A study on the effects of Electrical stimulation by the miniature Electric device on the tooth movement and tissue remodeling

초소형 전기 장치에 의한 전기 자극이 치아 이동과 주위 조직 개조에 미치는 효과에 관한 연구

  • Park, Soon-Jung (Department of Orthodontics, College of Dentistry, Kyung Hee University) ;
  • Lee, Young-Jun (Department of Orthodontics, College of Dentistry, Kyung Hee University) ;
  • Park, Young-Guk (Department of Orthodontics, College of Dentistry, Kyung Hee University) ;
  • Davidovitch, Zeev (Case Western reserve University)
  • 박순정 (경희대학교 치과대학 교정학교실 분당제생병원 치과교정과) ;
  • 이영준 (경희대학교 치과대학 교정학교실) ;
  • 박영국 (경희대학교 치과대학 교정학교실) ;
  • Published : 2003.08.01

Abstract

Electric current is a highly probable way as a clinical tool for tooth movement. The purposes of this study were to determine the usefulness of exogenous electric currents in accelerating orthodontic tooth movement and to investigate the effects of electric-orthodontic treatment on the remodeling of the periodontal tissue histologically The study was performed with six male cats weighing around 3kg. The electric device wich is providing the direct electric current of $20{\mu}A$ was inserted to the removable appliance. The right and left maxillary canines were assigned as control and experimental sides respectively. The control canine was Provided with orthodontic force (75gm) oかy and the experimental side was given the same amount of force and electricity. The lingual buttons were bonded to the maxillary canines and both sides of canines were retracted with NiTi coil spring. The electric device was adjusted to provide 20uh direct current to the experimental canines S hours a day The amount of the canine movement was measured with electronic caliper every week. After 4 weeks of tooth movement, the animals were sacrificed and the histologic study was performed. The results of this study were as follows. 1. The application of a direct current to the experimental tooth significantly increased the final amount of orthodontic tooth movement. The amount of tooth movement after 28-day was 37% more in the experimental side. 2. The electrically stimulated tooth showed histologic evidence of significant increases in the amount of bones and matrix deposition in the area of tension. 3. In the compression side, the electric-orthodontic treatment stimulated bone resorption more extensively in the experimental canines. 4. After 28 days of electricity exposure and orthodontic force, the experimental side demonstrated significantly more osteoblasts, osteoclasts, capillaries and osteoid tissues, reflectinr an increase in the local tissue's cellular activity. 5. Intermittent electrical stimulation (five hours a day) had effects to enhance orthodontic tooth movement and tissue remodeling. These results suggested that the low-intensity exogenous electric current by the miniature electric device might accelerate orthodontic tooth movement and bone remodeling in vivo and have the possibility to reduce the orthodontic treatment duration.

낮은 강도의 전류는 골세포의 활성화 대사를 증가시키는 것으로 알려져 왔다. 이 연구는 초소형 전기 장치에 의한 전기 자극이 교정적 치아 이동에 미치는 영향을 규명하기 위하여, 체중 3kg내외의 고양이 6마리를 대상으로 가철성 교정장치와 NiTi coil spring(75gm)을 사용하여 상악 견치를 이동시켰다. 실험군측 견치에는 교정력과 간헐적인 $20{\mu}A$의 전기 자극을 가하였고, 대조군측에는 같은 크기의 교정력만을 가한 후 4주 동안의 치아 이동량을 측정하여 비교하였으며, 치아를 중심으로 조직을 절취하여 탈회하고 조직 처리 후 광학 현미경으로 치주조직의 변화를 비교하여 다음과 같은 결론을 얻었다. 1. 28일간의 실험 기간 동안 실험측의 치아 이동량은 대조군에 비하여 현저히 증가하여, 4주후에 실험측의 치아는 대조군에 비하여 37% 증가된 이동량을 기록하였다. 2. 전기 자극을 받은 치아의 치근 견인측에서 대조군에 비하여 조직학적으로 증가된 골형성 양상이 관찰되었다. 3. 28일간의 전기 자극과 교정력으로 실험측 치아의 압박측에서 대조군에 비하여 증가된 골 흡수 양상이 관찰되었다. 4. 실험군 견치 치근 주위 조직에서는 전반적으로 더 많은 수의 조골 및 파골 세포들과 모세 혈관, 골양 조직들이 관찰됨으로써 증가된 조직 세포 활성을 반영하였다. 5. 1일 5시간 동안의 간헐적 전류 자극은 치아 이동량을 증가시키고 조직 개조를 활성화시키는 효과가 있었다. 이상의 결과는 외부에서 가한 낮은 강도의 간헐적 전기 자극으로 교정적 치아 이동량이 많아지고 치주 조직의 개조 활성이 증가됨을 보이므로 초소형 전기 장치에 의한 자극은 치아 이동과 주위 조직 개조를 촉진시킬 가능성이 있을 것으로 평가되었다.

Keywords

References

  1. Fukada E, Yasuda I. On the piezoelectric effect of bone. J Physiol Soc Jap 1957 : 12 : 1158-62
  2. Cochran GV, Pawluk RJ, Bassett CA. Stress generated electric potentials in the mandible and teeth. Arch Oral Biol 1967 : 12 : 917-20
  3. Zengo AN, Bassett CA, Pawluk RJ, Prountzos G. In vivo bioelectric petentials in the dentoalveolar complex. Am J Orthod 1974 : 66 : 130-9
  4. Davidovitch Z, Finkelson MD, Steigman S, et. al. Electric currents, bone remodeling, and orthodontic tooth movement. I. The effect of electric currents on periodontal cyclic nucleotides. Am J Orthod 1980: 77 : 14-32
  5. Davidovitch Z, Finkelson MD, Steigman S, et. al. Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod 1980 : 77 : 33-47
  6. Jorgensen TE. The effect of electric current on the healing time of crural fractures. Acta Orthop Scand 1972 : 43 : 421-37
  7. Masureik C, Eriksson C. Preliminary clinical evaluation of the effect of small electrical currents on the healing of jaw fractures. Clin Orthop 1977 : 124: 84-91
  8. Kubota K, Yoshimura N, Yokota M, Fitzsimmons RJ, Wikesjo ME. Overview of effects of electrical stimulation on osteogenesis and alveolar bone. J Periodontol 1995 : 66 : 2-6
  9. Stark TM, Sinclair PM. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am J Orthod Dentofac Orthop 1987 : 91: 91-104
  10. Friedenberg ZB, Roberts PG Jr, Didizian NH, Brighton CT. Stimulation of fracture healing by direct current in the rabbit fibula. J Bone Joint Surg Am 1971 : 53 : 1400-8
  11. Bassett CA, Pawluk RJ, Pilla AA. Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann N Y Acad Sci 1974 : 238 : 242-62
  12. Beeson DC, Johnston LE, Wisotzky J. Effect of constant currents on orthodontic tooth movement in the cat. J Dent Res 1975 : 54 : 251-4
  13. Friedenberg ZB, Andrews ET, Smolenski EI, Pearl BW, Brighton CT. Bone reaction to varying amounts of direct current. Surg Gynecol Obstet 1970 : 131 : 894-9
  14. Roberts WE,Goodwin WC Jr, Heiner SR. Cellular response to orthodontic force. Dent Clin North Am 1981 : 25 : 3-17
  15. Shamos MH, Lavine LS. Piezoelectricity as a fundamental property of biological tissues. Nature 1967 : 21 : 213 : 267-9
  16. Lavine LS, Lustrin I, Shamos MH, Moss ML. The influence of electric current on bone regeneration in vivo. Acta Orthop Scand 1971 : 42 : 305-14
  17. Marino AA, Becker RO, Soderholm SC. Origin of the piezoelectric effect in bone. Calcif Tissue Res 1971 : 8 : 177-80
  18. Pollack SR, Salzstein R, Pienkowski D. The electric double layer in bone and its influence on stress-generated potentials. Calcif Tissue Int 1984 : 36 Suppl 1 : S77-81
  19. DeAngelis V. Observations on the response of alveolar bone to orthodontic force. Am J Orthod 1970 : 58 : 284-94
  20. Bassett CAL, Pawluk RJ, Becker RO. Effects of electric currents on bone in vivo. Nature (Lond.) 1964 : 204 : 652-654
  21. Lavine L, Lustrin I, Rinaldi R, Shamos M. Clinical and ultrastructural investigations of electrical enhancement of bone healing. Ann N Y Acad Sci 1974 : 238 : 552-63
  22. Forsted DL, Dalinka MK, Mitchell E, Brighton CT, Alavi A. Radiologic evaluation of the treatment of nonunion of fractures by electrical stimulation. Radiology 1978 : 128 : 629-34
  23. Brighton CT, Friedenberg ZB. Electrical stimulation and oxygen tension. Ann N Y Acad Sci 1974 : 238 : 314-20
  24. Finkelson MD, Eymontt M, Shanfeld JL, et. al. The increase in vivo by electric currents of the 99mTc-methylene diphosphonate uptake and cyclic AMP content of the bone of the cat mandible. Arch Oral Biol 1983 : 28 : 217-24
  25. Rinaldi R, Shamos M, Lavine L. Uptake of tritiated thymidine during electrical stimulation of induced cortical bone defects, Ann N Y Acad Sci 1974 : 238 : 307-13
  26. Evans RD, Foltz D, Foltz K. Electrical stimulation with bone and wound healing. Clin Podiatr Med Surg 2001 : 18: 79-95
  27. Baumrind S. A reconsideration of the propriety of the 'pressure-tension' hypothesis. Am J Orthod 1969 : 55 : 12-22
  28. Grimm FM. Bone bending, a feature of orthodontic tooth movement. Am J Orthod 1972 : 62 : 384-93
  29. Picton DC. On the part played by the socket in tooth support. Arch Oral Biol 1965 : 10 : 945-55
  30. Giovannelli S, Festa F. Effect of electric stimulation on tooth movement in clinical application. In : Davidovitch Z and Norton LA, ed. Biological Mechanisms of Tooth Movement and Craniofacial Adaptation. 1996 : 249-53
  31. Storey E. The nature of tooth movement. Am J Orthod 1973 : 63 : 292-314
  32. Gibson JM, KingGJ, Keeling SD. Long-term orthodontic tooth movement response to short-term force in the rat. Angle Orthod 1992 : 62: 211-5