual 
parameters of invoked methods or generated messages; 2) 
naming the component of an invoked method; 3) naming of 
the return value of an invoked method; 4) supporting 
conditional method invocation and message generation. Our 
ADL supports the mechanisms of packaging and importing 
Java programming language to our ADL. 

3. Description of the System Architecture and Component 
Structure 

To develop an application system by assembling 
components, a design phase is divided into two steps: one for 
the system architecture design, which shows the big picture of 
the system and the interaction of the components, and the other 
for the component structure design, which supports plug-and-
play assembly and provides the basis for an implementation 
technique. The ADL mentioned in section III.2 describes the 
system architecture and component structure. The descriptions 
of these structures are used to generate the wrapper and glue 
code in the implementation phase of the component assembly. 

A system architecture defines the complex interaction among 
components at the abstract level. Identified components and 
connectors can form a system. Components’ interaction is 



468   Seungyun Lee et al. ETRI Journal, Volume 25, Number 6, December 2003 

modeled to satisfy the system’s requirements, and the 
operations of each component are defined. Through linking 
components to connectors, components’ various interfaces are 
provided to the outside from the connector. The connector 
supports plug-and-play assembly by managing interfaces of 
components and bridging their mismatched interfaces. The 
system architecture is described by the Java-like ADL 
mentioned in section III.2. Figure 4 shows the syntax of the 
ADN, which consists of three system elements: components, 
connectors, and binding information. 
 

  

 

 

Fig. 4. The syntax of ADN describing the system architecture.

<architecture> ::= 
<package> 
<import> 
architecture <arch_name> { 

ε | 
components { 

[ <context> <comp_name>  
<comp_inst_name_list> ; ]* 

} 
connectors {  

[ <conn_name> <conn_inst_name_list> ; ]* 
} 
topology { 

binding <conn_inst_name> { 
top = { <brick_inst_name_list> } ; 
bottom = { <brick_inst_name_list> } ; 

} 
} 
notes { 

[ <brick_inst_name> = <note> ; ]* 
} 

} 

*

 
 

The component structure defines the interaction of EJB 
components as a message-passing style. The EJB components’ 
plug-and-play assembly cannot be done through a method 
invocation due to the hard-wired composition at the code level. 
For easy and flexible assembly, method invocations among 
components should be changed into message passing. The 
component structure defines a component’s ports (i.e., a 
component’s interfaces), methods, and behaviors at the abstract 
level according to the C2 architectural style [18]. 

For describing the component structure, the information on 
each EJB component’s implementation, such as classes, 
interfaces, methods, and attributes information, should be 
referenced for identifying the component’s messages and 
methods. The component’s interface is made of ‘request’ and 
‘notify’ messages. The component’s method is identified from 
the EJB component’s method signature. After defining the 

  

 

 

Fig. 5. The syntax of IDN describing the component structure.

<component> ::= 
<package> 
<import> 
component <comp_name> { 

ε | 
port top { 

out { <msg_decl_list> } 
in { <msg_ decl_ list> } 

} 
port bottom { 

out { <msg_ decl_ list> } 
in { <msg_ decl_ list> } 

} 
methods { <method_decl_list> } 
behavior { 

[ startup { <invoked_methods> <generated_msgs> } ] 
[ cleanup {<invoked_methods> <generated_msgs> } ] 
[ received <received_msg> { <invoked_methods> 
<generated_msgs> } ]* 

} 
} 
<method_decl_list> ::= ( <type> <m_signature_1> ; )* 
<m_signature_1> ::= <id_list> ( <param_list_1> ) 

 
 
component’s messages and methods, the component’s 
behavior describes how to act according to messages received 
from other components. Startup, execution, and cleanup 
behaviors are defined as message flows and method executions, 
(Fig. 5). 

While the system architecture design provides the basic 
framework for components’ plug-and-play assembly, the 
component structure design acts as an intermediary for 
implementing the message-based component’s interface. 

4. Architectural Reasoning for EJB Component Assembly 

Based on the descriptions of the system’s architecture and a 
component’s structure, the code is generated for component 
assembly. The wrapper code enables EJB components to pass 
messages for communications. The glue code enables EJB 
components to connect to each other for implementing the system. 
The code should be generated from complete architecture 
descriptions so that the implemented system runs in a deliberate 
way. Architectural reasoning ensures the communication integrity 
between the architecture and implementation. 

The wrapper code is generated from a flawless component 
description. This means that messages defined at a top/bottom 
port should be shown in the component’s behavior description, 
recognizing received messages as the starting point of the 
behavior. EJB component’s interface signatures should be 
selected and used for describing the component structure 



ETRI Journal, Volume 25, Number 6, December 2003  Seungyun Lee et al.   469 

 

Fig. 6. Architectural reasoning between the component structure
and its wrapper code. 

Min: messages defined as ‘Top/Bottom In’ messages 

Mout: messages defined as ‘Top/Bottom Out’ messages 

R: received message       G: generated message 

 

r ∈ Min, g ∈ Mout, ∀ r ∈ R, g ∈ G 

 
 
conforming to the constraints of the C2 architectural style. 
Figure 6 shows the rule for generating the wrapper code 
corresponding to the component structure. 

The glue code is generated from the sound components’ 
interaction. Interactions defined as the message passing style 
should not be lost during implementation. This means that all 
declared request messages outgoing from the top port of a 
component are included in the set of incoming messages of all 
components connected above the component, and that all 
declared notification messages outgoing from the bottom port 
of a component are included in the set of incoming messages 
of all components connected below the component. If all 
outgoing messages from the top and bottom ports of a 
component are not included in the incoming messages of the 
components connected to the component, the architecture has 
type errors and does not generate the glue code during the 
implementation phase. Figure 7 shows the rule for checking the 
type error in the architecture. 
 

 

Fig. 7. Architectural reasoning for the communication integrity.

Ci: i-th component, Cj: j-th component, 

Ck: k-th component 

 

M(Tin)i: Incoming messages from the Top port of a component, Ci 

M(Tout)i: Outgoing messages from the Top port of a component, Ci 

M(Bin)i: Incoming messages from the Bottom port of a component, Ci 

M(Bout)i: Outgoing messages from the Bottom port of a component, Ci 

 

Ci is connected to Cj and Ck at the lower level, ∀ Ci, Cj, Ck 

 

M(Tout)j ⊂ M(Bin)i AND M(Tout)k ⊂ M(Bin)i 

M(Bout)i ⊂ (M(Tin)j ⊗ M(Tin)k) 

 
 

The COBALT assembler has a model checker that verifies 
the consistency of the system. Components in the architecture 
communicate with others through connectors. The message 
from a component should be passed to at least one of the 
components connected to it by a connector. A loss of messages 
in the architecture is not allowed so that the generated code can 
ensure the sound interaction of EJB components. 

5. Component Assembly and System Implementation 

Descriptions of the system architecture and component 
structure are necessary to implement the component assembly. 
The wrapper code is generated from the component structure 
description. It helps a component support plug-and-play 
assembly. The glue code is generated from the system 
architecture description. It binds the system architecture of the 
C2 architectural style to EJB component implementation. 
 

 

Fig. 8. Process of component assembly and system implementation.

Establish an architecture framework 
- Provide the basis for implementing the architecture 
- Referencing C2 framework for Java, developed C2 framework for EJB 

Component
structure

description

Bind component structure description to implementation
- Generate wrapper code to bind component 

description to EJB component implementation 

System
architecture
description

Bind system architecture description to implementation
- Generate the glue code to bind the C2 system

architecture to EJB component implementation 
- Implement a system architecture as a 

composite component 

Deploy and test composite component’s interfaces 
- Deploy a composite component to the application server 
- Test composite component’s interfaces 

 
 

Figure 8 shows the detailed process of the component 
assembly and system implementation; we explain each step 
below. 

1) Establish an architecture framework—A framework is 
necessary to bind the design phase and implementation phase. 
This paper references and modifies the C2 framework for the 
implementation of EJB components. It provides elements, such 
as a component, a connector, component’s interfaces, a method, 
a behavior, etc., to be implemented in the architecture. 

2)  Bind a component structure description to the 
implementation—The wrapper code is generated from the 
component structure description to make components 
independent and support plug-and-play assembly. It binds the 
component structure of the design phase to the reusable 
component, converting the component behavior from the 
message invocation style to the message passing style. 

3)  Bind a system architecture description to the 
implementation—The glue code is generated to bind EJB 
components to the C2 based system architecture. Using the C2 



470   Seungyun Lee et al. ETRI Journal, Volume 25, Number 6, December 2003 

framework, a composite component is generated 
corresponding to the system architecture. The composite 
component enables component users to reuse the architecture 
itself as a new component. 

4)  Deploy and test a composite component’s interfaces—A 
composite component that is generated in step 3 can be 
deployed to the application server as a new EJB component. Its 
operation corresponds to the system architecture, and its 
interfaces are tested for the system validation. 

6. Structure of the COBALT Assembler 

This section shows the structure of the COBALT assembler. 
The COBALT assembler supports the architecture design and 
implementation of EJB components’ plug-and-play assembly. 
Before the system architecture is designed, information about 
the domain and user requirements are required. Components 
for the system development are identified by domain modeling, 
and identified components make up the application system 
architecture. The COBALT assembler assumes that the 
developer has already analyzed the system requirements and 
selected candidate components for the system implementation. 

Components identified from the domain analysis are 
assembled at the abstract level using an architecture editor. 
Commercial off-the-shelf EJB components can be assembled 
by drag-and-drop in the architecture editor. Components and 
connectors are bound to each other. The topology information 
of the architecture is saved in the system architecture 
description file. A model checker verifies whether the 
architecture is well defined according to communication 
integrity within the constraints of the C2 rule. An architecture 
model is manipulated by the model checker in two kinds of 
internal representations: syntactic and semantic models. The 
syntactic model represents the parse tree of the architecture 
model as a result of syntactic analysis. The semantic model is 
generated for use in style checking such as communication 
integrity. 

A component information analyzer provides the 
component’s characteristics. It analyzes the deployment 
descriptor file of an EJB component and provides useful 
information to describe the component structure. Information 
such as operations and properties is used for describing the 
component structure using a component specification editor. 
The description file of a component structure is generated after 
the component specification editor edits the component’s 
interfaces, methods, and behaviors. The model checker 
analyzes and checks the component structure description, as in 
the architecture description. 

We developed a new application system using a system 
architecture description file and a component structure 

description file. A wrapper generator creates the wrapper code 
using the component structure and component implementation 
information. The wrapper code replaces method invocations of 
the EJB component with messages passing through the top and 
bottom interfaces. The message handling logic of the wrapper 
code is formed from the behavior description of the component 
structure. Composite component/glue code generators create 
code for binding EJB components to the C2-based system 
architecture. A new composite component is a new stateless 
session bean which is formed by a combination of messages 
included in the bottommost component of the architecture. The 
composite component provides the functionality of the whole 
architecture. The composite component is deployed to the 
application server and its interfaces are tested [19], [20]. 

Figure 9 shows the relationships between subblocks of the 
COBALT assembler and their artifacts. For the component 
assembly and system development, several artifacts are 
generated: the architecture description, the wrapper code, the 
glue code, etc. Those artifacts are generated by submodules of 
the COBALT assembler. 
 

 

Fig. 9. Subblocks of COBALT assembler and their artifacts. 

Architecture/component description 

<<document>>
Architecture
description

<<document>> 
ADL 

specification 

<<document>>
Component
description

syntax/ 
semantics 

System architecture design

Architecture
model 

Model
checker

Component structure description

Component 
model 

Component
information

analyzer

Component
specification

editor 
Architecture

editor 

<<code>> 
Glue code/
composite 

component code

Composite component/ 
glue code generator 

<<code>> 
Wrapper 

<<code>> 
Component 

Deployer/tester

Component assembly & system implementation

Wrapper
generator

 

IV. Case Study Using Shopping Mall Components 

To evaluate the method of EJB component assembly and its 
implementation with the COBALT assembler, we did a case 
study on a shopping mall system. We identified seven 
components for the system development by EJB component 
assembly. The components’ functions are as follows. 

– Mail: sends or receives the mail. 



ETRI Journal, Volume 25, Number 6, December 2003  Seungyun Lee et al.   471 

– Category: manages the category information of the 
product. 

– Member: manages customer information. 
– Payment: manages customer’s payment information. 
– Company: manages the information of the third party 

company providing shopping mall products. 
– Product: manages the product information. 
– Order: manages product orders. 

1. System Architecture Design Using the COBALT 
Assembler 

The first step of the system architecture design is to model 
the interactions of the components. The interfaces of the 
components are defined through modeling the components’ 
interactions, and a connector can manage the interfaces. Figure 
10 describes the system architecture using the COBALT 
assembler. 

The COBALT assembler provides the graphical and textual 
editors to build the system architecture. To assemble EJB 
components, the tool user can drag and drop the EJB 
components (EJB Jars) from the composite palette, which 
browses EJB jars in the directory and shows the files in it. 
 

 

Fig. 10. System architecture of the shopping mall system 
described using COBALT assembler.  

2. Component Structure Description Using the COBALT 
Assembler 

A component structure is built using the component 
specification editor. Information about a component’s 
characteristics is extracted from the component information 
analyzer. For users’ convenience, the component specification 
editor automatically converts the component’s methods to 
interfaces of the message type. The EJB component is 
described in the C2 architectural style. It has top and bottom 

 

Fig. 11. Company component’s structure description using 
COBALT assembler.  

 

 

Fig. 12. Company component’s structure file generated by 
COBALT assembler.  

 
interfaces, methods, and behavior. A component’s behavior is 
formed from its incoming messages. Figure 11 shows the 
process of the component specification editing to define the 
‘company’ component’s behaviors. Figure 12 shows the 
generated component structure file. 

3. Assembly and System Implementation of Shopping Mall 
Components Using the COBALT Assembler 

Using the system architecture and component structure 
descriptions, the wrapper and glue code is generated. The 
seven components we used in this case study were not 
implemented according to the message passing mechanism, so 
the wrapper was needed for solving this problem. A component 
interacts with other components by passing messages through 



472   Seungyun Lee et al. ETRI Journal, Volume 25, Number 6, December 2003 

the wrapper. The composite component is generated to reuse a 
system architecture. The glue code is generated to bind the 
system architecture to the seven components. Using the 
architectural reasoning mentioned in section III, the COBALT 
assembler checks whether the messages defined in the 
component structure are used in its behavior description and 
the system architecture before generating files. This validation 
is an important processing ensuring that the implemented files 
comply with architectural constraints. 

Figure 13 shows the validated description of the company 
component. Its ‘bottom in’ message should be described in the 
‘product’ component’s description and should be found in the 
company component’s behavior. Its methods can be found in 
its behavior. 

4. Evaluation 
We developed a shopping mall system with the COBALT 

assembler. Seven of the components were prebuilt EJB 
components that have binary code. We successfully assembled 
seven components giving attention to architectural concerns. 
We firstly designed the shopping mall system with seven 
 

components according to the C2 architectural style and 
generated the wrapper code and the glue code. The composite 
component could be reused as a single new EJB component. 
However, there were several difficulties in applying the 
COBALT assembler to the case study. Firstly, it was difficult to 
decide how to build an architecture using components and to 
determine which component should be connected to the top 
port of another component. We overcame this difficulty with 
the help of several experts on system architecture. Secondly, it 
was also hard to determine the methods required for the 
assembly. Although a component is distributed with its 
specification, it was not easy to understand the full 
functionality of the component. For this difficulty, the 
COBALT assembler provides the component information 
analyzer to help the user understand a component’s properties. 
In addition to the component information analyzer, we found it 
necessary to use a component tester for simulating component 
functions during the assembly. 

V. Conclusion and Future Work 

To facilitate component reuse, this paper described the 
 

Fig. 13. Valid information of company component’s structure by COBALT assembler. 

package comp_spec; 

component Company { 

port bottom { 

out { 

gotDelProductEnts(java.util.ArrayList companyInfos); 

gotSuppProductEnts(java.util.ArrayList supplyInfos); 

} 

in { 

getDeliveryProductEnt(CompanyAction cAction); 

getSupplyProductEnt(CompanyAction coAction);            // Product component’s top out message 

} 

} 

methods { 

java.util.ArrayList getDeliveryProductEnt (CompanyAction m_0); 

java.util.ArrayList getSupplyProdcutEnt (CompanyAction m_0);   // Company component’s method 

CompanyManageSession CompanyManageSessionHome.create(); 

} 

behavior { 

… 

received bottom.getSupplyProductEnt (CompanyAction coAction) { 

invoke (java.util.ArrayList getSupplyProdcutEntResult) =  

getSupplyProdcutEnt(CompanyAction m_0); 

generate bottom.gotSuppProductEnts(java.util.ArrayList supplyInfos); 

        } 

    } 

} 

Consistency
checking 

Consistency
checking 

  



ETRI Journal, Volume 25, Number 6, December 2003  Seungyun Lee et al.   473 

COBALT assembler, which supports flexible and plug-and-
play EJB component assembly and system development 
based on the architecture. The COBALT assembler enables 
users to design the system and its components according to 
the C2 rule, generate the wrapper and glue code for the plug-
and-play assembly, and create a new composite EJB 
component to reuse the assembled EJB components. In 
addition, the shopping mall components were applied to the 
COBALT assembler. 

Our case study confirmed that component assembly by plug-
and-play can be achieved by considering architecture. In other 
words, the architecture design is mapped to reusable components 
and their relationships are kept through the implementation. The 
shopping mall system architecture is defined at the abstract level 
and the interactions of EJB components are changed from a 
method invocation style to a message passing style. The wrapper 
and glue code is automatically generated to support plug-and-
play assembly. The completeness and consistency of the system 
are checked according to the extended C2 rule. If the system is 
built based on the architecture at the abstract level, the 
extensibility and maintainability can be leveraged. To extend the 
system’s functionality for searching for an address by the zip 
code, an additional EJB component, the ‘post’ component, can 
be easily linked to the system using a connector. In conclusion, 
this paper described how to apply architectural considerations to 
a component assembly and introduced its supporting tool, the 
COBALT assembler. 

In terms of research perspectives, the COBALT assembler 
will strengthen the ability of architectural reasoning by 
checking with an extended ADL. ADL for system 
architecture needs to be revised to describe the system more 
precisely. The connector should manage messages coming 
from components as a coordinator. ADL should support the 
connector’s message management. Furthermore, ADL needs 
to express dynamic changes of the architecture. The wrapper 
and glue code needs to be changed according to the 
architecture description. The component’s information needs 
to be analyzed in detail so that the component’s structure can 
be defined in a rich format. In addition to these revisions, the 
COBALT assembler will integrate a component identifier 
that identifies components through a domain modeling 
included in the COBALT constructor. The COBALT 
constructor has been developed together with the COBALT 
assembler in order to support component identification, 
design, implementation, packaging, deployment, and testing. 
This result will be the base for the new version of the 
COBALT assembler that supports a plug-and-play 
component assembly in the various platforms such as .NET 
and CORBA. 

References 
[1] Sun, Designing Enterprise Applications with the Java 2 

Platform, Enterprise Edition, Version 1.1, Mar. 2001. 
[2] Object Management Group, CORBA Components, http://www. 

omg.org, Mar. 1999. 
[3] J. Andersson and P. Johnson, “Architectural Integration Styles for 

Large-Scale Enterprise Software Systems,” Proc. of 5th Int’l 
Enterprise Distributed Object Computing Conf., 2001, pp. 224-
236. 

[4] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: 
Architecture, Process and Organization for Business Success, 
Addison Wesley, 1997. 

[5] C. Szyperski, Component Software: Beyond Object-Oriented 
Programming, Addison Wesley, 1998. 

[6] B. Felix, B. Len, B. Charles, C.D. Santiago, L. Fred, R. John, S. 
Robert, and W. Kurt, Technical Concepts of Component-Based 
Software Engineering, Pittsburgh, PA, Software Engineering 
Institute, Carnegie Mellon University, 2000. 

[7] WebMethods, “Achieving Global Business Visibility with the 
webMethods Integration Platform: a Technical White Paper,” Mar. 
2002. 

[8] R. Sharma, B. Stearns, T. Ng, and S. Dietzen, J2EE Connector 
Architecture and Enterprise Application Integration, Addison 
Wesley, 2002. 

[9] R.S. Moreira, G.S. Blair, and E. Carrapatoso, “A Reflective 
Component-Based and Architecture Aware Framework to 
Manage Architecture Composition,” Proc. of 3rd Int’l Symp. on 
Distributed Objects and Applications (DOA 2001), 2001, pp. 187-
196. 

[10] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, “A Language 
and Environment for Architecture-Based Software Development,” 
Proc. of the 21st Int’l Conf. on Software Engineering (ICSE 21), 
Los Angeles, CA, May 1999, pp. 44-53. 

[11] N. Medvidovic, P. Oreizy, and R.N. Taylor, “Reuse of Off-the-
Shelf Components in C2-Style Architectures,” Proc. of the Symp. 
on Software Reusability (SSR’97), Boston, MA, May 1997, pp. 
190-198. 

[12] N. Medvidovic and R.N. Taylor, “A Classification and Comparison 
Framework for Software Architecture Description Language,” 
IEEE Trans. Software Engineering, vol. 26, no. 1, Jan. 2000. 

[13] M. Moriconi, X. Qian, and R.A. Riemenschneider, “Correct 
Architecture Refinement,” IEEE Trans. Software Engineering, vol. 
21, no. 4, Apr. 1995, pp. 356-372. 

[14] D.S. Rosenblum and R. Natarahan, “Supporting Architectural 
Concerns in Component-Interoperability Standards,” Proc. of IEE 
Software, vol. 147, no. 6, Dec. 2000, pp. 215-223. 

[15] Z.W. Hong, J.M. Lin, H.C. Jiau, and D.S. Chen, “DSIAS: a 
Software Architectural Style for Distributed Software Integration 
Systems,” 25th Annual Int’l Computer Software and Applications 
Conf.(COMPSAC 2001), 2001, pp. 291-296. 

[16] W.J. Lee, O.C. Kwon, M.J. Kim, and G.S. Shin, “A Method and 
Tool Support for Identifying Domain Components Using Object 
Usage Information,” ETRI J., vol. 25, no. 2, Apr. 2003, pp. 121-
132. 



474   Seungyun Lee et al. ETRI Journal, Volume 25, Number 6, December 2003 

[17] D.I. Shin, S.W. Nho, T.W. Jeon, and S. Lee, “The Design and 
Implementation of an ADL Model Checker,” Int’l J. of Computer 
and Information Science (IJCIS), vol. 4, no. 2, June 2003. 

[18] R.N. Taylor, N. Medvidovic, and etc., “A Component and 
Message Based Architectural Style for GUI Software,” IEEE 
Trans. Software Engineering, vol. 22, no. 6, June 1996, pp. 390-
406. 

[19] Y.H. Choi, O.C. Kwon, and G.S. Shin, “An Approach to 
Composition of EJB Components Using C2 Style,” Proc. of the 
EUROMICRO’02, Sept. 2002. 

[20] S. Lee, O.C. Kwon, and G.S. Shin, “COBALT Assembler: a Case 
Tool for Supporting EJB Component Assembly Based on 
Architecture,” KIPS, June 2002, pp. 32-38. 

 
Seungyun Lee received the BS and the MS 
degrees in computer science from Sogang 
University, Korea, in 1999 and 2001. She has 
been a Member of Engineering Staff in 
Computer & Software Laboratory at ETRI 
(Korea Electronics and Telecommunications 
Research Institute) since 2001. She is currently 

involved in developing software architecture based component 
technology and model driven architecture (MDA) based software 
development technology. Her current research areas include software 
architecture, component assembly and model-driven architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Oh-Cheon Kwon received the BA degree from 
Inha University, Korea, in 1985, and the MS 
degree in software engineering from the 
University of Teesside, England, in 1994, and 
the PhD degree in computer science from the 
University of Durham, England, in 1998. He 
worked for SERI (Systems Engineering 

Research Institute)/KIST (Korea Institute of Science and Technology) 
from 1985 to 1997. He has been a Principal Researcher for ETRI since 
1998. He was also a Visiting Researcher at IBM/RTP, North Carolina, 
USA, in 1991. He is currently involved in developing an Integrated 
Management System of Satellite Imagery Information. He has served 
as the editor of Transactions of the Korea Information Processing 
Society, and the assessor of qualifying the new S/W technology (KT 
Mark) sponsored by the Ministry of Science and Technology of Korea 
(MOST). His research interests include remote sensing, GIS, telematics, 
component-based development (CBD), and model driven architecture 
(MDA). 
 

Gyu-Sang Shin received the BS degree in 
statistics from Sung Kyun Kwan University, 
Korea, in 1981, and the MS degree in statistics 
from Seoul National University, Korea, in 1983, 
and the PhD degree in computer science from 
Chungnam National University, Korea, in 2001. 
He worked for Systems Engineering Research 

Institute (SERI), Korea, as a researcher between 1983 and 1996. He 
has been a Principal Researcher for ETRI (Korea Electronics and 
Telecommunications Research Institute) since 1997. He has been 
engaged in the development of component-based development tool, 
real-time operating system, video streaming server, and object-oriented 
CASE tool. He is currently involved in developing software 
architecture based component technology and MDA (model driven 
architecture) based software development technology. His research 
interests include component-based software engineering, model driven 
software development, CASE tool and multimedia applications. 
 
 
 
 
 
 
 
 


