Acknowledgement
Supported by : 한국학술진흥재단
Plants are often subjected to periods of soil and atmospheric water deficit during their life cycle. To find critical levels for identification of tolerant rice variety to salt- and drought-stresses, we investigated the water deficiency in the leaf of a Dongjinbyeo (DJ) cultivar, identified as intolerant variety, subjected to NaCl- and Polyethylene glycol 6000 (PEG)- treatments. The relative water content and water potential in leaf of DJ plant sharply declined along the high concentration and time after treatment in NaCl- and PEG-treated rice plants. To elucidate the method of simple screening of tolerant variety to salt- and drought-stresses, we examined the relationship between relative water content and water potential of leaves in NaCl- and PEG-treated rice plants. The relationship between relative water content and water potential in leaf of DJ plant showed the highest correlation in 80 mM NaCl-treatment, and showed high correlation only 8% PEG treatment. These results indicate that the critical level of salt stress for screening of tolerant rice was 80 mM NaCl at 48 h after NaCl treatment, and the critical concentration of drought stress for screening of tolerant rice was 8% PEG at 96 h after PEG treatment.
본 실험은 염과 건조 스트레스를 받은 벼 식물체의 생리학적 반응을 잎의 수분 보유적인 측면에서 조사하여, 벼의 내성품종과 비내성품종을 효율적으로 선발하기 위한 critical level을 밝혀 내성품종 육성에 응용할 수 있는 기초자료를 제공하고자 수행한 시험결과를 요약하면 다음과 같다. 1. NaCl 및 PEG 처리에 의한 벼 식물체의 반응은 일차적으로 뿌리 신장의 억제가 NaCl 처리에 의해 관찰되었으나, PEG 처리에서는 벼 식물체의 뿌리가 PEG 처리 농도를 증가함에 따라 증가하는 경향이 보였다. 2. NaCl 및 PEG 처리에 의한 벼 식물체의 잎의 RWC와 LWP 사이의 상관관계를 조사한 결과, 40 mM NaCl (
Supported by : 한국학술진흥재단