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In this paper, we propose an efficient and simple fair 
queuing algorithm, called new starting potential fair 
queuing (NSPFQ), which has O(1) complexity for virtual 
time computation and also has good delay and fairness 
properties. NSPFQ introduces a simpler virtual time 
recalibration method as it follows a rate-proportional 
property. The NSPFQ algorithm recalibrates the system 
virtual time to the minimum virtual start time among all 
possible virtual start times for head-of-line packets in 
backlogged sessions. Through analysis and simulation, we 
show that the proposed algorithm has good delay and 
fairness properties. We also propose a hardware 
implementation framework for the scheduling algorithm. 
 

Keywords: Fair queuing, packet scheduling algorithm, 
WFQ. 

                                                               
Manuscript received Aug. 2, 2002; revised Apr. 14, 2003. 
Dong-Yong Kwak (phone: +82 42 860 5148, email: dykwak@etri.re.kr), Nam-Seok Ko 

(email: nsko@etri.re.kr), and Bongtae Kim (email: bkim@etri.re.kr) are with Network 
Technology Laboratory, ETRI, Daejeon, Korea. 

Hong-Shik Park (email: hspark@icu.ac.kr) is with Information and Communications 
University, Daejeon, Korea. 

I. Introduction 

The packet scheduling algorithm is very important within 
individual switches or routers in high-speed integrated services 
packet networks for providing a wide range of quality-of-
service guarantees. The function of a scheduling algorithm is to 
select, for each outgoing link of the switch, the packet to be 
transmitted in the next cycle from the available packets 
belonging to the flows sharing the same output link. 

Until now, the literature has presented many packet 
scheduling algorithms, which are also called fair queuing 
algorithms, [1]-[16]. Among them, weighted fair queuing 
(WFQ) [2] is an ideal packet scheduling algorithm for its delay 
and fairness properties. However, the timestamp computation 
in the WFQ scheduler serving N sessions has a complexity of 
O(N) per packet transmission time and this makes its 
implementation difficult. Recently, many algorithms have been 
proposed to simplify the implementation of WFQ, such as self-
clocked fair queuing (SCFQ) [10], frame-based fair queuing 
(FFQ) [11], starting potential fair queuing (SPFQ) [11], and 
minimum delay self-clocked fair queuing (MD-SCFQ) [13]. 
However, all those algorithms have their own shortcomings, 
which are explained in section II. 

In this paper, we propose an efficient and simple fair queuing 
algorithm, called new starting potential fair queuing (NSPFQ), 
which has O(1) complexity for virtual time computation and 
good delay and fairness properties that are comparable to those 
of WFQ. 

This paper is organized as follows. In section II, we review 
the existing fair queuing algorithms and their problems. Section 
III presents the concept and operational principle and the 
performance analysis of the proposed algorithm. We also 
provide an extended algorithm to get better fairness on a 
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statistical base making the fairness index unchanged. In section 
IV, we propose the hardware implementation framework of the 
proposed scheduler. Section V gives the simulation results. 
Finally, section VI presents our conclusions. 

II. Fair Queuing Algorithms 

1. Background 

In general, schedulers can be characterized as work-
conserving or nonwork-conserving. A scheduler is work-
conserving if the server is never idle when a packet is buffered 
in the system. A nonwork-conserving server may remain idle 
even if there are available packets to transmit. A server may, for 
example, postpone the transmission of a packet when it expects 
a higher priority packet to arrive soon, even though it is 
currently idle. Nonwork-conserving algorithms are used to 
control delay jitter by delaying packets that arrive early. Work-
conserving servers always have lower average delays than 
nonwork-conserving servers. Examples of work-conserving 
schedulers include generalized processor sharing (GPS) [9], 
WFQ, virtual clock [2], weighted round robin (WRR) [3], and 
deficit round robin (DRR) [4]. On the other hand, hierarchical 
round robin (HRR) [6], stop-and-go queuing [7], and jitter 
earliest due date (Jitter-EDD) [5] are nonwork-conserving 
schedulers. 

Another classification of schedulers is based on their internal 
structure [8]. According to this classification, there are two 
main architectures: sorted-priority and frame-based. In a 
sorted-priority scheduler, there is a global variable, usually 
referred to as the virtual time (also known as system potential), 
associated with each outgoing link of the switch. Each time a 
packet arrives or gets serviced, this variable is updated. A 
timestamp, computed as a function of this variable, is 
associated with each packet in the system. Packets are sorted 
based on their timestamps and are transmitted in that order. 
WFQ is the representative algorithm for this architecture. Two 
factors determine the implementation complexity of all sorted-
priority algorithms. First, the complexity of updating the 
priority list and selecting the packet with the highest priority is 
at least O(log N), where N is the number of connections 
sharing the outgoing link. The second is the complexity of 
calculating the timestamp associated with each packet; this 
factor depends heavily on the algorithm. In a frame-based 
scheduler, time is split into frames of fixed or variable length. 
Reservations of sessions are made in terms of the maximum 
amount of traffic the session is allowed to transmit during a 
frame period. Hierarchical round robin and stop-and-go 
queuing are frame-based schedulers that use a constant frame 
size. As a result, the server may remain idle if sessions transmit 

less traffic than their reservations over the duration of a frame. 
In contrast, WRR and DRR schedulers allow the frame size to 
vary within a maximum. Thus, if the traffic from a session is 
less than its reservation, a new frame can be started early. 
Therefore, both of these schedulers are work-conserving. 

In this paper, we focus on the sorted-priority and work 
conserving algorithm. GPS is an ideal scheduling discipline 
among such algorithms. GPS multiplexing is defined with 
respect to a fluid model, where packets are considered to be 
indefinitely divisible. The share of bandwidth reserved by 
session i is represented by a real number. Let ),( tB τ  be the 
set of connections that are backlogged in the interval ],( tτ . If r 
is the rate of the server, the service offered to a connection i that 
belongs to ),,(),,( tWtB i ττ  is proportional to ir  as follows: 
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where N is the maximum number of connections that can be 
backlogged in the server at the same time. Thus, GPS serves 
each backlogged session with a minimum rate equal to its 
reserved rate at each instant; in addition, the excess bandwidth 
available from sessions not using their reservations is 
distributed among all the backlogged connections at each 
instant in proportion to their individual reservations. This 
results in perfect isolation, ideal fairness, and low end-to-end 
session delays. 

The WFQ, or packet-by-packet GPS (PGPS), algorithm [9] 
is the packet-by-packet equivalent of GPS, that is, it derives the 
system virtual time from the background simulation of a GPS 
server. The system virtual time ν(t) of WFQ evolves as that of 
the corresponding GPS system, whose derivative is as follows, 
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where B(t) is the set of sessions that are backlogged in the GPS 
server at time t, and r is the server rate. WFQ, therefore, 
achieves delay bound and fairness properties very close to 
those of GPS. However, since all N sessions can join or leave 
the set of backlogged sessions during a packet transmission 
time, the worst-case complexity of maintaining the system 
virtual time is O(N), which makes the algorithm not suitable for 
practical deployment in high-speed packet networks. The 
latency of WFQ is as follows, 
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where Li and Lmax are the length of the packet from session i 
and the maximum length of the packet in the system, 
respectively. 

The fairness index of WFQ is as follows: 
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There have been many efforts to reduce the complexity 
while maintaining the performance characteristics close to 
WFQ; examples include SCFQ, FFQ, SPFQ, and MD-SCFQ. 
SCFQ uses the virtual finish time of the packet that is currently 
being transmitted as the system virtual time. As a result, the 
complexity of computing the system virtual time of SCFQ is 
O(1), and it becomes more feasible for the high-speed network 
than for WFQ. It also has optimal fairness properties as 
follows: 
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However, the price of the easy system virtual time 
computation is a reduced level of isolation among the sessions, 
which causes the end-to-end delay bounds to grow linearly 
with the number of sessions that share the outgoing link. The 
delay bound of SCFQ with N sessions is given by 
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FFQ, SPFQ, and MD-SCFQ are all included in the rate 
proportional server (RPS) class [11]. As we can see by the basic 
properties of RPS shown in the following subsection, if a 
scheduling algorithm is included in the RPS class, then the 
algorithm has the same delay properties as those of WFQ. 
Therefore, the latencies of all these algorithms are the same as 
those of WFQ shown in (2). The fairness properties of each of 
them depend on how the system virtual time is recalibrated at 
every event. FFQ recalibrates the system virtual time when the 
session virtual times of all the backlogged sessions exceed the 
fixed value of frame time T. Therefore, the fairness bound is 
affected by the frame time T, while the complexity of the system 
virtual time computation is O(1). The fairness index of FFQ is 
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SPFQ derives the system virtual time from the minimum 
virtual start time of head-of-line (HOL) packets in all 
backlogged sessions. It has comparable fairness characteristics 
to WFQ. However, it needs another sorting structure to 
maintain the minimum virtual start time of HOL packets in all 
backlogged sessions. The resulting complexity of system 
virtual time computation is of O(log N). The fairness index of 
SPFQ is 
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MD-SCFQ recalibrates the system virtual time based on the 
weighted average virtual start time of all backlogged sessions.  
It also has fairness characteristics comparable to WFQ. 
However, the weighted average of the virtual start time of all 
backlogged sessions needs additional computation. The 
fairness index of MD-SCFQ is 
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The fairness indices, maximum delay bounds, and 
computation complexities of the above scheduling algorithms 
are compared in Table 1. In summary, most of the efforts to 
reduce the complexity of the virtual time computation 
deteriorate the system performance characteristics, such as 
delay and fairness properties, and most of the efforts to get 
good performance characteristics require additional 
complexities. 

The purpose of this paper is to propose a new scheduling 
algorithm that has a low virtual time computation complexity 
along with good performance characteristics. Before we go 
through the proposed algorithm, in the following subsection, 
we will review the rate proportional server on which our 
algorithm is based. 

2. Rate Proportional Server 

The rate proportional server is a framework of scheduling 
algorithm that was formulated by Stiliadis and Varma in [11]. If 
a scheduling algorithm is included in the RPS category, then 
the delay bounds are the same as those of WFQ. Since our 
algorithm is based on the RPS, we need to review it here. The 
RPS is explained in terms of system virtual time, session 
virtual time, and service rules. 
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Table 1. Comparison of characteristics of fair queuing algorithms. 

Algorithm Fairness index Latency 
Virtual time 
computation 
complexity 
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In an RPS, the session virtual time )(tvi  must satisfy the 

following three properties. 
① )(tvi  is constant as long as session i is not backlogged. 
② If session i becomes backlogged at time τ, then 

( ) ,)(),(max)( −−= τττ vvv ii              (9) 

where τ- denotes the time instant just before the time τ. 
③ For every time τ>t  when session i remains 

backlogged, the session virtual time of the session increases by 
the normalized service amount offered to that session during 
the whole time interval, ],,( tτ  
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In an RPS, the system virtual time of the fluid version of a 
scheduling algorithm must satisfy the following two 
properties. 

① For any interval ],( 21 tt  during a system busy period, 

.)()( 1212 tttvtv −≥−               (11) 

② The system virtual time cannot exceed the minimum 
virtual time of all backlogged sessions at time t, 
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At any time t, sessions are serviced according to the 
following rules. 

① Among the backlogged sessions, only the set of sessions 
with the minimum session virtual time is serviced. 

② Each session in this set is serviced with an instantaneous 
rate proportional to its reservation so as to increase the virtual 
times of the sessions in this set at the same rate. 

SPFQ and MD-SCFQ satisfy the above RPS conditions. 
These algorithms follow the following basic rules to satisfy the 
RPS properties. 

• The system virtual time increases linearly with time and 
is recalibrated at time instants .,...,, 21 kτττ  The time 
instants are called recalibration instants with the condition 

,...21 kτττ <<< where 1τ  is the start time of the system 
busy period. In an actual system, the recalibration instants 
correspond to the packet departure event. That means that the 
system virtual time is recalibrated at every packet departure time. 

• The system virtual time is recalibrated as follows at time 
instant :jτ  

( ),)(),(max)( jjj SPvv τττ −=  

where )(and,0)(,)()( 011 jjjjj SPvvv ττττττ =−+= −−
− is 

any non-decreasing function that is specific to each different 
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scheduler. 
• Basically the above rules are defined only in the system 

busy period. Therefore, when the system becomes idle, the 
system virtual time resets to zero. When the system busy 
period starts, the system virtual time is calculated according to 
the above rules. 

III. A New Fair Scheduling Algorithm 

Before we introduce the proposed scheduling algorithm, we 
make some assumptions and give an important definition in the 
algorithm. We have a finite number of different rates and a 
maximum packet length affordable in a system. When the 
maximum packet length is divided by a rate, we call the 
resulting value the maximum timestamp increment (MTI) of 
the rate: 

,)( max

j
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L
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where Rj is a rate and Lmax is the maximum packet length in a 
system. 

The maximum MTI is a constant value that is determined at 
the system setup time. When the number of different rates in 
the system is D, the maximum MTI in a system can be defined 
as 
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The key idea of NSPFQ is that it recalibrates the system 
virtual time using the maximum MTI at the end of each packet 
transmission, while it uses the system virtual time for a newly 
arrived packet as the last calibrated system virtual time added 
by the elapsed real time between two calibration events. 

In the following subsections we will explain the NSPFQ 
algorithm in detail and prove that NSPFQ has a rate-
proportional property. Then, we will induce the fairness index 
by calculating the maximum difference of the normalized 
service received by two sessions during the continuously 
backlogged time interval. 

1. The Service Discipline of NSPFQ 

In NSPFQ, as in all GPS-related schedulers, the timestamps 
are assigned to the arriving packets according to the following 
equation: 
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where k
il  is the length of the k-th packet from session i, and ri 

is the reserved rate of session i. The system virtual time is 

maintained according to the same rule as other packet-by-
packet rate proportional servers (PRPS) while the system 
virtual time at each recalibration time iτ  is calculated easily 
as shown below. 

The system virtual time increases linearly with time at every 
packet arrival event and is recalibrated at every end of the 
packet departure time. The key point of the NSPFQ algorithm 
is the simple system virtual time recalibration method. We use 
the constant value to reduce the system virtual time 
computation complexity, which makes the NSPFQ algorithm 
affordable in a high-speed packet switching system. At every 
end of the packet transmission, a new packet with a minimum 
virtual finish time is selected from the HOL packets in all 
backlogged sessions. Since the virtual finish time (TScur) of the 
packet is the smallest value in the system at that time, if we 
subtract the maximum MTI from the TScur, the resulting value 
is the minimum possible value of the virtual start times of the 
HOL packets in the system at that time. 

The detailed procedures of NSPFQ at the packet arrival time 
and at the end of the packet transmission are given below. 
 

Procedures at the packet arrival time 

① When a packet arrives at t, update the system virtual time 
using the recent system virtual time calculated at τj-1: 
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where .0)(and0, 001 ==<≤− ττττ vt jj  
② Calculate the virtual finish time (i.e., the timestamp) of 

the packet: 
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③ Place the packet with the timestamp in the related queue. 

 
Procedures at the end of each packet transmission 

① Increase the system virtual time by the transmission time 
of the packet just completed. 

).()()( 11 −−
− −+= jjjj vv ττττ  

② Retrieve a packet with a minimum virtual finish time 
(TScur) from the HOL packets and transmit. 

③ Recalibrate the system virtual time. 

).),(max()( maxMTITSvv curjj −= −ττ  

As we can see in (13), the maximum MTI is a constant value 
that is determined by the maximum packet size and the 
minimum session rate in the system. The NSPFQ algorithm 
uses the maximum MTI to calculate the minimum possible 
virtual start time. The minimum possible virtual start time at a 
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point is calculated only by a subtraction operation. When the 
maximum MTI is subtracted from the virtual finish time of a 
packet that is being transmitted, the result is the minimum 
possible value of the virtual start times of all the backlogged 
sessions. Therefore, our algorithm’s system virtual time 
computation has a complexity of O(1). Additionally, NSPFQ 
requires a much smaller amount of information and less 
computation complexity than other GPS-related scheduling 
algorithms. 

In the following section, we will show that our algorithm has 
good performance characteristics as well as this simplicity. 

2. Performance Analysis of the NSPFQ Algorithm 

In this section, we will show the performance characteristics 
of the NSPFQ algorithm. Since the RPS properties of the fluid 
version of a scheduling algorithm have an effect on the 
performance characteristics of scheduling algorithms, we prove 
that the fluid version of the NSPFQ algorithm is included in the 
RPS category. We then prove the delay and fairness properties 
of NSPFQ. 

A. RPS Properties of the Fluid Version of the NSPFQ Algorithm 

Before we prove that the fluid version of the NSPFQ 
algorithm is an RPS, we will use a lemma. The result of this 
lemma is the same as lemma 1 in [13]. However, we will prove 
this lemma with the definition of NSPFQ. 

Lemma 1. Let nτ  and 1+nτ  be two consecutive recalibration 
instants. 
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Proof. From the definition of NSPFQ, the system virtual 
time increases by the real time passed. However, the session 
virtual time of a session increases by the amount of the service 
it received. Note that only sessions with minimum virtual time 
are serviced at any time. 

Therefore, we can consider )(),()( tMjvv nnj ∈∀≥ ττ  
instead of ),(),()( tBjvv nnj ∈∀≥ ττ  where )(tM  is the set 
of sessions with the minimum session virtual time at time t: 

{ }.)(min)()(
)(

tvtvjtM ktBkj ∈
==  

The session virtual times with the minimum virtual time 
increase with the slope of )(/ tMrr  while the sessions leave 
set ).(tM  Even though the set can change before the next 
recalibration time, the slope )(/ tMrr  is always larger than the 
system virtual time slope 1. With this condition, the system 
virtual time cannot exceed any session virtual time between the 
two recalibration times of the system virtual time. Therefore, 

we can conclude lemma 1.                           � 

Lemma 2. The fluid version of NSPFQ is a rate proportional 
server. 

Proof. For a fluid version of a packet scheduling algorithm to 
be classified as an RPS, the conditions of (11) and (12) must be 
satisfied. The former condition is met directly by the definition 
of the system virtual time of NSPFQ. Therefore, we only need 
to prove the latter condition and will prove it by induction, with 
reference to the recalibration instants as in [13]. 

Step 1. First we will show that (12) is satisfied from the start 
of the system busy period )( 0τ  to the first recalibration time 
of the system virtual time ).( 1τ  That is, we should prove 

,),(),()( 10 ττ ≤≤∈∀≥ ttBjtvtv j  

where B(t) is the set of sessions that are backlogged in the 
system. 

Since ),(,0)()( 00 tBjvv j ∈∀== ττ  from lemma 1 it is 
clear that .),(),()( 10 ττ <≤∈∀≥ ttBjtvtv j  

Now we have to show that it is still valid at time 1τ  when 
the first recalibration of the system virtual time occurs. Let 

)( 1τS  be the session whose first packet completes 
transmission at time .1τ  If we let the virtual finishing time of 
the transmitted packet be ,)( 1τsF  it is also the session virtual 
time of )( 1τS  at that time. 

Since session )( 1τS  was receiving service at time ,1τ  
)( 1τsF is the minimum among the virtual times of the 

backlogged sessions, which is also greater than the virtual start 
time of all HOL packets of any other sessions. 

)},({\)(),( 111)( 1
ττττ sBjvFva jsj

−∈∀≤≤  

where jva  is the virtual start time of session j. 
From the definition of NSPFQ, the system virtual time 

increases linearly with the real time until 1τ and is recalibrated 
to the maximum between the linearly increased time and the 
minimum value of all possible virtual start times at time .1τ  
From lemma 1, we know that the linearly increased time 
cannot exceed the session virtual time. Therefore, the system 
virtual time is recalibrated to the minimum value of all possible 
virtual start times of HOL packets in backlogged sessions. 

Therefore, .),(),()( 10 ττ ≤≤∈∀≥ ttBjtvtv j  

Step 2. Now we will show that if (12) is satisfied until 
recalibration instant ,1−nτ then it is satisfied until recalibration 
instant nτ  (including nτ ). That is, we will prove the following. 
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Since we know the result for nn t ττ <≤−1  from lemma 1, 
we need to prove that ).(),()( nj Bjtvtv τ∈∀≥  

Now let )( ns τ  be the session whose packet completes 
transmission at time ,nτ  and )( nsF τ  be the virtual 
finishing time of the transmitted packet. As in step 1, since 
session )( nS τ  was receiving service at time )(,

nsn F ττ  
is the minimum among the virtual times of backlogged 
sessions. 

).(),()( nnjs BjvF
n

τττ ∈∀≤  

Even though virtual start times of the sessions that are 
backlogged at time nτ  can be greater than ,)( nsF τ they never 
exceed ).( njv τ  If we note that NSPFQ recalibrates the 
system virtual time to the minimum virtual start time 
among all possible virtual start times, it is clear that 

).()()( njnjn vvav τττ ≤≤  Therefore, 

.),(),()( 1 nnj ttBjtvtv ττ ≤≤∈∀≥ −  

This concludes the proof through steps 1 and 2.         � 

B. Delay Properties of NSPFQ 

The fluid version of NSPFQ presented above is an RPS. 
Therefore, the NSPFQ algorithm has all the delay properties of 
a PRPS, which is the same as those of WFQ. Consequently, 
from the delay properties of the PRPS scheduler, the latency of 
the NSPFQ scheduler is given as follows, 

.max)(

r
L

r
L

i

iNSPFQ
i +=Θ              (16) 

When a session i is constrained by the ),( ii rσ  leaky 
bucket that has a reserved rate ir  and a burst size ,iσ  the 
amount iα  of information units arriving at the server is 
bounded as 

)(),( τστα −+≤ trt iii             (17) 

during any time interval ],( tτ such that ).()(),( ταατα iii tt −=  
For such a session, for an arbitrary network of NSPFQ 

servers, the maximum delay K
iD  after the K-th node in the 

network is bounded as 

.
1 i

i
K

j

j
i

i

iK
i r

L
r

D −Θ+≤ ∑
=

σ
            (18) 

C. Fairness Properties of NSPFQ 

Since the recalibrations prevent the system virtual time from 
lagging indefinitely behind the virtual times of the sessions that 
are currently backlogged in a PRPS system and the NSPFQ 

algorithm is a PRPS, we can say that NSPFQ is a fair scheduler. 
However, we need to define the formal fairness index. We 
adopt Golestani’s definition of the fairness index [10]. The 
fairness index is defined as 

,
),(),(

,
2121

ji
j

j

i

i F
r

ttW
r

ttW
≤−           (19) 

where ii rttW /),( 21  is the normalized service received by 
session i during the continuously backlogged time interval (t1, 
t2). 

Lemma 3. In a PRPS system, at any time t, the difference 
between the system virtual time v(t) and the timestamp k

iF    
of any packet k

iP  of session i that is currently in the system is 
bounded as follows: 

),(,)( max tBi
r

L
Ftv

i

k
i ∈∀≤−  

where ir  is the reserved rate of session i. 

Proof. For any PRPS and corresponding RPS, the following 
holds [12]: 

,ˆ max

r
L

tt k
i

k
i +≤                (20) 

where k
it  is the time when a packet completes transmission in 

the considered PRPS, and k
it̂  is the time when the same 

packet k
ip  completes transmission in the corresponding RPS. 

Assume the n-th recalibration of system virtual time nτ  
occurs at time .k

it  
The session virtual time )( k

ii tv  is as follows: 

),ˆ()ˆ()(
)(

k
i

k
i

tM

k
ii

k
ii tt

r
rtvtv −+=          (21) 

where { }.)(min)()(
)(

tvtvjtM ktBkj ∈
==  

In an RPS system, when packet k
ip completes transmission 

in the fluid system, its timestamp k
iF  is greater than or equal 

to the system virtual time: 

.)ˆ( k
i

k
i Ftv ≤                  (22) 

Therefore, according to (21) and (22) with the second 
condition of the RPS system, ),(min)( )( tvtv itBi∈≤  the system 
virtual time at time k

it  is bounded as follows, 

.

)ˆ()ˆ()(
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i

k
i

k
i

k
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i

k
i

k
i

r
L
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            (23) 
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This concludes the proof of lemma 3.                 � 
Since the system virtual time between the two recalibration 

times increases by the real time elapsed, the following corollary 
comes directly. 

Corollary 1. In a PRPS system, at time ,k
is when packet 

k
ip  starts transmission, the difference between the system 

virtual time and its timestamp k
iF  is 

.)( max

r
l

r
L

Fsv
k
i

i

k
i

k
i −≤−              (24) 

We can evaluate the fairness index (FI) of NSPFQ following 
the procedures presented in [13]. 

Theorem 1. The fairness index of NSPFQ is 
),,max( ,,)( ijjiNSPFQ ffFI =  

where ).max,max( max
1

max
, r

L
R

L
r

L
r
LL

r
L

f i

nDn

j

j

j

i

i
ji −−

+
+=

≤≤
 

Proof. We can derive FI(NSPFQ) from the difference of 
normalized service received by session i and j at any time interval, 
during (t1, t2) when the two sessions are continuously backlogged. 
All the possible cases that we can consider are as follows. 

1. One session becomes backlogged at time t1, while the other 
session is already backlogged before time t1. 

2. Both sessions become backlogged at time t1. 

Even though we can consider one more cases where both 
sessions are backlogged before time t1, it can be treated as case 
1 in any time .1tt <′  

Case 1. Session j becomes backlogged at time t1, whereas 
session i is already backlogged at time t1, and k

iF  is the 
timestamp of its HOL queue packet .k

ip  We must consider 
two subcases. 

Subcase 1.1. Packet m
jp  of session j receives a timestamp 

.k
i

m
j FF >  
In order to maximize the amount of normalized service 

provided to session i before session j receives its first service, 
packet m

jp  must reach the system at the exact time when the 
packet k

ip  is picked for transmission. 
According to lemma 3 and corollary 1, at the exact time 

satisfying the condition, the virtual finishing time of session j, 
m
jF  is 

,max

j

m
j

k
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i
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m
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l
r
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L

FF +−+≤            (25) 

where k
il  and m

jl  are the lengths of packet k
ip  and ,m

jp  
respectively. 

The service provided to packet k
ip  (equal to i

k
i rl ) 

contributes to the difference of normalized service, and all the 
following packets of session i having a timestamp not greater 
than m

jF  are transmitted before .m
jp  

From (25) 
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where k
iS  is the virtual start time of packet .k

ip  
The resulting difference of received normalized service 

before packet m
jp  is picked for transmission is, therefore, 

bounded by 

.max)1(
,

j
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i
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ij r

L
r
L

r
LL

f +−
+

=            (26) 

Subcase 1.2. Packet m
jp  of session j receives a timestamp 

.k
i

m
j FF <  
In order to maximize the amount of normalized service 

provided to session j before session i receives service again, 
packet m

jp  must reach the system just before packet k
ip  

completes transmission and the system virtual time is 
consequently recalibrated. Let k

il  be the length of the packet 
,k

ip and 1+k
il  be the length of .1+k

ip Packet k
ip  started 

transmission at time rltt k
is −= 1 ; at that time, according to 

the definition of NSPFQ, the minimum possible value of the 
system virtual time is 
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MTIFtv
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Packet 1+k
ip  receives a timestamp .11

i
k
i

k
i

k
i rlFF ++ +=  

If m
jp  reaches the system at time t1 just before k

ip  
completes transmission, the minimum possible value of the 
system virtual time is 

,)()( 1 r
l

tvtv
k
i

s +=               (28) 

so that the resulting difference of normalized service between 
session j and session i can be expressed as 

.max)( max
1

1

1
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nDni
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The whole difference of normalized service in (29) increases 
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with k
il  and 1+k

il , so that 

.max max
1

)1(
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f i

nDni
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ji −+=
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           (30) 

Case 2. Both sessions i and j become backlogged simultaneously 
at time t1. 

In this case, both sessions use the same system virtual time to 
calculate the virtual finish times. Therefore, the maximum 
difference of the received normalized service between them is 
decided by their virtual finish times. Without loss of generality, 
assuming that ,// j

k
ji

k
i rlrl >  session i begins service before 

session j. Consequently, the maximum difference of received 
normalized service between them at any time t2, when k

ip  
ends the transmission, is 

.)2(
,

i

i
ji r

L
f ≤                   (31) 

Therefore, theorem 1 follows from (26), (29) and (31).    � 

3. Extension of the NSPFQ Algorithm 

We introduced a simple scheduling algorithm that has a 
lower computation complexity for the system virtual time. This 
simple mechanism can be extended to get better fairness on a 
statistical basis making its fairness index unchanged. 

Instead of the using one maximum MTI determined at the 
system setup time, we can use the maximum of the MTIs of all 
backlogged sessions. In this case, we need another sorting structure 
to maintain the maximum MTI among all the backlogged sessions. 
However, we can restrict the number of MTIs in the system to 
improve the system performance. In this case, we have two 
options. First, we can support only a fixed number of rates, that is, 
we only support the designated rates without supporting the other 
rates. This makes the implementation easy, but introduces some 
limitation in the operation of the system. Second, we can support 
many rates. Only MTIs for the fixed number of representative 
rates are calculated and the MTIs for the other rates are taken 
from that of the nearest rate. 

The sorting structure can be implemented with a max heap, in 
which the elements are different values of MTIs and each 
element keeps the number of sessions having their MTIs. Refer 
to the following section for some information on the heap. When 
a session is newly backlogged in the system, we can have two 
cases in the binary search tree insertion operation. First, when the 
MTI does not exist in the heap, the timestamp increment is 
inserted in the heap. Second, when the MTI exists, the number 
for the MTI is incremented. When a session goes out of the 
backlogged status, the number of the MTI for the session is 
decremented. If the number of the MTI becomes zero as a result 

of the decrement operation, the MTI is deleted in the heap. When 
we select the maximum MTI at the end of every packet 
transmission event, we just need to read the root of the heap. 

This operation could be implemented easily in the high-
speed network without much complexity. The complexity of 
maintaining this additional sorting structure is O(logD), where 
D is the number of rates supported in the system. Considering 
that the complexity of maintaining the virtual start time is 
O(logN), where N is the number of the backlogged sessions, 
the NSPFQ algorithm has much lower complexity than SPFQ 
even with this extended method. 

IV. Hardware Implementation Framework 
In this section we propose a hardware implementation 

framework for the NSPFQ scheduling algorithm as shown in 
Fig. 1. In the following subsections, we will explain the overall 
components and then provide the details of the heap manager 
architecture. 

1. Proposed Scheduler Architecture 
The proposed scheduler is composed of a POS-PHY III 

interface, NSPFQ scheduler, heap manager, shaping controller, 
VOQ controller, port scheduler, and PCI interface module. We 
assume that the queue management function works in another 
module called the queue manger (QM) and the scheduler gets 
the packets from that module. The explanation for each module 
is as follows. 

• POS-PHY III input data interface 
This module takes care of the interface with the QM. The 

QM sends packets with information such as the flow ID, 
destination port, service rate, and service priority. It works as a 
POS-PHY III slave. 

• PCI bus controller 
The PCI bus is for the host CPU interface, which is used to 

initialize the scheduler at the startup time and to change the 
configuration during the run time. 

• NSPFQ scheduler 
NSPFQ gets packets through the POS-PHY III input data 

interface with information such as destination port, service 
priority, etc. Then, the virtual finish time is calculated as in the 
method in section III. After the virtual finish time is calculated, 
packets are sorted in the heap manager according to the 
destination port and service priority. 

• Heap manager 
The number of heap manages in the system is decided by the 

number of ports multiplied by the number of classes. Each 
heap manager sorts the packets according to their virtual finish 
time so that the packet with the minimum virtual finish time is 
served first. 
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Fig. 1. An example of a scheduler using the NSPFQ algorithm. 
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• Round robin SCAN 
The round robin SCAN schedules the VOQ. As the name 

indicates, the ports are serviced in a round robin manner. 
• Shaping controller 
The shaping controller regulates the traffic burstiness by 

controlling the inter-packet gaps. 
• VOQ controller 
The VOQ controller gets the backpressure information from 

the backpressure interface. Then, it prevents the VOQ from 
sending packets. 

• POS-PHY III output data interface 
This module takes care of the interface with the QM. The 

QM sends packets with information such as the flow ID, 
destination port, service rate, and service priority. It works as a 
POS-PHY III slave. 

• Backpressure interface 
The backpressure interface receives the backpressure 

information from the QM. 

The core of the scheduler is the scheduling algorithm; it has 
been sufficiently explained in the previous sections. We focus 
now on the sorted priority queues among the above modules. 

2. Heap Manager 

A lot of sorted priority queues have been studied in the 
literature, such as the binary tree of the comparator-based 
priority queue, shift register-based priority queue, systolic 
array-based priority queue, calendar queue, and heap manager 
[17]. The binary tree of the comparator-based priority queue, 
shift register-based priority queue, and systolicarray-based 

 
priority queue are not scalable. Calendar queue and heap 
manager are used widely. 

The calendar queue has a O(1) complexity, but it needs an 
additional tree structure to find an empty slot, so it actually has a 
O(logN) complexity. Furthermore, it is not that scalable 
considering the scheduling according to the port and service class. 
As shown in the next equation, the number of queues of the 
calendar queue depends on the service rates that it supports. 

flow of rate service Minimum
flow of rate service Maximum Queues ofNumber  =  

For example, since it supports 10 kbps minimum service 
rate and 10 Gbps maximum service rate, the number of 
queues needed is 100 M. Additionally, the calendar queue has 
to exist per port and class. Therefore, the total memory 
requirement for the above example is “100M×number of 
ports×number of classes×memory requirement for a queue.” 

Heap is a complete binary tree in which each node has a 
unique key. The node of the maximum value or the minimum 
value can be found easily in the data structure. Heap can be 
implemented by the two methods, max heap and min heap. 
Each node in max heap has a key that is less than or equal to 
the key of its parent and each node in min heap has a key that is 
greater than or equal to the key of its parent. Since we need to 
find the packets with the minimum virtual finish time, we use 
min heap. Heap has O(N) complexity. However, when it is 
pipelined, it has O(log N) complexity. Furthermore, since the 
memory requirement only depends on the number of flows, it 
is more scalable than the calendar queue and it supports any 
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service rate. 
The heap manager is composed of a 16-heap data structure 

module (per port heap manager) and a class multiplexing 
module (Fig. 2). Each heap data structure module has a 
memory module and controller per level, a non-empty 
counter & register module, and a node status register & 
register module. The class multiplexing module multiplexes 
timestamps according to their classes to insert into the heap 
manager per port. A heap data structure module per switch 
port exists and has queues for 256 flows. Each level of 
memory is composed of DPRAM. The memory controller 
controls the DPRAM read/write. The non-empty counter & 
register module finds a valid path for the enqueue operation. 
The node status register & controller is used as a flag to 
indicate that each node has a flow to service. The controller 
sends the ACK for a service flow to the NSPFQ scheduler. 
Each node of DPRAM stores 58 bits of information. Each 
heap manager receives packets and information related to the 
 

NSPFQ and services the flows according to their service 
priority. 

V. Simulation Results 

In this section we present the simulation results to verify the 
performance of NSPFQ. Although we have analyzed the 
upper bound on delays of the NSPFQ algorithm, it is 
important to compare the actual delays seen by sessions in a 
realistic network configuration. We compared the proposed 
algorithm with WFQ, SCFQ, and SPFQ. We also traced the 
session virtual times for all the sessions to show that the 
fairness for the NSPFQ is good and almost identical to the 
other fair queuing algorithms indirectly. 

1. Simulation Model and Traffic Source 

We simulate the algorithms in a single node configuration. 
Eight sessions share the same outgoing link and session 1 is 
 

 

Fig. 2. Details of the heap manager. 

Per port 
heap manager 0 

Per port 
heap manager 1 

Per port 
heap manager 15 

Node status register & controller 

Non-empty counter & register 

Flow ID 
patch ack 

Level 8
 
 

DPRAM

Level 4
 
 

DPRAM

Level 3
 
 

DPRAM

Level 2
 
 

DPRAM

Level 1 

Register 

Memory controller 
(R/W, swap) 

Backpressure 

RR 

Port 15 Flow ID 

Port 0 Flow ID 

Port0 NSPFQ data

Port1 NSPFQ data

Port15 NSPFQ data

Class 
multiplexing 

NSPFQ data 
per class 

 

· · · 

···

· · ·

· · · 

· · · 



486   Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003 

misbehaving while others are transmitting within their 
reservations. There is no blocking at the node and the scheduler 
is assumed to have an infinite buffer capacity for queuing 
packets. 

An ON-OFF model is used in the simulations to investigate 
the scheduler performance. The packet stream consists of 
arrivals with T ms intervals when the model is in an ON state. 
We choose one packet time as T. There are no arrivals when the 
model is in an OFF state. Packet arrivals during the ON state 
are approximated by a geometric distribution with mean 
 .)/(1 Tα  The duration of the OFF state is distributed 
exponentially with means .1 β  

We set α1  to ir100  and β1  to ),1(100 ir−  where 

ir  is the reservation of session i. A well-behaving session is 
shaped by the ),( ii rσ  leaky bucket, where iσ  and ir  are 
the burst size and rate of session i, respectively. 

2. Simulation Results 

A. Delay Properties 

We selected the burst size iσ = 2 for each session. We also 
assumed that session 1 is misbehaving and attempting to 
transmit more than its reservation. Tables 2 and 3 show the 
average delay and maximum delay of algorithms in terms of 
the one fixed-packet transmission time, respectively. The 
average and maximum delay seen by session 0, which has 
50% of the link bandwidth, is substantially higher in the SCFQ 
server than other servers. WFQ, SPFQ, and NSPFQ provide 
the same average and maximum delay. It is easy to verify that 
NSPFQ has almost the same average and maximum delay 
performances as those of SPFQ. 

B. Fairness Properties 

Figures 3, 4, and 5 show the trace of the session virtual times 
of the WFQ, SPFQ, and NPSFQ algorithms with the same 
simulation environment for the delay properties. This could be 
one of ways to show the fairness properties of scheduling 
algorithms. The session virtual time trace of NSPFQ is almost 
identical to those of the WFQ and SPFQ. In addition, the 
session virtual times of sessions are going along the same path 
without diverging. 

Figures 6, 7, and 8 show traces of normalized service with 
the same simulation environment for the delay properties. 
These results show that WFQ, SPFQ, and NSPFQ have almost 
the same fairness property as in the above session virtual time 
trace. Even though we can see few differences in normalized 
services among the sessions in the middle of the each figure, 

Table 2. Average delay. 

 Reserved 
rate 

Arrival
rate 

WFQ SCFQ SPFQ NSPFQ

0 0.500000 0.498 1.5913 3.08040 1.5917 1.5944

1 0.062500 0.100 N/A N/A N/A N/A 

2 0.062500 0.062 8.5502 14.5631 5.4680 4.2446

3 0.062500 0.061 8.9832 14.4902 5.7585 4.4188

4 0.078125 0.076 6.3890 11.9415 3.8515 3.0688

5 0.078125 0.076 6.4524 11.7837 3.5661 3.0229

6 0.078125 0.076 5.8597 11.6815 3.2028 2.6831

7 0.078125 0.076 6.5652 11.8675 4.1405 3.3338

 

 

Table 3. Maximum delay. 

Reserved 
rate 

Arrival
rate 

WFQ SCFQ SPFQ NSPFQ

0 0.500000 0.498 2.0000 7.6000 5.0000 5.0000

1 0.062500 0.100 N/A N/A N/A N/A 

2 0.062500 0.062 26.0000 31.6000 26.0000 26.0000

3 0.062500 0.061 28.0000 26.6000 28.0000 28.0000

4 0.078125 0.076 19.6000 25.9984 18.6000 18.5999

5 0.078125 0.076 19.6000 24.6000 19.4000 19.4000

6 0.078125 0.076 21.4000 23.9984 21.4000 21.4000

7 0.078125 0.076 22.4000 24.6000 22.4000 22.4000

  
 
they came from the traffic properties at that time period. 

VI. Conclusions 

In this paper, we proposed a new fair queuing algorithm, 
called new starting potential fair queuing (NSPFQ). The 
NSPFQ algorithm is a simple scheduling algorithm that is 
similar to the SPFQ. However, it maintains the same sorting 
structure for the virtual start time as the SPFQ, while its 
performances are nearly identical to WFQ. Since NSPFQ 
belongs to the PRPS, we obtained its delay bounds, which are 
the same as those of WFQ. We also analyzed the fairness 
property of the algorithm and showed that the difference in 
normalized service offered to any two sessions that are 
continuously backlogged is always bounded and this bound is 
comparable to that of WFQ. We also provided an extended 
method that provides better fairness on a statistical basis and 
maintains the same fairness index. 
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Fig. 3. Session virtual time trace of WFQ algorithm. 
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Fig. 4. Session virtual time trace of SPFQ algorithm. 
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Fig. 5. Session virtual time trace of NSPFQ algorithm. 
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Fig. 7. Normalized service trace of SPFQ algorithm. 
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Fig. 8. Normalized service trace of NSPFQ algorithm. 
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