DOI QR코드

DOI QR Code

Effect of Diazinon, an Organophosphate Insecticide, on Plasma Lipid Constituents in Experimental Animals

  • Ibrahim, Nagi A. (Zoology Department, Faculty of Science, Zagazig University) ;
  • El-Gamal, Basiouny A. (Biochemistry Department, Faculty of Science, Alexandria University)
  • Received : 2003.05.12
  • Accepted : 2003.06.16
  • Published : 2003.09.30

Abstract

There has been increasing interest in studying the various effects of organophosphate insecticides in humans and experimental animals. Only a few data are available on the effect of the organophosphate insecticide, diazinon, on lipid metabolism. The aim of this study was to evaluate the effect of diazinon on plasma lipid constituents in mammalian animals. The plasma levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and phospholipids (PL) were measured in albino rats that were orally treated with a single dose of diazinon at a level of $LD_{50}$ or with repeated daily doses at the levels of $\frac{1}{2}$, $\frac{1}{8}$, and $\frac{1}{32}$ $LD_{50}$ for 2, 8, and 32 days, respectively. After a 24 h post-treatment with a single $LD_{50}$ dose of diazinon, TC was not significantly changed, the HDL-C and PL levels were significantly decreased, but the LDL-C and TG levels were significantly increased. Separate daily oral administrations of diazinon at $\frac{1}{2}$ $LD_{50}$, $\frac{1}{8}$ $LD_{50}$, and $\frac{1}{32}$ $LD_{50}$ doses resulted in a significant decrease in HDL-C and PL, with no significant change in TG. The LDL-C levels were significantly increased and TC showed no significant change with $\frac{1}{2}$ $LD_{50}$ and $\frac{1}{32}$$LD_{50}$ doses of diazinon, whereas a significant decrease in the levels of TC, HDL-C, as well as LDL-C, was observed with the $\frac{1}{8}$ $LD_{50}$ dose. These data suggest that diazinon may interfere with lipid metabolism in mammals.

Keywords

References

  1. Ali, F. A. and Abdalla, M. H. (1992) Pathological changes in tests and liver of male albino rats after dermal exposure to DDVP insecticide. J. Egypt. Public Health Assoc. 67, 565-578.
  2. Ansari, B. A. and Kumar, K. (1988) Diazinon toxicity: effect on protein and nucleic acid metabolism in the liver of zebrafish, Brachydanio rerio (Cyprinidae). Sci. Total Environ. 76, 63-68. https://doi.org/10.1016/0048-9697(88)90284-7
  3. Antal, M., Bedo, M., Constantinovits, G., Nagy, K. and Szepvolgyi, J. (1979) Studies on the interaction of methomyl and ethanol in rats. Fd. Cosmet. Toxicol. 17, 333-338. https://doi.org/10.1016/0015-6264(79)90325-0
  4. Bomser, J. A., Quistad, G. B. and Casida, J. E. (2002) Chlorpyrifos oxon potentiates diacylglycerol-induced extracellular signal-regulated kinase (ERK 44/42) activation, possibly by diacylglycerol lipase inhibition. Toxicol. Appl. Pharmacol. 178, 29-36. https://doi.org/10.1006/taap.2001.9324
  5. Brown, M. S., Kovanen, P. T. and Goidstein, J. L. (1981) Regulation of plasma cholesterol by lipoprotein receptors. Science 212, 628-635. https://doi.org/10.1126/science.6261329
  6. Burstein, M., Scholnick, H. R. and Morfin, R. (1970) Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 11, 583-595.
  7. Choudhari, P. D. and Chakraharti, C. H. (1984) Effect of acephate (Orthene), an organophosphorus insecticide, on lipid metabolism in albino rats. Ind. J. Exp. Biol 22, 45-49.
  8. Davies, D. B. and Holub, B. J. (1980) Comparative subacute toxicity of dietary diazinon in the male and female rat. Toxicol. Appl. Pharmacol. 54, 359-367. https://doi.org/10.1016/0041-008X(80)90161-1
  9. Dikshith, T. S., Behari, J. R., Datta, K. K. and Mathur, A. K. (1975) Effect of diazinon in male rats. Histopathological and biochemical studies. Environ. Physiol. Biochem. 5, 239-299.
  10. El-Sebae, A. H., Enan, E. E., Soliman, S. A., El-Fiki, S. and Khamees, E. (1981) Biochemical effects of some organophosphorus insecticide on new targets in white rats. J. Environ. Sci. Health B 16, 475-491. https://doi.org/10.1080/03601238109372273
  11. Enan, E., Berberian, I. G., el-Fiki, S., El-Masry, M. and Enan O. H. (1987) Effects of two organophosphorus insecticides on some biochemical constituents in the nervous system and liver of rabbits. J. Environ. Sci. Health B 22, 149-170. https://doi.org/10.1080/03601238709372551
  12. Enan, E. E., El-Sebae, A. H., Enan, O. H. and El-Fiki, S. (1982) In-vivo interaction of some organophosphorus insecticides with different biochemical targets in white rats. J. Environ. Sci. Health B 17, 549-570. https://doi.org/10.1080/03601238209372341
  13. Flegg, H. M. (1973) An investigation of the determination of serum cholesterol by an enzymatic method. Ann. Clin. Biochem. 10, 79-84. https://doi.org/10.1177/000456327301000125
  14. Friedewald, W. T., Levy, R. I. and Fredickson, D. S. (1972) Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
  15. Goldberg, I. J., Paterniti, J. R., Ginsberg, H. N., Lindgren, F. T. and Brown, W. V. (1982) Lipoprotein metabolism during acute inhibition of hepatic triglyceride lipase in the Cynomolgus monkey. J. Clin. Invest. 70, 1184-1192. https://doi.org/10.1172/JCI110717
  16. Gordon, C. J. and Mack, C. M. (2003) Influence of gender on thermoregulation and cholinesterase inhibition in the long-evans rat exposed to diazinon. J. Toxicol. Environ. Health A 66, 291-304. https://doi.org/10.1080/15287390306371
  17. Gupta, M., Mukherjee, S., Gupta, S. D., Dolui, A. K., Dey, S. N. and Roy, D. K. (1986) Changes of lipid spectrum in different tissues of furadan- treated mice. Toxicol. 38, 69-79. https://doi.org/10.1016/0300-483X(86)90173-3
  18. Hill, A. B. (1971) Principles of Medical Statistics. 9th ed., Oxford Univ. Press, Oxford, UK.
  19. Litchfield, J. T. and Wilcoxon, F. A. (1949) Simplified method of evaluating dose effect experiments. J. Pharmacol. Exp. Therap. 96, 99-113.
  20. Lopes-Virella, M. F., Stone, P. G., Ellis, S. and Colwell, I. A. (1977) Cholesterol determination in high density lipoproteins separated by three different methods. Clin. Chem. 23, 882-884.
  21. Matin, M. A., Husain, K. and Khan, S. N. (1990) Modification of diazinon-induced changes in carbohydrate metabolism by adrenalectomy in rats. Biochem. Pharmacol. 39, 1781-1786. https://doi.org/10.1016/0006-2952(90)90125-5
  22. McGill, H. C. Jr., McMahan, C. A., Kruski, A. W. and Mott, G. E. (1981) Relationship of lipoprotein cholesterol concentrations to experimental atherosclerosis in baboons. Arteriosclerosis 1, 3-12. https://doi.org/10.1161/01.ATV.1.1.3
  23. Mitijavila, S., Carrea, G., Boigegrain, R. A. and Derache, R. (1981) Evaluation of the toxic risk of DDT in rat during accumulation. Arch. Environ. Contam. Toxicol. 10, 459-469. https://doi.org/10.1007/BF01055442
  24. Moss, D. W., Henderson, A. P. and Kachmar, J. F. (1987) Enzymes; in Fundamentals of Clinical Chemistry, Tietz, N. W. (ed.), 3rd ed. WB Saunders Company. Philadelphia, USA.
  25. Musliner, T. A., Herbert, P. N. and Kingston, M. J. (1979) Lipoprotein substrates of lipoprotein lipase and hepatic triacylglycerol lipase from human post heparin plasma. Biochem. Biophys. Acta 575, 277-288. https://doi.org/10.1016/0005-2760(79)90029-8
  26. Quistad, G. B. and Casida, J. E. (2002) Sensitivity of bloodclotting factors and digestive enzymes to inhibition by organophosphorus pesticides. J. Biochem. Mol. Toxicol. 14, 51-56.
  27. Quistad, G. B., Sparks, S. E. and Casida, J. E. (2001) Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol. Appl. Pharmacol. 173, 48-55. https://doi.org/10.1006/taap.2001.9175
  28. Quistad, G. B., Sparks, S. E., Segall, Y., Nomura, D. K. and Casida, J. E. (2002) Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: toxicological implications. Toxicol. Appl. Pharmacol. 179, 57-63. https://doi.org/10.1006/taap.2001.9342
  29. Rumsey, T. S., Bitman, J. and Tao, H. (1983) Changes in plasma concentrations of thyroxine, triiodothyronine, cholesterol and total lipids in beef steers fed ronnel. J. Anim. Sci. 56, 125-131.
  30. Ryhanen, R., Herranen, J., Karhonen, K., Penttila, I., Popvilanpi, M. and Puhakainen, E. (1984) Relationship between serum lipids, lipoproteins and pseudocholinesterase during organophosphate poisoning in rabbits. Int. J. Biochem. 16, 687-690. https://doi.org/10.1016/0020-711X(84)90039-9
  31. Shakoori, A. R., Ali, S. S. and Saleem, M. A. (1988) Effects of six months feeding of cypermethrin on the blood and liver of albino rats. J. Biochem. Toxicol. 3, 59-72. https://doi.org/10.1002/jbt.2570030107
  32. Shakoori, A. R., Rasul, Y. G. and Ali, S. S. (1984) The effect of long term administration of dieldrin on biochemical components in blood serum of albino rats. Folia Biol. 32, 213-222.
  33. Stein, E. A. (1987) Lipids, lipoproteins and apolipoproteins; in Fundamentals of Clinical Chemistry, Tietz, N. W. (ed.), 3rd ed., W. B. Saunders Company. Philadelphia, USA.
  34. Wahlefeld, A. W. (1974) Triglycerides determination after enzymatic hydrolysis; in Methods of Enzymatic Analysis, Nergmeyer, H. V. (ed.), vol. 4, pp. 18-31, Academic Press, New York, USA.
  35. Zaher, A. M., Fouad, A. A., Mohamed, A. A. S. and Samir, A. I. (1986) Changes in rat metabolism after simultaneous inhalation of carbamate and of insecticides. Egypt. J. Food Sci. 14, 39-48.
  36. Zilva, J. F., Pannall, P. R. and Mayne, P. D. (1988) Clinical Chemistry in Diagnosis and Treatment, Arnold, E. (ed.), 5th ed., Hodder and Stoughton Limited, London, UK.
  37. Zilversmith, D. B., Davis, K. and Cols, Y. (1950) Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med. 35, 155-160.

Cited by

  1. Prenatal and postnatal exposure to diazinon and its effect on spermatogram and pituitary gonadal hormones in male offspring of rats at puberty and adulthood vol.49, pp.4, 2014, https://doi.org/10.1080/03601234.2014.868287
  2. Lipid peroxidation and decline in antioxidant status as one of the toxicity measures of diazinon in the testis vol.18, pp.4, 2013, https://doi.org/10.1179/1351000213Y.0000000054
  3. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat vol.38, pp.2, 2015, https://doi.org/10.3109/01480545.2014.933348
  4. Effect of organophosphate pesticide diazinon on expression and activity of intestinal P-glycoprotein vol.161, pp.3, 2006, https://doi.org/10.1016/j.toxlet.2005.09.003
  5. Subacute chlorpyrifos-induced alterations in serum lipids and some oxidative stress biomarkers in male Wistar rats: beneficial effect of acetyl-L-carnitine vol.95, pp.3, 2013, https://doi.org/10.1080/02772248.2013.782029
  6. Organophosphorous compounds and oxidative stress: a review vol.96, pp.5, 2014, https://doi.org/10.1080/02772248.2014.972045
  7. Strong Associations Between the Pesticide Hexachlorocyclohexane and Type 2 Diabetes in Saudi Adults vol.11, pp.9, 2014, https://doi.org/10.3390/ijerph110908984
  8. The Influence of Urinary Concentrations of Organophosphate Metabolites on the Relationship between BMI and Cardiometabolic Health Risk vol.2015, 2015, https://doi.org/10.1155/2015/687914
  9. Chlorpyrifos acute exposure induces hyperglycemia and hyperlipidemia in rats vol.89, pp.5, 2012, https://doi.org/10.1016/j.chemosphere.2012.05.059
  10. DDT and its metabolites are linked to increased risk of type 2 diabetes among Saudi adults: a cross-sectional study vol.22, pp.1, 2015, https://doi.org/10.1007/s11356-014-3371-0
  11. Amelioratory effect of vitamin E on organophosphorus insecticide diazinon-induced oxidative stress in mice liver vol.96, pp.2, 2010, https://doi.org/10.1016/j.pestbp.2009.09.008
  12. Monocrotophos augments the early alterations in lipid profile and organ toxicity associated with experimental diabetes in rats vol.99, pp.1, 2011, https://doi.org/10.1016/j.pestbp.2010.10.001
  13. Effect of Tea (Camellia sinensis) and Olive (Olea europaeaL.) Leaves Extracts on Male Mice Exposed to Diazinon vol.2013, 2013, https://doi.org/10.1155/2013/461415
  14. Hematological, serum biochemical, and immunological responses in common carp (Cyprinus carpio) exposed to phosalone vol.24, pp.3, 2015, https://doi.org/10.1007/s00580-014-1930-x
  15. Effect of Oral Administration of Fenitrothion on Biochemical and Hematological Parameters in Rats vol.11, pp.13, 2008, https://doi.org/10.3923/pjbs.2008.1742.1745
  16. Multi Drug Resistance-1 (MDR1) Expression in Response to Chronic Diazinon Exposure: An In vitro Study on Caco-2 Cells vol.86, pp.1, 2011, https://doi.org/10.1007/s00128-010-0158-y
  17. 14C-Ethion residues in soybean seeds: metabolic pathway, effect of processing, bioavailability, toxicity and protective action of artichoke leaf powder towards rats vol.95, pp.2, 2013, https://doi.org/10.1080/02772248.2012.758728
  18. Effect of Trichlorfon on Hepatic Lipid Accumulation in Crucian CarpCarassius auratus gibelio vol.24, pp.3, 2012, https://doi.org/10.1080/08997659.2012.675937
  19. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides vol.322, 2014, https://doi.org/10.1016/j.tox.2014.04.009
  20. Protective effects of chrysin on sub-acute diazinon-induced biochemical, hematological, histopathological alterations, and genotoxicity indices in male BALB/c mice vol.41, pp.3, 2018, https://doi.org/10.1080/01480545.2017.1384834