
ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 475

In this paper, we propose an efficient and simple fair
queuing algorithm, called new starting potential fair
queuing (NSPFQ), which has O(1) complexity for virtual
time computation and also has good delay and fairness
properties. NSPFQ introduces a simpler virtual time
recalibration method as it follows a rate-proportional
property. The NSPFQ algorithm recalibrates the system
virtual time to the minimum virtual start time among all
possible virtual start times for head-of-line packets in
backlogged sessions. Through analysis and simulation, we
show that the proposed algorithm has good delay and
fairness properties. We also propose a hardware
implementation framework for the scheduling algorithm.

Keywords: Fair queuing, packet scheduling algorithm,
WFQ.

Manuscript received Aug. 2, 2002; revised Apr. 14, 2003.
Dong-Yong Kwak (phone: +82 42 860 5148, email: dykwak@etri.re.kr), Nam-Seok Ko

(email: nsko@etri.re.kr), and Bongtae Kim (email: bkim@etri.re.kr) are with Network
Technology Laboratory, ETRI, Daejeon, Korea.

Hong-Shik Park (email: hspark@icu.ac.kr) is with Information and Communications
University, Daejeon, Korea.

I. Introduction

The packet scheduling algorithm is very important within
individual switches or routers in high-speed integrated services
packet networks for providing a wide range of quality-of-
service guarantees. The function of a scheduling algorithm is to
select, for each outgoing link of the switch, the packet to be
transmitted in the next cycle from the available packets
belonging to the flows sharing the same output link.

Until now, the literature has presented many packet
scheduling algorithms, which are also called fair queuing
algorithms, [1]-[16]. Among them, weighted fair queuing
(WFQ) [2] is an ideal packet scheduling algorithm for its delay
and fairness properties. However, the timestamp computation
in the WFQ scheduler serving N sessions has a complexity of
O(N) per packet transmission time and this makes its
implementation difficult. Recently, many algorithms have been
proposed to simplify the implementation of WFQ, such as self-
clocked fair queuing (SCFQ) [10], frame-based fair queuing
(FFQ) [11], starting potential fair queuing (SPFQ) [11], and
minimum delay self-clocked fair queuing (MD-SCFQ) [13].
However, all those algorithms have their own shortcomings,
which are explained in section II.

In this paper, we propose an efficient and simple fair queuing
algorithm, called new starting potential fair queuing (NSPFQ),
which has O(1) complexity for virtual time computation and
good delay and fairness properties that are comparable to those
of WFQ.

This paper is organized as follows. In section II, we review
the existing fair queuing algorithms and their problems. Section
III presents the concept and operational principle and the
performance analysis of the proposed algorithm. We also
provide an extended algorithm to get better fairness on a

A New Starting Potential Fair Queuing Algorithm with
O(1) Virtual Time Computation Complexity

 Dong-Yong Kwak, Nam-Seok Ko, Bongtae Kim, and Hong-Shik Park

476 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

statistical base making the fairness index unchanged. In section
IV, we propose the hardware implementation framework of the
proposed scheduler. Section V gives the simulation results.
Finally, section VI presents our conclusions.

II. Fair Queuing Algorithms

1. Background

In general, schedulers can be characterized as work-
conserving or nonwork-conserving. A scheduler is work-
conserving if the server is never idle when a packet is buffered
in the system. A nonwork-conserving server may remain idle
even if there are available packets to transmit. A server may, for
example, postpone the transmission of a packet when it expects
a higher priority packet to arrive soon, even though it is
currently idle. Nonwork-conserving algorithms are used to
control delay jitter by delaying packets that arrive early. Work-
conserving servers always have lower average delays than
nonwork-conserving servers. Examples of work-conserving
schedulers include generalized processor sharing (GPS) [9],
WFQ, virtual clock [2], weighted round robin (WRR) [3], and
deficit round robin (DRR) [4]. On the other hand, hierarchical
round robin (HRR) [6], stop-and-go queuing [7], and jitter
earliest due date (Jitter-EDD) [5] are nonwork-conserving
schedulers.

Another classification of schedulers is based on their internal
structure [8]. According to this classification, there are two
main architectures: sorted-priority and frame-based. In a
sorted-priority scheduler, there is a global variable, usually
referred to as the virtual time (also known as system potential),
associated with each outgoing link of the switch. Each time a
packet arrives or gets serviced, this variable is updated. A
timestamp, computed as a function of this variable, is
associated with each packet in the system. Packets are sorted
based on their timestamps and are transmitted in that order.
WFQ is the representative algorithm for this architecture. Two
factors determine the implementation complexity of all sorted-
priority algorithms. First, the complexity of updating the
priority list and selecting the packet with the highest priority is
at least O(log N), where N is the number of connections
sharing the outgoing link. The second is the complexity of
calculating the timestamp associated with each packet; this
factor depends heavily on the algorithm. In a frame-based
scheduler, time is split into frames of fixed or variable length.
Reservations of sessions are made in terms of the maximum
amount of traffic the session is allowed to transmit during a
frame period. Hierarchical round robin and stop-and-go
queuing are frame-based schedulers that use a constant frame
size. As a result, the server may remain idle if sessions transmit

less traffic than their reservations over the duration of a frame.
In contrast, WRR and DRR schedulers allow the frame size to
vary within a maximum. Thus, if the traffic from a session is
less than its reservation, a new frame can be started early.
Therefore, both of these schedulers are work-conserving.

In this paper, we focus on the sorted-priority and work
conserving algorithm. GPS is an ideal scheduling discipline
among such algorithms. GPS multiplexing is defined with
respect to a fluid model, where packets are considered to be
indefinitely divisible. The share of bandwidth reserved by
session i is represented by a real number. Let),(tB τ be the
set of connections that are backlogged in the interval],(tτ . If r
is the rate of the server, the service offered to a connection i that
belongs to),,(),,(tWtB i ττ is proportional to ir as follows:

).(),(
),(

ττ
τ

−≥
∑ ∈

tr
r

rtW
tBj j

i
i

The minimum service that a connection can receive in any
interval of time is

),(

1

τ−
∑ =

tr
r

r
N

j j

i

where N is the maximum number of connections that can be
backlogged in the server at the same time. Thus, GPS serves
each backlogged session with a minimum rate equal to its
reserved rate at each instant; in addition, the excess bandwidth
available from sessions not using their reservations is
distributed among all the backlogged connections at each
instant in proportion to their individual reservations. This
results in perfect isolation, ideal fairness, and low end-to-end
session delays.

The WFQ, or packet-by-packet GPS (PGPS), algorithm [9]
is the packet-by-packet equivalent of GPS, that is, it derives the
system virtual time from the background simulation of a GPS
server. The system virtual time ν(t) of WFQ evolves as that of
the corresponding GPS system, whose derivative is as follows,

,)(
)(

∑
∈

=
tBi

irr
dt

tdv (1)

where B(t) is the set of sessions that are backlogged in the GPS
server at time t, and r is the server rate. WFQ, therefore,
achieves delay bound and fairness properties very close to
those of GPS. However, since all N sessions can join or leave
the set of backlogged sessions during a packet transmission
time, the worst-case complexity of maintaining the system
virtual time is O(N), which makes the algorithm not suitable for
practical deployment in high-speed packet networks. The
latency of WFQ is as follows,

ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 477

,max)(

r
L

r
L

i

iWFQ
i +=Θ (2)

where Li and Lmax are the length of the packet from session i
and the maximum length of the packet in the system,
respectively.

The fairness index of WFQ is as follows:

,,max maxmax










++++= j

ij

j
i

ji

i
WFQ C

r
L

r
L

C
r

L
r
L

FI (3)

where .max,)1(min
1

max








−=

≤≤ k

k
Nki

i r
L

r
L

NC

There have been many efforts to reduce the complexity
while maintaining the performance characteristics close to
WFQ; examples include SCFQ, FFQ, SPFQ, and MD-SCFQ.
SCFQ uses the virtual finish time of the packet that is currently
being transmitted as the system virtual time. As a result, the
complexity of computing the system virtual time of SCFQ is
O(1), and it becomes more feasible for the high-speed network
than for WFQ. It also has optimal fairness properties as
follows:

.)(
j

j

i

i
SCFQ r

L
r
L

FI += (4)

However, the price of the easy system virtual time
computation is a reduced level of isolation among the sessions,
which causes the end-to-end delay bounds to grow linearly
with the number of sessions that share the outgoing link. The
delay bound of SCFQ with N sessions is given by

.)1(max)(

r
L

N
r
L

i

iSCFQ
i −+=Θ (5)

FFQ, SPFQ, and MD-SCFQ are all included in the rate
proportional server (RPS) class [11]. As we can see by the basic
properties of RPS shown in the following subsection, if a
scheduling algorithm is included in the RPS class, then the
algorithm has the same delay properties as those of WFQ.
Therefore, the latencies of all these algorithms are the same as
those of WFQ shown in (2). The fairness properties of each of
them depend on how the system virtual time is recalibrated at
every event. FFQ recalibrates the system virtual time when the
session virtual times of all the backlogged sessions exceed the
fixed value of frame time T. Therefore, the fairness bound is
affected by the frame time T, while the complexity of the system
virtual time computation is O(1). The fairness index of FFQ is

.,max2 









+=

j

j

i

i
FFQ r

L
r
L

TFI (6)

SPFQ derives the system virtual time from the minimum
virtual start time of head-of-line (HOL) packets in all
backlogged sessions. It has comparable fairness characteristics
to WFQ. However, it needs another sorting structure to
maintain the minimum virtual start time of HOL packets in all
backlogged sessions. The resulting complexity of system
virtual time computation is of O(log N). The fairness index of
SPFQ is

.max,max max
1 r

L
r
L

r
L

r
L

FI
k

k
Nkj

j

i

i
SPFQ ++










=

≤≤
 (7)

MD-SCFQ recalibrates the system virtual time based on the
weighted average virtual start time of all backlogged sessions.
It also has fairness characteristics comparable to WFQ.
However, the weighted average of the virtual start time of all
backlogged sessions needs additional computation. The
fairness index of MD-SCFQ is

),,max(,, ijjiSCFQMD ffFI =− (8)

where

.)max(max,max
11

max
, 










−−

−
−+=

≤≤≤≤ r
L

r
L

r
L

rr
r

r
L

r
L

r
L

f i

i

i

k

k
Nkj

i

k

k
Nkji

i
ji

The fairness indices, maximum delay bounds, and
computation complexities of the above scheduling algorithms
are compared in Table 1. In summary, most of the efforts to
reduce the complexity of the virtual time computation
deteriorate the system performance characteristics, such as
delay and fairness properties, and most of the efforts to get
good performance characteristics require additional
complexities.

The purpose of this paper is to propose a new scheduling
algorithm that has a low virtual time computation complexity
along with good performance characteristics. Before we go
through the proposed algorithm, in the following subsection,
we will review the rate proportional server on which our
algorithm is based.

2. Rate Proportional Server

The rate proportional server is a framework of scheduling
algorithm that was formulated by Stiliadis and Varma in [11]. If
a scheduling algorithm is included in the RPS category, then
the delay bounds are the same as those of WFQ. Since our
algorithm is based on the RPS, we need to review it here. The
RPS is explained in terms of system virtual time, session
virtual time, and service rules.

478 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

Table 1. Comparison of characteristics of fair queuing algorithms.

Algorithm Fairness index Latency
Virtual time
computation
complexity

WFQ

,,max maxmax










++++ j

ij

j
i

ji

i C
r

L
r
L

C
r

L
r
L

where 







−=

≤≤ n

n
Nni

i r
L

r
L

NC
1

max max,)1(min
r

L
r
L

i

i max+ O(N)

SCFQ
j

j

i

i

r
L

r
L

+
r

L
N

r
L

i

i max)1(−+ O(1)

FFQ 









+

j

j

i

i

r
L

r
L

T ,max2 , where T is a frame time.
r

L
r
L

i

i max+ O(1)

SPFQ
r

L
r
L

r
L

r
L

n

n
Nnj

j

i

i max
1
max,max ++











≤≤

r
L

r
L

i

i max+ O(logN)

MD-SCFQ

),,max(,, ijji ff

where 









−−

−
−+=

≤≤≤≤ r
L

r
L

r
L

rr
r

r
L

r
L

r
L

f i

i

i

n

n
Nnj

i

n

n
Nnji

i
ji)max(max,max

11
max

, r
L

r
L

i

i max+
O(1), but additional
computation is
required.

In an RPS, the session virtual time)(tvi must satisfy the

following three properties.
①)(tvi is constant as long as session i is not backlogged.
② If session i becomes backlogged at time τ, then

() ,)(),(max)(−−= τττ vvv ii (9)

where τ- denotes the time instant just before the time τ.
③ For every time τ>t when session i remains

backlogged, the session virtual time of the session increases by
the normalized service amount offered to that session during
the whole time interval,],,(tτ

.
),(

)()(
i

i
ii r

tW
vtv

τ
τ += (10)

In an RPS, the system virtual time of the fluid version of a
scheduling algorithm must satisfy the following two
properties.

① For any interval],(21 tt during a system busy period,

.)()(1212 tttvtv −≥− (11)

② The system virtual time cannot exceed the minimum
virtual time of all backlogged sessions at time t,

).(min)(

)(
tvtv itBi∈

≤ (12)

At any time t, sessions are serviced according to the
following rules.

① Among the backlogged sessions, only the set of sessions
with the minimum session virtual time is serviced.

② Each session in this set is serviced with an instantaneous
rate proportional to its reservation so as to increase the virtual
times of the sessions in this set at the same rate.

SPFQ and MD-SCFQ satisfy the above RPS conditions.
These algorithms follow the following basic rules to satisfy the
RPS properties.

• The system virtual time increases linearly with time and
is recalibrated at time instants .,...,, 21 kτττ The time
instants are called recalibration instants with the condition

,...21 kτττ <<< where 1τ is the start time of the system
busy period. In an actual system, the recalibration instants
correspond to the packet departure event. That means that the
system virtual time is recalibrated at every packet departure time.

• The system virtual time is recalibrated as follows at time
instant :jτ

(),)(),(max)(jjj SPvv τττ −=

where)(and,0)(,)()(011 jjjjj SPvvv ττττττ =−+= −−
− is

any non-decreasing function that is specific to each different

ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 479

scheduler.
• Basically the above rules are defined only in the system

busy period. Therefore, when the system becomes idle, the
system virtual time resets to zero. When the system busy
period starts, the system virtual time is calculated according to
the above rules.

III. A New Fair Scheduling Algorithm

Before we introduce the proposed scheduling algorithm, we
make some assumptions and give an important definition in the
algorithm. We have a finite number of different rates and a
maximum packet length affordable in a system. When the
maximum packet length is divided by a rate, we call the
resulting value the maximum timestamp increment (MTI) of
the rate:

,)(max

j
j R

L
RMTI = (13)

where Rj is a rate and Lmax is the maximum packet length in a
system.

The maximum MTI is a constant value that is determined at
the system setup time. When the number of different rates in
the system is D, the maximum MTI in a system can be defined
as

.max max
1

max
jDi R

L
MTI

≤≤
= (14)

The key idea of NSPFQ is that it recalibrates the system
virtual time using the maximum MTI at the end of each packet
transmission, while it uses the system virtual time for a newly
arrived packet as the last calibrated system virtual time added
by the elapsed real time between two calibration events.

In the following subsections we will explain the NSPFQ
algorithm in detail and prove that NSPFQ has a rate-
proportional property. Then, we will induce the fairness index
by calculating the maximum difference of the normalized
service received by two sessions during the continuously
backlogged time interval.

1. The Service Discipline of NSPFQ

In NSPFQ, as in all GPS-related schedulers, the timestamps
are assigned to the arriving packets according to the following
equation:

() ,)(,max 1

i

k
ik

i
k

i
k

i r
l

avFF += − (15)

where k
il is the length of the k-th packet from session i, and ri

is the reserved rate of session i. The system virtual time is

maintained according to the same rule as other packet-by-
packet rate proportional servers (PRPS) while the system
virtual time at each recalibration time iτ is calculated easily
as shown below.

The system virtual time increases linearly with time at every
packet arrival event and is recalibrated at every end of the
packet departure time. The key point of the NSPFQ algorithm
is the simple system virtual time recalibration method. We use
the constant value to reduce the system virtual time
computation complexity, which makes the NSPFQ algorithm
affordable in a high-speed packet switching system. At every
end of the packet transmission, a new packet with a minimum
virtual finish time is selected from the HOL packets in all
backlogged sessions. Since the virtual finish time (TScur) of the
packet is the smallest value in the system at that time, if we
subtract the maximum MTI from the TScur, the resulting value
is the minimum possible value of the virtual start times of the
HOL packets in the system at that time.

The detailed procedures of NSPFQ at the packet arrival time
and at the end of the packet transmission are given below.

Procedures at the packet arrival time

① When a packet arrives at t, update the system virtual time
using the recent system virtual time calculated at τj-1:

,)()()(_ 11 −− −+= jj tvtvtemp ττ

where .0)(and0, 001 ==<≤− ττττ vt jj
② Calculate the virtual finish time (i.e., the timestamp) of

the packet:

,i
k
i

k
i

k
i rlSF +=

where)).(_,max(1 tvtempFS k
i

k
i

−=
③ Place the packet with the timestamp in the related queue.

Procedures at the end of each packet transmission

① Increase the system virtual time by the transmission time
of the packet just completed.

).()()(11 −−
− −+= jjjj vv ττττ

② Retrieve a packet with a minimum virtual finish time
(TScur) from the HOL packets and transmit.

③ Recalibrate the system virtual time.

).),(max()(maxMTITSvv curjj −= −ττ

As we can see in (13), the maximum MTI is a constant value
that is determined by the maximum packet size and the
minimum session rate in the system. The NSPFQ algorithm
uses the maximum MTI to calculate the minimum possible
virtual start time. The minimum possible virtual start time at a

480 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

point is calculated only by a subtraction operation. When the
maximum MTI is subtracted from the virtual finish time of a
packet that is being transmitted, the result is the minimum
possible value of the virtual start times of all the backlogged
sessions. Therefore, our algorithm’s system virtual time
computation has a complexity of O(1). Additionally, NSPFQ
requires a much smaller amount of information and less
computation complexity than other GPS-related scheduling
algorithms.

In the following section, we will show that our algorithm has
good performance characteristics as well as this simplicity.

2. Performance Analysis of the NSPFQ Algorithm

In this section, we will show the performance characteristics
of the NSPFQ algorithm. Since the RPS properties of the fluid
version of a scheduling algorithm have an effect on the
performance characteristics of scheduling algorithms, we prove
that the fluid version of the NSPFQ algorithm is included in the
RPS category. We then prove the delay and fairness properties
of NSPFQ.

A. RPS Properties of the Fluid Version of the NSPFQ Algorithm

Before we prove that the fluid version of the NSPFQ
algorithm is an RPS, we will use a lemma. The result of this
lemma is the same as lemma 1 in [13]. However, we will prove
this lemma with the definition of NSPFQ.

Lemma 1. Let nτ and 1+nτ be two consecutive recalibration
instants.

.),(),()(then

),(),()(If

1+≤≤∈∀≥

∈∀≥

nnj

nnj

ttBjtvtv

tBjvv

ττ

ττ

Proof. From the definition of NSPFQ, the system virtual
time increases by the real time passed. However, the session
virtual time of a session increases by the amount of the service
it received. Note that only sessions with minimum virtual time
are serviced at any time.

Therefore, we can consider)(),()(tMjvv nnj ∈∀≥ ττ
instead of),(),()(tBjvv nnj ∈∀≥ ττ where)(tM is the set
of sessions with the minimum session virtual time at time t:

{ }.)(min)()(
)(

tvtvjtM ktBkj ∈
==

The session virtual times with the minimum virtual time
increase with the slope of)(/ tMrr while the sessions leave
set).(tM Even though the set can change before the next
recalibration time, the slope)(/ tMrr is always larger than the
system virtual time slope 1. With this condition, the system
virtual time cannot exceed any session virtual time between the
two recalibration times of the system virtual time. Therefore,

we can conclude lemma 1. �

Lemma 2. The fluid version of NSPFQ is a rate proportional
server.

Proof. For a fluid version of a packet scheduling algorithm to
be classified as an RPS, the conditions of (11) and (12) must be
satisfied. The former condition is met directly by the definition
of the system virtual time of NSPFQ. Therefore, we only need
to prove the latter condition and will prove it by induction, with
reference to the recalibration instants as in [13].

Step 1. First we will show that (12) is satisfied from the start
of the system busy period)(0τ to the first recalibration time
of the system virtual time).(1τ That is, we should prove

,),(),()(10 ττ ≤≤∈∀≥ ttBjtvtv j

where B(t) is the set of sessions that are backlogged in the
system.

Since),(,0)()(00 tBjvv j ∈∀== ττ from lemma 1 it is
clear that .),(),()(10 ττ <≤∈∀≥ ttBjtvtv j

Now we have to show that it is still valid at time 1τ when
the first recalibration of the system virtual time occurs. Let

)(1τS be the session whose first packet completes
transmission at time .1τ If we let the virtual finishing time of
the transmitted packet be ,)(1τsF it is also the session virtual
time of)(1τS at that time.

Since session)(1τS was receiving service at time ,1τ
)(1τsF is the minimum among the virtual times of the

backlogged sessions, which is also greater than the virtual start
time of all HOL packets of any other sessions.

)},({\)(),(111)(1
ττττ sBjvFva jsj

−∈∀≤≤

where jva is the virtual start time of session j.
From the definition of NSPFQ, the system virtual time

increases linearly with the real time until 1τ and is recalibrated
to the maximum between the linearly increased time and the
minimum value of all possible virtual start times at time .1τ
From lemma 1, we know that the linearly increased time
cannot exceed the session virtual time. Therefore, the system
virtual time is recalibrated to the minimum value of all possible
virtual start times of HOL packets in backlogged sessions.

Therefore, .),(),()(10 ττ ≤≤∈∀≥ ttBjtvtv j

Step 2. Now we will show that if (12) is satisfied until
recalibration instant ,1−nτ then it is satisfied until recalibration
instant nτ (including nτ). That is, we will prove the following.

.),()()(

)()()(

1

111

nnj

nnnj

ttBjtvtv

Bjvv

ττ

τττ

≤<∈∀≥⇒

∈∀≥

−

−−−

ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 481

Since we know the result for nn t ττ <≤−1 from lemma 1,
we need to prove that).(),()(nj Bjtvtv τ∈∀≥

Now let)(ns τ be the session whose packet completes
transmission at time ,nτ and)(nsF τ be the virtual
finishing time of the transmitted packet. As in step 1, since
session)(nS τ was receiving service at time)(,

nsn F ττ
is the minimum among the virtual times of backlogged
sessions.

).(),()(nnjs BjvF
n

τττ ∈∀≤

Even though virtual start times of the sessions that are
backlogged at time nτ can be greater than ,)(nsF τ they never
exceed).(njv τ If we note that NSPFQ recalibrates the
system virtual time to the minimum virtual start time
among all possible virtual start times, it is clear that

).()()(njnjn vvav τττ ≤≤ Therefore,

.),(),()(1 nnj ttBjtvtv ττ ≤≤∈∀≥ −

This concludes the proof through steps 1 and 2. �

B. Delay Properties of NSPFQ

The fluid version of NSPFQ presented above is an RPS.
Therefore, the NSPFQ algorithm has all the delay properties of
a PRPS, which is the same as those of WFQ. Consequently,
from the delay properties of the PRPS scheduler, the latency of
the NSPFQ scheduler is given as follows,

.max)(

r
L

r
L

i

iNSPFQ
i +=Θ (16)

When a session i is constrained by the),(ii rσ leaky
bucket that has a reserved rate ir and a burst size ,iσ the
amount iα of information units arriving at the server is
bounded as

)(),(τστα −+≤ trt iii (17)

during any time interval],(tτ such that).()(),(ταατα iii tt −=
For such a session, for an arbitrary network of NSPFQ

servers, the maximum delay K
iD after the K-th node in the

network is bounded as

.
1 i

i
K

j

j
i

i

iK
i r

L
r

D −Θ+≤ ∑
=

σ
 (18)

C. Fairness Properties of NSPFQ

Since the recalibrations prevent the system virtual time from
lagging indefinitely behind the virtual times of the sessions that
are currently backlogged in a PRPS system and the NSPFQ

algorithm is a PRPS, we can say that NSPFQ is a fair scheduler.
However, we need to define the formal fairness index. We
adopt Golestani’s definition of the fairness index [10]. The
fairness index is defined as

,
),(),(

,
2121

ji
j

j

i

i F
r

ttW
r

ttW
≤− (19)

where ii rttW /),(21 is the normalized service received by
session i during the continuously backlogged time interval (t1,
t2).

Lemma 3. In a PRPS system, at any time t, the difference
between the system virtual time v(t) and the timestamp k

iF
of any packet k

iP of session i that is currently in the system is
bounded as follows:

),(,)(max tBi
r

L
Ftv

i

k
i ∈∀≤−

where ir is the reserved rate of session i.

Proof. For any PRPS and corresponding RPS, the following
holds [12]:

,ˆ max

r
L

tt k
i

k
i +≤ (20)

where k
it is the time when a packet completes transmission in

the considered PRPS, and k
it̂ is the time when the same

packet k
ip completes transmission in the corresponding RPS.

Assume the n-th recalibration of system virtual time nτ
occurs at time .k

it
The session virtual time)(k

ii tv is as follows:

),ˆ()ˆ()(
)(

k
i

k
i

tM

k
ii

k
ii tt

r
rtvtv −+= (21)

where { }.)(min)()(
)(

tvtvjtM ktBkj ∈
==

In an RPS system, when packet k
ip completes transmission

in the fluid system, its timestamp k
iF is greater than or equal

to the system virtual time:

.)ˆ(k
i

k
i Ftv ≤ (22)

Therefore, according to (21) and (22) with the second
condition of the RPS system,),(min)()(tvtv itBi∈≤ the system
virtual time at time k

it is bounded as follows,

.

)ˆ()ˆ()(

max

i

k
i

k
i

k
i

i

k
i

k
i

r
L

F

tt
r
rtvtv

+≤

−+≤

 (23)

482 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

This concludes the proof of lemma 3. �
Since the system virtual time between the two recalibration

times increases by the real time elapsed, the following corollary
comes directly.

Corollary 1. In a PRPS system, at time ,k
is when packet

k
ip starts transmission, the difference between the system

virtual time and its timestamp k
iF is

.)(max

r
l

r
L

Fsv
k
i

i

k
i

k
i −≤− (24)

We can evaluate the fairness index (FI) of NSPFQ following
the procedures presented in [13].

Theorem 1. The fairness index of NSPFQ is
),,max(,,)(ijjiNSPFQ ffFI =

where).max,max(max
1

max
, r

L
R

L
r

L
r
LL

r
L

f i

nDn

j

j

j

i

i
ji −−

+
+=

≤≤

Proof. We can derive FI(NSPFQ) from the difference of
normalized service received by session i and j at any time interval,
during (t1, t2) when the two sessions are continuously backlogged.
All the possible cases that we can consider are as follows.

1. One session becomes backlogged at time t1, while the other
session is already backlogged before time t1.

2. Both sessions become backlogged at time t1.

Even though we can consider one more cases where both
sessions are backlogged before time t1, it can be treated as case
1 in any time .1tt <′

Case 1. Session j becomes backlogged at time t1, whereas
session i is already backlogged at time t1, and k

iF is the
timestamp of its HOL queue packet .k

ip We must consider
two subcases.

Subcase 1.1. Packet m
jp of session j receives a timestamp

.k
i

m
j FF >
In order to maximize the amount of normalized service

provided to session i before session j receives its first service,
packet m

jp must reach the system at the exact time when the
packet k

ip is picked for transmission.
According to lemma 3 and corollary 1, at the exact time

satisfying the condition, the virtual finishing time of session j,
m
jF is

,max

j

m
j

k
i

i

k
i

m
j r

l
r
l

r
L

FF +−+≤ (25)

where k
il and m

jl are the lengths of packet k
ip and ,m

jp
respectively.

The service provided to packet k
ip (equal to i

k
i rl)

contributes to the difference of normalized service, and all the
following packets of session i having a timestamp not greater
than m

jF are transmitted before .m
jp

From (25)

,

)(

max

i

k
i

k
i

j

m
j

i

i

k
ik

i
m
j

k
i

m
j

r
l

r
l

r
l

r
L

r
l

FFSF

+−+≤

−−=−

where k
iS is the virtual start time of packet .k

ip
The resulting difference of received normalized service

before packet m
jp is picked for transmission is, therefore,

bounded by

.max)1(
,

j

ji

i

ia
ij r

L
r
L

r
LL

f +−
+

= (26)

Subcase 1.2. Packet m
jp of session j receives a timestamp

.k
i

m
j FF <
In order to maximize the amount of normalized service

provided to session j before session i receives service again,
packet m

jp must reach the system just before packet k
ip

completes transmission and the system virtual time is
consequently recalibrated. Let k

il be the length of the packet
,k

ip and 1+k
il be the length of .1+k

ip Packet k
ip started

transmission at time rltt k
is −= 1 ; at that time, according to

the definition of NSPFQ, the minimum possible value of the
system virtual time is

.max

)(

max
1

max

nDn

k
i

k
is

R
L

F

MTIFtv

≤≤
−=

−=
 (27)

Packet 1+k
ip receives a timestamp .11

i
k
i

k
i

k
i rlFF ++ +=

If m
jp reaches the system at time t1 just before k

ip
completes transmission, the minimum possible value of the
system virtual time is

,)()(1 r
l

tvtv
k
i

s += (28)

so that the resulting difference of normalized service between
session j and session i can be expressed as

.max)(max
1

1

1
1

r
l

R
L

r
l

tvF
k
i

nDni

k
ik

i −+=−
≤≤

+
+ (29)

The whole difference of normalized service in (29) increases

ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 483

with k
il and 1+k

il , so that

.max max
1

)1(
, r

L
R

L
r
L

f i

nDni

ib
ji −+=

≤≤
 (30)

Case 2. Both sessions i and j become backlogged simultaneously
at time t1.

In this case, both sessions use the same system virtual time to
calculate the virtual finish times. Therefore, the maximum
difference of the received normalized service between them is
decided by their virtual finish times. Without loss of generality,
assuming that ,// j

k
ji

k
i rlrl > session i begins service before

session j. Consequently, the maximum difference of received
normalized service between them at any time t2, when k

ip
ends the transmission, is

.)2(
,

i

i
ji r

L
f ≤ (31)

Therefore, theorem 1 follows from (26), (29) and (31). �

3. Extension of the NSPFQ Algorithm

We introduced a simple scheduling algorithm that has a
lower computation complexity for the system virtual time. This
simple mechanism can be extended to get better fairness on a
statistical basis making its fairness index unchanged.

Instead of the using one maximum MTI determined at the
system setup time, we can use the maximum of the MTIs of all
backlogged sessions. In this case, we need another sorting structure
to maintain the maximum MTI among all the backlogged sessions.
However, we can restrict the number of MTIs in the system to
improve the system performance. In this case, we have two
options. First, we can support only a fixed number of rates, that is,
we only support the designated rates without supporting the other
rates. This makes the implementation easy, but introduces some
limitation in the operation of the system. Second, we can support
many rates. Only MTIs for the fixed number of representative
rates are calculated and the MTIs for the other rates are taken
from that of the nearest rate.

The sorting structure can be implemented with a max heap, in
which the elements are different values of MTIs and each
element keeps the number of sessions having their MTIs. Refer
to the following section for some information on the heap. When
a session is newly backlogged in the system, we can have two
cases in the binary search tree insertion operation. First, when the
MTI does not exist in the heap, the timestamp increment is
inserted in the heap. Second, when the MTI exists, the number
for the MTI is incremented. When a session goes out of the
backlogged status, the number of the MTI for the session is
decremented. If the number of the MTI becomes zero as a result

of the decrement operation, the MTI is deleted in the heap. When
we select the maximum MTI at the end of every packet
transmission event, we just need to read the root of the heap.

This operation could be implemented easily in the high-
speed network without much complexity. The complexity of
maintaining this additional sorting structure is O(logD), where
D is the number of rates supported in the system. Considering
that the complexity of maintaining the virtual start time is
O(logN), where N is the number of the backlogged sessions,
the NSPFQ algorithm has much lower complexity than SPFQ
even with this extended method.

IV. Hardware Implementation Framework
In this section we propose a hardware implementation

framework for the NSPFQ scheduling algorithm as shown in
Fig. 1. In the following subsections, we will explain the overall
components and then provide the details of the heap manager
architecture.

1. Proposed Scheduler Architecture
The proposed scheduler is composed of a POS-PHY III

interface, NSPFQ scheduler, heap manager, shaping controller,
VOQ controller, port scheduler, and PCI interface module. We
assume that the queue management function works in another
module called the queue manger (QM) and the scheduler gets
the packets from that module. The explanation for each module
is as follows.

• POS-PHY III input data interface
This module takes care of the interface with the QM. The

QM sends packets with information such as the flow ID,
destination port, service rate, and service priority. It works as a
POS-PHY III slave.

• PCI bus controller
The PCI bus is for the host CPU interface, which is used to

initialize the scheduler at the startup time and to change the
configuration during the run time.

• NSPFQ scheduler
NSPFQ gets packets through the POS-PHY III input data

interface with information such as destination port, service
priority, etc. Then, the virtual finish time is calculated as in the
method in section III. After the virtual finish time is calculated,
packets are sorted in the heap manager according to the
destination port and service priority.

• Heap manager
The number of heap manages in the system is decided by the

number of ports multiplied by the number of classes. Each
heap manager sorts the packets according to their virtual finish
time so that the packet with the minimum virtual finish time is
served first.

484 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

Fig. 1. An example of a scheduler using the NSPFQ algorithm.

Heap manager

Heap manager

Heap manager

Heap manager

Internal
configuration

PCI bus
controller

VOQ
controller

Shaping
controller

POS
PHY III
output
data

interface

POS
PHY III
input
data

interface

NSPFQ
scheduler

Data output/SPI3

Backpressure

(Port, Class)

Round robin
scheduler

Timestamp/Flow ID

Timestamp/Flow ID

Timestamp/Flow ID

Timestamp/Flow ID

Data input/SPI3

PCI 32bit/66MHz

To host processor
PCI interface

Flow ID

···

···· · ·

• Round robin SCAN
The round robin SCAN schedules the VOQ. As the name

indicates, the ports are serviced in a round robin manner.
• Shaping controller
The shaping controller regulates the traffic burstiness by

controlling the inter-packet gaps.
• VOQ controller
The VOQ controller gets the backpressure information from

the backpressure interface. Then, it prevents the VOQ from
sending packets.

• POS-PHY III output data interface
This module takes care of the interface with the QM. The

QM sends packets with information such as the flow ID,
destination port, service rate, and service priority. It works as a
POS-PHY III slave.

• Backpressure interface
The backpressure interface receives the backpressure

information from the QM.

The core of the scheduler is the scheduling algorithm; it has
been sufficiently explained in the previous sections. We focus
now on the sorted priority queues among the above modules.

2. Heap Manager

A lot of sorted priority queues have been studied in the
literature, such as the binary tree of the comparator-based
priority queue, shift register-based priority queue, systolic
array-based priority queue, calendar queue, and heap manager
[17]. The binary tree of the comparator-based priority queue,
shift register-based priority queue, and systolicarray-based

priority queue are not scalable. Calendar queue and heap
manager are used widely.

The calendar queue has a O(1) complexity, but it needs an
additional tree structure to find an empty slot, so it actually has a
O(logN) complexity. Furthermore, it is not that scalable
considering the scheduling according to the port and service class.
As shown in the next equation, the number of queues of the
calendar queue depends on the service rates that it supports.

flow of rate service Minimum
flow of rate service Maximum Queues ofNumber =

For example, since it supports 10 kbps minimum service
rate and 10 Gbps maximum service rate, the number of
queues needed is 100 M. Additionally, the calendar queue has
to exist per port and class. Therefore, the total memory
requirement for the above example is “100M×number of
ports×number of classes×memory requirement for a queue.”

Heap is a complete binary tree in which each node has a
unique key. The node of the maximum value or the minimum
value can be found easily in the data structure. Heap can be
implemented by the two methods, max heap and min heap.
Each node in max heap has a key that is less than or equal to
the key of its parent and each node in min heap has a key that is
greater than or equal to the key of its parent. Since we need to
find the packets with the minimum virtual finish time, we use
min heap. Heap has O(N) complexity. However, when it is
pipelined, it has O(log N) complexity. Furthermore, since the
memory requirement only depends on the number of flows, it
is more scalable than the calendar queue and it supports any

ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 485

service rate.
The heap manager is composed of a 16-heap data structure

module (per port heap manager) and a class multiplexing
module (Fig. 2). Each heap data structure module has a
memory module and controller per level, a non-empty
counter & register module, and a node status register &
register module. The class multiplexing module multiplexes
timestamps according to their classes to insert into the heap
manager per port. A heap data structure module per switch
port exists and has queues for 256 flows. Each level of
memory is composed of DPRAM. The memory controller
controls the DPRAM read/write. The non-empty counter &
register module finds a valid path for the enqueue operation.
The node status register & controller is used as a flag to
indicate that each node has a flow to service. The controller
sends the ACK for a service flow to the NSPFQ scheduler.
Each node of DPRAM stores 58 bits of information. Each
heap manager receives packets and information related to the

NSPFQ and services the flows according to their service
priority.

V. Simulation Results

In this section we present the simulation results to verify the
performance of NSPFQ. Although we have analyzed the
upper bound on delays of the NSPFQ algorithm, it is
important to compare the actual delays seen by sessions in a
realistic network configuration. We compared the proposed
algorithm with WFQ, SCFQ, and SPFQ. We also traced the
session virtual times for all the sessions to show that the
fairness for the NSPFQ is good and almost identical to the
other fair queuing algorithms indirectly.

1. Simulation Model and Traffic Source

We simulate the algorithms in a single node configuration.
Eight sessions share the same outgoing link and session 1 is

Fig. 2. Details of the heap manager.

Per port
heap manager 0

Per port
heap manager 1

Per port
heap manager 15

Node status register & controller

Non-empty counter & register

Flow ID
patch ack

Level 8

DPRAM

Level 4

DPRAM

Level 3

DPRAM

Level 2

DPRAM

Level 1

Register

Memory controller
(R/W, swap)

Backpressure

RR

Port 15 Flow ID

Port 0 Flow ID

Port0 NSPFQ data

Port1 NSPFQ data

Port15 NSPFQ data

Class
multiplexing

NSPFQ data
per class

· · ·

···

· · ·

· · ·

· · ·

486 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

misbehaving while others are transmitting within their
reservations. There is no blocking at the node and the scheduler
is assumed to have an infinite buffer capacity for queuing
packets.

An ON-OFF model is used in the simulations to investigate
the scheduler performance. The packet stream consists of
arrivals with T ms intervals when the model is in an ON state.
We choose one packet time as T. There are no arrivals when the
model is in an OFF state. Packet arrivals during the ON state
are approximated by a geometric distribution with mean
 .)/(1 Tα The duration of the OFF state is distributed
exponentially with means .1 β

We set α1 to ir100 and β1 to),1(100 ir− where

ir is the reservation of session i. A well-behaving session is
shaped by the),(ii rσ leaky bucket, where iσ and ir are
the burst size and rate of session i, respectively.

2. Simulation Results

A. Delay Properties

We selected the burst size iσ = 2 for each session. We also
assumed that session 1 is misbehaving and attempting to
transmit more than its reservation. Tables 2 and 3 show the
average delay and maximum delay of algorithms in terms of
the one fixed-packet transmission time, respectively. The
average and maximum delay seen by session 0, which has
50% of the link bandwidth, is substantially higher in the SCFQ
server than other servers. WFQ, SPFQ, and NSPFQ provide
the same average and maximum delay. It is easy to verify that
NSPFQ has almost the same average and maximum delay
performances as those of SPFQ.

B. Fairness Properties

Figures 3, 4, and 5 show the trace of the session virtual times
of the WFQ, SPFQ, and NPSFQ algorithms with the same
simulation environment for the delay properties. This could be
one of ways to show the fairness properties of scheduling
algorithms. The session virtual time trace of NSPFQ is almost
identical to those of the WFQ and SPFQ. In addition, the
session virtual times of sessions are going along the same path
without diverging.

Figures 6, 7, and 8 show traces of normalized service with
the same simulation environment for the delay properties.
These results show that WFQ, SPFQ, and NSPFQ have almost
the same fairness property as in the above session virtual time
trace. Even though we can see few differences in normalized
services among the sessions in the middle of the each figure,

Table 2. Average delay.

 Reserved
rate

Arrival
rate

WFQ SCFQ SPFQ NSPFQ

0 0.500000 0.498 1.5913 3.08040 1.5917 1.5944

1 0.062500 0.100 N/A N/A N/A N/A

2 0.062500 0.062 8.5502 14.5631 5.4680 4.2446

3 0.062500 0.061 8.9832 14.4902 5.7585 4.4188

4 0.078125 0.076 6.3890 11.9415 3.8515 3.0688

5 0.078125 0.076 6.4524 11.7837 3.5661 3.0229

6 0.078125 0.076 5.8597 11.6815 3.2028 2.6831

7 0.078125 0.076 6.5652 11.8675 4.1405 3.3338

Table 3. Maximum delay.

Reserved
rate

Arrival
rate

WFQ SCFQ SPFQ NSPFQ

0 0.500000 0.498 2.0000 7.6000 5.0000 5.0000

1 0.062500 0.100 N/A N/A N/A N/A

2 0.062500 0.062 26.0000 31.6000 26.0000 26.0000

3 0.062500 0.061 28.0000 26.6000 28.0000 28.0000

4 0.078125 0.076 19.6000 25.9984 18.6000 18.5999

5 0.078125 0.076 19.6000 24.6000 19.4000 19.4000

6 0.078125 0.076 21.4000 23.9984 21.4000 21.4000

7 0.078125 0.076 22.4000 24.6000 22.4000 22.4000

they came from the traffic properties at that time period.

VI. Conclusions

In this paper, we proposed a new fair queuing algorithm,
called new starting potential fair queuing (NSPFQ). The
NSPFQ algorithm is a simple scheduling algorithm that is
similar to the SPFQ. However, it maintains the same sorting
structure for the virtual start time as the SPFQ, while its
performances are nearly identical to WFQ. Since NSPFQ
belongs to the PRPS, we obtained its delay bounds, which are
the same as those of WFQ. We also analyzed the fairness
property of the algorithm and showed that the difference in
normalized service offered to any two sessions that are
continuously backlogged is always bounded and this bound is
comparable to that of WFQ. We also provided an extended
method that provides better fairness on a statistical basis and
maintains the same fairness index.

ETRI Journal, Volume 25, Number 6, December 2003 Dong-Yong Kwak et al. 487

Fig. 3. Session virtual time trace of WFQ algorithm.

0

500

1000

1500

2000

2500

3000

Time

S
es

si
on

 v
irt

ua
l t

im
e

Fig. 4. Session virtual time trace of SPFQ algorithm.

0

500

1000

1500

2000

2500

3000

Time

S
es

si
on

 v
irt

ua
l t

im
e

Fig. 5. Session virtual time trace of NSPFQ algorithm.

0

500

1000

1500

2000

2500

3000

Time

S
es

si
on

 v
irt

ua
l t

im
e

References

[1] H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet Switching Networks,” Proc. of the IEEE, vol. 83,
no. 10, Oct. 1995, pp. 1374-1396.

[2] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switching,” ACM Trans. on Computer Systems, vol. 9, no.
2, May 1991, pp. 101-124.

[3] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted
round-robin cell multiplexing in a general-purpose ATM switch
chip,” IEEE JSAC, vol. 9, Oct. 1991, pp. 1265-1279.

[4] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using

 Fig. 6. Normalized service trace of WFQ algorithm.

0

200

400

600

800

1000

1200

1400

1600

Time

N
or

m
al

iz
ed

 s
er

vi
ce

Fig. 7. Normalized service trace of SPFQ algorithm.

0

200

400

600

800

1000

1200

1400

1600

Time

N
or

m
al

iz
ed

 s
er

vi
ce

Fig. 8. Normalized service trace of NSPFQ algorithm.

0

200

400

600

800

1000

1200

1400

1600

Time

N
or

m
al

iz
ed

 s
er

vi
ce

deficit round robin,” Proc. of ACM SIGCOMM’95, Sept. 1995, pp.
231-242.

[5] D. Verma, H. Zhang, and D. Ferrari, “Guaranteeing Delay Jitter
Bounds in Packet Switching Networks,” Proc. of Tricomm’91,
Apr. 1991, pp. 35-46.

[6] C. Kalmanek, S. Morgan, and R.C. Restrick, “Rate Controlled
Servers for Very High-Speed Networks,” Proc. of IEEE
GLOBECOM, Dec. 1990, pp. 300.3.1-300.3.9.

[7] S. Golestani, “A Framing Strategy for Congestion Management,”
IEEE JSAC, vol. 9, Sept. 1991, pp. 1064-1077.

[8] H. Zhang and S. Keshav, “Comparison of Rate-Based Service
Disciplines,” Proc. of ACM SIGCOMM’91, 1991, pp.113-122.

488 Dong-Yong Kwak et al. ETRI Journal, Volume 25, Number 6, December 2003

[9] A.K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single Node Case,” Proc. of IEEE INFOCOM’92, vol. 2, May
1992, pp. 915-924.

[10] S.J. Golestani, “A Self-Clocked Fair Queuing Scheme for Broadband
Applications,” Proc. of IEEE INFOCOM ’94, Apr. 1994, pp. 636-646.

[11] D. Stiliadis and A. Varma, “Efficient Fair Queuing Algorithms for
Packet-Switched Networks,” IEEE/ACM Trans. Networking, vol. 6,
no. 2, Apr. 1998, pp. 175-185.

[12] D. Stiliadis and A. Varma, “A General Methodology for
Designing Efficient Traffic Scheduling and Shaping Algorithms,”
Proc. of IEEE INFOCOM ’97, vol. 1, Apr. 1997, pp. 326-335.

[13] F.M. Chiussi and A. Francini, “Minimum-Delay Self-Clocked
Fair Queuing Algorithm for Packet-Switched Networks,” Proc. of
IEEE INFOCOM ’98, vol. 3, Mar. 1998, pp. 1112-1121.

[14] F.M. Chiussi et al., “A Family of ASIC Devices for Next
Generation Distributed Packet Switches with QoS Supports for IP
and ATM,” Hot Interconnects 9, Aug. 2001, pp. 145-149.

[15] C. Dovrolis and D. Stiliadis, “Proportional Differentiated
Services: Delay Differentiation and Packet Scheduling,”
IEEE/ACM Trans. Networking, vol. 10, no. 1, Feb. 2002, pp. 12-
26.

[16] Byung-Hwan Choi and Hong-Shik Park, “Rate Proportional
SCFQ (RP-SCFQ) Algorithm for High-Speed Packet-Switched
Networks,” ETRI J., vol. 22, no. 3, Sept. 2000, pp. 1-9.

[17] Aggelos D. Ioannou, “An ASIC Core for Pipelined Heap
Management to Support Scheduling in High Speed Networks,”
FORTH-ICS / TR-278, Nov. 2000.

Dong-Yong Kwak received his BS degree and
MS degree both in computer science from
Dongguk University in Seoul, Korea, in 1983
and 1985. He joined ETRI in 1985. From 1985
to 1990, he was on the technical staff of the
software division developing TDX test
environments. He was involved in an ATM

switch development project from 1991 to 2001, and he is currently a
leader in the Network Processor Technology Team. His research
interests are in traffic scheduling algorithms, traffic engineering, and
network processor design.

Nam-Seok Ko received his BS degree in
computer engineering from Chonbuk National
University in 1998 and MS degree from
Information and Communications University
(ICU) in 2000. He is currently working for the
Electronics and Telecommunications Research
Institute in Daejeon, Korea. His research

interests include high-speed network architecture, protocol, and security.

Bongtae Kim received his BS degree in
electronics from Seoul National University,
Seoul, Korea, in 1983, and his MS degree and
PhD degrees both in computer engineering
from North Carolina State University, Raleigh,
NC, USA, in 1991 and 1995. He joined ETRI,
Daejeon, Korea, in 1983. From 1983 to 1990,

he was on the technical staff of the switching division, developing
TDX switches. In 1985 and 1986, he was a Visiting Engineer of
Network Systems, ITT Telecom, Raleigh, NC, USA, where he was
involved in developing a digital concentrator. In 1996, he became the
Team Leader of developing broadband multimedia communication
services and service architecture for the nationwide ATM testbed in
Korea. During 1997 and 1998, he worked as the Project Leader of
developing QAM VDSL chips, and during 1999 and 2000, he worked
as the Team Leader of ACE2000 ATM switch architecture design. In
2001, he assumed his current responsibility as the Director of the
Network Core Technology Department of ETRI. His research interests
are in network SoC and network system design, communication
protocols, and queueing systems.

Hong-Shik Park received the BS degree from
Seoul National University, Seoul, Korea in 1977,
and the MS and PhD degrees from KAIST,
Daejeon, Korea in electrical engineering in 1986
and 1995. In 1977, he joined the Electronics and
Telecommunications Research Institute and had
been engaged in development of TDX digital

switching system family including TDX-1, TDX-1A, TDX-1B, TDX-
10, and ATM switching systems. In 1998, he moved to ICU, Daejeon,
Korea as a faculty member. Currently he is an Associate Professor. His
research interests are network architecture, network protocols, and
performance analysis of telecommunication systems. He is a member
of the IEEK, KICS, Korea, and IEICE, Japan.

