Ricci Tensor in 3-dimensional Trans-Sasakian manifolds

U. C. DE;MUKUT MANI TRIPATHI

  • Published : 20030000

Abstract

In a 3-dimensional trans-Sasakian manifold, explicit formulae for Ricci operator, Ricci tensor and curvature tensor are obtained. In particular, expressions for Ricci tensor are obtained in a 3-dimensional trans-Sasakian manifold in cases of the manifold being η-Einstein or satisfying R (X, Y) · S = 0.

Keywords

References

  1. Lecture Notes in Math. v.509 Contact manifolds in Riemannian geometry D. E. Blair
  2. Kodai Math. J. v.13 A classification of 3-dimensional contact metric manifolds with QΦ=ΦQ D. E. Blair;T. Koufogirgos;R. Sharma
  3. Publications Matematiques v.34 Conformal and related changes of metric on the product of two almost contact metric manifolds D. E. Blair;J. A. Oubina
  4. Proceedings of the ⅩⅡth Portuguese-Spanish Conference on Mathematics v.Ⅱ Curvature relations in trans-Sasakian manifolds D. Chinea;C. Gonzalez
  5. Progress in Mathematics v.155 Locally conformal Kahler geometry S. Dragomir;L. Ornea
  6. Ann. Mat. Pura Appl. v.123 no.4 The sixteen classes structures and curvature tensors A. Gray;L. M. Hervella
  7. Kodai Math. J. v.4 Almost contact structures and curvature tensors D. Janssens;L. Vanhecke
  8. Tohoku Math. J. v.24 A class of almost contact Riemannian manifolds K. Kenmotsu
  9. J. Korean Math. Soc. v.39 no.6 On generalized Ricci-recurrent trans-Sasakian manifolds J.-S. Kim;R. Prasad;M. M. Tripathi
  10. Ann. Mat. Pura Appl. v.162 no.4 The local structure of trans-Sasakian manifolds J. C. Marrero
  11. Proceedings of the ⅩⅠⅤth Spanish-Portuguese Conference on Mathematics v.Ⅰ-Ⅲ On trans-Sasakian manifolds J. C. Marrero;D. Chinea
  12. Monograph 1 Almost contact metric manifolds R. S. Mishra
  13. Publ. Math. Debrecen v.32 New classes of almost contact metric structures J. A. Oubina
  14. Nepali Math. Sci. Rep. v.18 no.1-2 Trans-Sasakian manifolds are generalized quasi-Sasakian M. M. Tripathi