DOI QR코드

DOI QR Code

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase Activation in Human Cervical Cancer HeLa Cells

  • Kim, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Kim, Yoon-Suk (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Kim, Tae-Ue (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University)
  • Received : 2003.02.21
  • Accepted : 2003.04.14
  • Published : 2003.09.30

Abstract

The molecular mechanism of hypoxia-induced apoptosis has not been clearly elucidated. In this study, we investigated the involvement of extracellular signal-regulated protein kinase (ERK 1/2) in hypoxia-induced apoptosis using cobalt chloride in HeLa human cervical cancer cells. The cobalt chloride was used for the induction of hypoxia, and its $IC_{50}$ was $471.4\;{\mu}M$. We demonstrated the DNA fragmentation after incubation with concentrations more than $50\;{\mu}M$ cobalt chloride for 24 h, and also evidenced the morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signaling pathway of cobalt chloride-induced apoptosis in HeLa cells. ERK1/2 activation occurred 6 and 9 h after treatment with $600\;{\mu}M$ cobalt chloride. Meanwhile, the pretreatment of the MEK 1 inhibitor (PD98059) completely blocked the cobalt chloride-induced ERK 1/2 activation. At the same time, the activated ERK 1/2 translocated into the nucleus and phosphorylated its transcriptional factor, c-Jun. In addition, the pretreatment of PD98059 inhibited the cobalt chloride-induced DNA fragmentation and apoptotic cell death. These results suggest that cobalt chloride is able to induce apoptotic activity in HeLa cells, and its apoptotic mechanism may be associated with signal transduction via ERK 1/2.

Keywords

Acknowledgement

Supported by : Yonsei University

References

  1. Allen, T. D. (1987) Ultrastructural aspects of cell death; in Perspective on Mammalian Cell Death. pp. 35-65, Oxford University Press, Oxford, UK.
  2. Arends, M. J. and Wyllie, A. H. (1991) Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32, 223-254. https://doi.org/10.1016/B978-0-12-364932-4.50010-1
  3. Bae, S. K., Baek, J. H., Lee, Y. M., Lee, O. H. and Kim, K. W. (1998) Hypoxia-induced apoptosis in human hepatocellular carcinoma cells: a possible involvement of the 6-TG-sensitive protein kinase(s)-dependent signaling pathway. Cancer Lett. 126, 97-104. https://doi.org/10.1016/S0304-3835(97)00538-7
  4. Baek, J. H., Kang, C. M., Chung, H. Y., Park, M. H. and Kim, K. W. (1996) Increased expression of c-jun in the bile acidinduced apoptosis in mouse F9 teratocarcinoma stem cells. J Biochem. Mol. Biol. 29, 68-72.
  5. Barry, M. A. and Eastrnan, A. (1992) Endonuclesase activation during apoptosis: the role of cytosolic $Ca^{2+}$ and pH. Biochem. Biophys. Res. Commun. 186,782-789. https://doi.org/10.1016/0006-291X(92)90814-2
  6. Brown, J. M. (1999) The hypoxic cells: A target for selective cancer therapy. Cancer Res. 59, 5863-5870.
  7. Brown, M. J. and Giaccia, A. J. (1998) The unique physiology of solid tumours: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408-1416.
  8. Cavigelli, M., Dolfi, F., Claret, F. X. and Karin, M. (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14, 5957-5964.
  9. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C. and Schumacker, P. T. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Nati. Acad. Sci. USA 95, 11715-11721. https://doi.org/10.1073/pnas.95.20.11715
  10. Chen, R. H., Shamecki, C. and Blenis, J. (1992) Nuclear localization and regulation of erk- or rsk-encoded protein kinases. Mol. Cell. Bioi. 12, 915-927.
  11. Cho, S. G. and Choi, E. J. (2002) Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem. Mol. Biol. 35, 24-27. https://doi.org/10.5483/BMBRep.2002.35.1.024
  12. Conrad, P. W., Rust, R. T., Han, J., Millhom, D. E. and Beitner-Johnson, D. (1999) Selective activation of $p38{\alpha}$ and $p38{gamma}$ by hypoxia. J Biol. Chem. 274, 23570-23576. https://doi.org/10.1074/jbc.274.33.23570
  13. Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T. and Gutkind, S. (1995) The small GTPbinding proteins Rac 1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137-1146. https://doi.org/10.1016/S0092-8674(05)80018-2
  14. Davis, R. J. (1993) The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553-14556.
  15. Denisenko, M. F., Soldatenkov, V. A., Belovskaya, L. N. and Filippovich, I. V. (1989) Is the NAD-poly(ADP-ribose) polymerase system the trigger in radiation-induced death of mouse thymocytes? Int. J Radiat. Biol. 56,277-285. https://doi.org/10.1080/09553008914551441
  16. Feldser, D., Agani, F., Iyer, v., Pak, B., Ferreira, G. and Semenza, G. L. (1999) Reciprocal Positive Regulation of Hypoxiainducible Factor $1{\alpha}$ and Insulin-like Growth Factor 2. Cancer Res. 59, 3915-3918.
  17. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D. and Semenza, G. L. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1. Mol. Cell. Biol. 16, 4604-4613.
  18. Fyles, A. W., Milosevic, M., Wong, R., Kavanagh, M., Pintilie, M., Sun, A., Chapman, W., Levin, W., Manchul, L., Keane, T. J. and Hill, R. P. (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother. Oncol. 48, 149-156. https://doi.org/10.1016/S0167-8140(98)00044-9
  19. Gleadle, J. M., Ebert, B. L., Firth, J. D. and Ratcliffe, P. J. (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am. J. Physiol. 268, C1362-C1368.
  20. Goldberg, M. A., Dunning, S. P. and Bum, H. F. (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412-1415. https://doi.org/10.1126/science.2849206
  21. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W. and Giaccia, A. J. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88-91. https://doi.org/10.1038/379088a0
  22. Guillemin, K. and Krasnow, M. A. (1997) The hypoxic response: huffing and hifing. Cell 89, 9-12. https://doi.org/10.1016/S0092-8674(00)80176-2
  23. Hockel, M., Schlenger, K., Aral, B., Mitze, M., Schaffer, U. and Vaupel, P. (1996) Association between tumour hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509-4515.
  24. Jimenez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P., Charland, C., Goldberg, J. and Mossman, B. T. (1997) Role of extracellular signal-regulated protein kinase in apoptosis by asbestos and $H_2O_2$. Am. J. Physiol. 273, 1029.
  25. Kerr, J. F. R., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  26. Kerr, J. F. R., Searle, J. and Harmon, B. V. (1987) Apoptosis; in Perspective on Mammalian Cell Death. p. 93, Oxford University Press, Oxford, UK.
  27. Kim, K. M., Kim, P., Kwon, Y. G., Bai, S. K., Nam, W. D. and Kim, Y. M. (2002) Regulation of apoptosis by nitrosative stress. J. Biochem. Mol. Biol. 35, 127-133. https://doi.org/10.5483/BMBRep.2002.35.1.127
  28. Kim, C. Y., Tsai, M. H., Osmanian, C., Greaber, T. G., Lee, J. E., Giffard, R. G., DiPaolo, J. A., Peehl, D. M. and Giaccia, A. J. (1997) Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res. 57, 4200-4204.
  29. Kitazono, M., Takebayashi, Y., Ishitsuka, K., Takao, S., Tani, A., Furukawa, T., Miyadera, K., Yamada, Y., Aikou, T. and Akiyama, S. (1998) Prevention of hypoxia-induced apoptosis by the angiogenic factor thymidine phosphorylase. Biochem. Biophys. Res. Commun. 253, 797-803. https://doi.org/10.1006/bbrc.1998.9852
  30. Koong, A. C., Chen, E. Y., Kim, C. Y. and Giaccia, A. J. (1994) Activators of protein kinase C selectively mediate cellular cytotoxicity to hypoxia cells and not aerobic cells. Int. J. Radiat. Oncol. Biol. Phys. 29, 259-265. https://doi.org/10.1016/0360-3016(94)90272-0
  31. Kyriakis, J. M., Banetjee, P., Nikolakaki, E., Dai, T, Rubie, E.A., Ahmad, M. E, Avruch, J. and Woodgett, J. R. (1994) The stress-activated protein kinase subfamily of c-Jun kinase. Nature 369, 156. https://doi.org/10.1038/369156a0
  32. Lee, N. K, Kim, H. J., Yang, S. J., Kim, Y., Choi, H. I., Shim, M., J. Awh O. D. and Kim, T. U. (2001) The Anticancer Mechanisms of Taxol-Diethylenetriamine pentaacetate Conjugate in HT29 Human Colorectal Cancer cells. J. Biochem. Mol. Biol. 34, 237-243.
  33. Lee, R. M., Cobb, M. and Blackshear, P. J. (1992) Evidence that extracellular signal-regulated kinases are the insulin- activated Raf-l kinase kinases. J. BioI. Chem. 267, 1088-1092.
  34. Lockshin, R. A. and Zakeri, Z. F. (1990) Programmed cell death: new thoughts and relevance to aging. J. Gerontol. 45, 135-140.
  35. Marshall, C. J. (1995) Specificity of receptor tyrosine-kinase signaling transient versus sustained extracellular signalregulated kinase activation. Cell 80, 179-185. https://doi.org/10.1016/0092-8674(95)90401-8
  36. Martin, D. S. and Schwartz, G. K. (1997) Chemotherapeutically induced DNA damage, ATP depletion and the apoptotic biochemical cascade. Oncol. Res. 9, 1-5.
  37. Mazure, N. M., Chen, E. Y., Laderoute, K. R. and Giaccia, A. J. (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322-3331.
  38. McConkey, D. J., Orrenius, S. and Jondal, M. (1996) Cellular signaling in programmed cell death (apoptosis). Immunol. Today 11, 120-121.
  39. Minet, E., Arnould, T, Michel, G., Roland, I., Mottet, D., Raes, M., Remade, J. and Michiels, C. (2000) ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 468, 53-58. https://doi.org/10.1016/S0014-5793(00)01181-9
  40. Molnar, A., Theodoras, A. M., Zon. L. I. and Kyriakis, J. M. (1997) Cdc42Hs, but not Racl, inhibits serum-stimulated cell cycle progression at G1-S through a mechanism requiring p38/RK. J. BioI. Chem., 272, 13229-13235. https://doi.org/10.1074/jbc.272.20.13229
  41. Moulder, J. E. and Rockwell, S. (1984) Hypoxic fractions of solid tumours: experimental techniques, methods of analysis, and a survey of existing data. Int. J. Radiat. Oncol. Biol. Phys. 10, 695-712. https://doi.org/10.1016/0360-3016(84)90301-8
  42. Muller, J. M., Krauss, B., Kaltschmidt, C., Baeuerle, P. A. and Rupec, R. A. (1997) Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J. Biol. Chem. 272, 23435-23439. https://doi.org/10.1074/jbc.272.37.23435
  43. Park, J. G., Yuk, Y., Rhim, H., Yi, S. Y. and Yoo, Y. (2002) Role of p38 MAPK in the regulation of apoptosis signaling induced by $TNF-{\alpha}$ in differentiated PC12 cells. J. Biochem. Mol. BioI. 35, 267-272. https://doi.org/10.5483/BMBRep.2002.35.3.267
  44. Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J. and Davis, R. J. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420-7426. https://doi.org/10.1074/jbc.270.13.7420
  45. Richard, D. E., Berra, E., Gothie, E., Roux, D. and Pouyssegur, J. (1999) p42/p44 Mitogen-activated protein kinases phosphorylate hypoxia-inducible factor $1{\alpha}(HIF-1{\alpha})$ and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274, 32631-32637. https://doi.org/10.1074/jbc.274.46.32631
  46. Rieder, C. L., Schultz, A., Cole, R. and Sluder, G. (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell. Biol. 127, 1301-1310. https://doi.org/10.1083/jcb.127.5.1301
  47. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671-674. https://doi.org/10.1038/386671a0
  48. Seimiya, H., Tanji, M., Oh-hara, T., Tomida, A:, Naasani, I. and Tsuruo, T. (1999) Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem. Biophys. Res. Commun. 260, 365-370. https://doi.org/10.1006/bbrc.1999.0910
  49. Sen, S. and D'Incalci, M. (1992) Apoptosis. Biochemical events and relevance to cancer chemotherapy. FEBS Lett. 307, 122-127. https://doi.org/10.1016/0014-5793(92)80914-3
  50. Shtil, A. A., Mandlekar, S., Yu, R., Walter, R. J., Hagen, K., Tan, T. H., Roninson, I. B. and Kong, A. N. T. (1999) Differential regulation of mitogen-activated protein kinases by microtubulebinding agents in human breast cancer cells. Oncogene 18, 377-384. https://doi.org/10.1038/sj.onc.1202305
  51. Shweiki, D., Itin, A., Soffer, D. and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845. https://doi.org/10.1038/359843a0
  52. Shweiki, D., ltin, A., Soffer, D. and Keshet, E. (1997) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 240, 552-556.
  53. Stokoe, D., Macdonald, S., Cadwallader, K., Symons, M. and Hancock, J. (1994) Activation of Ras as a result of recruitment to the plasma membrane. Science 264, 1463-1467. https://doi.org/10.1126/science.7811320
  54. Teicher, B. A. (1994) Hypoxia and drug-resistance. Cancer Metastasis Rev. 13, 139-168. https://doi.org/10.1007/BF00689633
  55. van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P. and Angel, P. (1995) ATF-2 is preferentially activated by stressactivated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO 114, 1798-1811.
  56. Wang, G., Hazra, T. K., Mitra, S., Lee, H. M. and Englander, E. W. (2000) Mitochondrial DNA damage and hypoxic response are induced by $CoCl_2$ in rat neuronal PC12 cells. Nucleic Acids Res. 28, 2135-2140. https://doi.org/10.1093/nar/28.10.2135
  57. Wang, G. L. and Semenza, G. L. (1995) Purification and characterization of hypoxia-inducible factor-1. J. BioI. Chem. 270, 1230-1237. https://doi.org/10.1074/jbc.270.3.1230
  58. Wyllie, A. H., Kerr, J. E. R. and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  59. Yao, K. S., Clayton, M. and O'Dwyer, P. J. (1995) Apoptosis in human adenocarcinoma HT29 cells induced by exposure to hypoxia. J. Natl. Cancer Inst. 87, 117-122. https://doi.org/10.1093/jnci/87.2.117
  60. Yao, K. S., Xanthoudakis, S. and Curran, T. (1994) Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT-29 colon cancer cells to hypoxia. Mol. Cell. Biol. 14, 5997-6003. https://doi.org/10.1128/MCB.14.9.5997
  61. Yoshioka, K., Clejan, S. and Fisher, J. W. (1998) Activation of protein kinase C in human hepatocellular carcinoma(HEP3B) cells increases erythropoietin production. Life Sci. 63, 523-535. https://doi.org/10.1016/S0024-3205(98)00303-8
  62. Yu, R., Shtil, A. A., Tan, T. H., Roninson, I. B. and Kong, A. N. (1996) Adriamycin activates c-jun N-terrninal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett. 107, 73. https://doi.org/10.1016/0304-3835(96)04345-5

Cited by

  1. Inhibition of proteasomal degradation of Mcl-1 by cobalt chloride suppresses cobalt chloride-induced apoptosis in HCT116 colorectal cancer cells vol.13, pp.8, 2008, https://doi.org/10.1007/s10495-008-0229-2
  2. Evaluation of the apoptogenic potential of hard metal dust (WC–Co), tungsten carbide and metallic cobalt vol.154, pp.1-2, 2004, https://doi.org/10.1016/j.toxlet.2004.06.009
  3. Cobalt induces hypoxia-inducible factor-1α (HIF-1α) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism vol.40, pp.8, 2006, https://doi.org/10.1080/10715760600730810
  4. Adenovirus-Mediated Transcriptional Targeting of Colorectal Cancer and Effects on Treatment-Resistant Hypoxic Cells vol.12, pp.3, 2013, https://doi.org/10.1016/j.clcc.2012.11.005
  5. Rosmarinic acid inhibits chemical hypoxia-induced cytotoxicity in primary cultured rat hepatocytes vol.37, pp.7, 2014, https://doi.org/10.1007/s12272-013-0234-z
  6. Neuronal mdr-1 gene expression after experimental focal hypoxia: A new obstacle for neuroprotection? vol.258, pp.1-2, 2007, https://doi.org/10.1016/j.jns.2007.03.004
  7. Hard-metal (WC–Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC vol.87, pp.2, 2013, https://doi.org/10.1007/s00204-012-0943-y
  8. Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1342
  9. STAT3 is involved in phosphatidic acid-induced Bcl-2 expression in HeLa cells vol.41, pp.2, 2009, https://doi.org/10.3858/emm.2009.41.2.012
  10. Extracellular regulated kinase-2 immunoreactivity increases in parallel with cervical intraepithelial neoplasia grade in cervical neoplasia vol.18, pp.3, 2008, https://doi.org/10.1111/j.1525-1438.2007.01057.x
  11. 30  Inorganic pharmaceuticals vol.100, 2004, https://doi.org/10.1039/B312109G
  12. Protective effect of dieckol against chemical hypoxia-induced cytotoxicity in primary cultured mouse hepatocytes vol.38, pp.2, 2015, https://doi.org/10.3109/01480545.2014.928719
  13. Protective Effects of Salidroside on Endothelial Cell Apoptosis Induced by Cobalt Chloride vol.32, pp.8, 2009, https://doi.org/10.1248/bpb.32.1359
  14. Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms vol.11, pp.1, 2006, https://doi.org/10.1007/s10495-005-3085-3
  15. Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois vol.674, pp.1-2, 2009, https://doi.org/10.1016/j.mrgentox.2008.11.012
  16. Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis vol.17, pp.3, 2007, https://doi.org/10.1111/j.1525-1438.2007.00834.x
  17. Ototoxicity of Divalent Metals vol.30, pp.2, 2016, https://doi.org/10.1007/s12640-016-9627-3
  18. A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride vol.1109, pp.1, 2006, https://doi.org/10.1016/j.brainres.2006.06.037
  19. Cobalt and chromium ions reduce human osteoblast-like cell activity in vitro, reduce the OPG to RANKL ratio, and induce oxidative stress vol.30, pp.5, 2012, https://doi.org/10.1002/jor.21581