A study on the regulatory effect of p-38 MAP kinase on nitric oxide and interleukin-6 in osteoblasts

조골세포에시 p-38 MAP kinase의 nitric oxide 및 interleukin-6 생성조절에 관한 연구

  • Lee, Kyung-Won (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Lee, Doe-Hoon (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kang, Kyung-Hwa (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University)
  • 이경원 (원광대학교 치과대학 교정학교실) ;
  • 이도훈 (원광대학교 치과대학 교정학교실) ;
  • 강경화 (원광대학교 치과대학 교정학교실) ;
  • 김상철 (원광대학교 치과대학 교정학교실)
  • Published : 2003.06.01

Abstract

Tooth movement is the result of bone metabolism in the periodontium, where various cytokines take important roles. Interleukin-6(II-6) and nitrous oxide (NO) were reported to be secreted from osteoblasts in the process of bone resorption. The mechanism of the process has not been clearly understood, but the activation of mitogen-activated protein kinase (MAPK) was known to be an important process in the release of the inflammatory cytotines in macrophages. In this regard, to prove the role of MAPK in the release of IL-6 and NO in MC3T3E-1 osteoblasts, Northern blot analysis, Western blot analysis and immune complex kinase assay were used. As a result, the treatment of MC3T3E-1 osteoblast cultures with combined $interferon-\gamma(IFN-\gamma)$, lipopolysaccharide (LPS) and tumor necrosis $factor-\alpha(TNF-\alpha)$ induces expressions of inducible nitric oxide synthase (iNOS) and IL-6, resulting in sustained releases of large amounts of NO and IL-6. However, $IFN-\gamma,\;LPS,\;and\;TNF-\alpha$ individually induce a non-detectable or small amount of NO and IL-6 in MC3T3E-1 osteoblasts. The role of MAPK activation in the early intracellular signal transduction involved in iNOS and IL-6 transcription in the combined agents-stimulated osteoblasts has been investigated. The p38 MAPK pathway is specifically involved in the combined agents-induced NO and IL-6 release, since NO and IL-6 release in the presence of a specific inhibitor of p38 MAPK, 4-(4-fluorophenyl)-2-(4-metylsulfinylphenyl)-5-(4-metylsulfinylphenyl)-5-(4-pyridyl)imidazole) (SB203580), were significantly diminished. In contrast, PD98059, a specific inhibitor of MEK1, had no effect on NO and IL-6 release. Northern blot analysis showed that the p3a MAPK pathway controlled the iNOS and IL-6 transcription level. These data suggest that p38 MAPK play an important role in the secretion of NO and IL-6 in $LPS/IFN{\gamma}-or\;TNF-\gamma-treated\;MC3T3E-1$ osteoblasts.

치아이동 시 발생하는 골흡수에서 이미 여러 cytokine의 중요성이 강조된 바 있으며 이 가운데 interleukin-6는 구강 및 연골조직 등에서 많은 연구의 초점이 되어 왔으나 확실한 기전은 아직까지 정확히 확립되어 있지 못하다 골흡수 시 조골세포에서 유리되는 interleukin-6 (IL-6)와 nitric oxide (NO) 등이 골흡수의 조절자로 최근 대두되고 있으며 Mitogen-activated Protein kinase (MAPK)의 활성화로 인해 염증성 cytokine등이 유리될 수 있음이 최근 macrophage 등에서 증명된 바 있다. 그러므로 치아이동을 비롯한 구강 내 여러 염증의 조건에서 골흡수의 대표인자인 IL-6및 NO유리가 MAPK등의 활성 등을 통해 조절될 수 있는 가능성을 시사하고 있다. 본 연구에서 조골세포 특징을 대부분 가지고 있는 조골세포주 MC3T3El에서 p-38 MAP kinase을 매개로 NO와 IL-6가 유리됨을 확인하고자 하였다. $10\%$ Fetal Bovine Serum이 첨가된 -MEM 배양액으로 배양한 조골세포주인 MC3T3El 세포에 tumor necrosis $factor-\alpha(TNF-\alpha)$, $interferon-\gamma(IFN-\gamma)$ 및 lipopolysacchalide(LPS) 등의 단독처리 시 NO와 IL-6의 증가는 확인되지 않았으나 $TNF-\alpha/IFN-\gamma$ 혹은 $LPS/IFN-\gamma$ 등의 처치시 NO와 IL-6의 유의한 증가를 보였으며, NO발현에 직접 관여하는 inducible nitric oxide synthase (iNOS)와 IL-6 단백질 및 mRNA의 발현을 관찰하였다. 또한 specific p-38 MAP kinase inhibitor인 SB203580의 NO와 IL-6의 생성 억제를 관찰하고 단백질과 mRNA발현억제를 통해서도 확인함으로써 SB203580은 transcription 단계에서 NO와 IL-6의 생성을 조절하고 있음을 시사하여 주고 있다. $TNF-\alpha/IFN-\gamma$ 혹은 $LPS/IFN-\gamma$ 처치 시 p-38 MAP Kinase의 활성을 관찰하였으나 단독 처치 시 역시 P-38 MAP Kinase의 활성을 확인함으로써 NO와 IL-6생성기전에는 p-38 MAP Kinase이외에 다른 인자 역시 관여하고 있음을 보여주고 있다. 본 연구에서는 치아 등의 골조직의 구성 세포인 조골세포에서 NO와 IL-6유리를 확인하였으며, 또한 이들의 생성기전중의 하나로 p-38 MAP Kinase가 transcription 단계에서 관여하고 있음을 확인하였다.

Keywords

References

  1. Gowen M, Wood DO, Ihrie EJ, McGuire MK, Russell RG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983 : 306 : 378-80
  2. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature 1986 : 319 : 516-8
  3. Lowenstein CJ, Snyder SH. Nitric oxide, a novel biologic messenger. Cell 1992 : 70 : 705-7
  4. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992 : 6 : 3051-64
  5. Devlin AM, Brosnan MJ, Graham D, Morton JJ, McPhaden AR, Mclntyre M, Hamilton CA, Reid JL, Dominiczak A. Vascular smooth muscle cell polyploidy and cardiomyocyle hypertrophy due to chronic NOS inhibition in vivo. Am J Physiol 1998 : 274 : H52-9
  6. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991 : 351 : 714-8
  7. Lamas S, Michel T, Collins T, Brenner BM, Marsden PA. Effects of interferon-gamma on nitric oxide synthase activity and endothelin-1 production by vascular endothelial cells. J Clin Invest 1992: 90 : 879-87
  8. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages, Science 1992 : 256 : 225-8
  9. Macintyre I, Zaidi M, Alam AS, Datta HK, Moonga BS, Lidbury PS, Hecker M, Vane JR. Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Nail Acad Sci USA 1991 : 88 : 2936-40
  10. Kasten TP, Collin-Osdoby P, Patel N, Osdoby P, Krukowski M, Misko TP, Settle SL, Currie MG, Nickols GA. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci USA 1994 : 91 : 3569-73
  11. Lwik CW, Nibbering PH, Van de Ruit M, Papapoulos SE. Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J Clin Invest 1994 : 93 : 1465-72
  12. Damoulis PD, Hauschka PV. Cytokines induce nitric oxide production in mouse osteoblasts. Biochem Biophys Res Commun 1994: 201 :924-31
  13. Damoulis PD, Hauschka PV. Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts. J Bone Miner Res 1997: 12 : 412-22
  14. Ralston SH, Grabowski PS. Mechanisms of cytokine induced bone resorption: role of nitric oxide, cyclic guanosine monophosphate, and prostaglandins. Bone 1996 : 19 : 29-33
  15. Chae HJ, Park RK, Chung HT. et. al. Nitric oxide is a regulator of bone remodelling. J Pharm Pharmacol 1997 : 49 : 897-902
  16. Akira S, Hirano T, Taga T, Kishimoto T, Biology of multifunctional cytokines : IL 6 and related molecules (IL 1 and TNF). FASEB J 1990: 4: 2860-7
  17. Van Snick J. Interleukin-6 : an overview, Annu Rev Immunol 1990: 8: 253-78
  18. Hughes FJ, Howells GL. Interleukin-6 inhibits bone formation in vitro, Bone Miner 1993 : 21 : 21-8
  19. Roodman GD. lnterleukin-6: an osteotropic factor? J Bone Miner Res 1992 : 7 : 475-8
  20. Feyen JH, Elford P, Di Padova FE, Trechsel U. Interleukin-6 is produced by bone and modulated by parathyroid hormone. J Bone Miner Res 1989 : 4 : 633-8
  21. Ishimi Y, Miyaura C, Jin CH. et. al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990:145: 3297-303
  22. Franchimont N, Canalis E. Platelet-derived growth factor stimulates the synthesis of interleuktn-6 In cells of the osteoblast lineage. Endocrinology 1995 : 136: 5469-75
  23. Bhat NR, Zhang P, Lee JC, Hogan EL. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase andtumor necrosis factor-gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 1998: 18 : 1633-41
  24. Da Silva J, Pierrat B, Mary JL, Lesslauer W. Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. J Biol Chem 1997 : 272: 28373-80
  25. Stuehr DJ, Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989: 169: 1543-55
  26. Kozawa O, Tokuda H, Matsuno H, Uematsu T. Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts, J Cell Biochem 1999 : 74 : 479-85
  27. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E. Extracellular signalregulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integnn-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 1998: 101 : 301-10
  28. Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis, Nature 1994 : 372 : 739-46
  29. Cuenda A, Rouse J, Doza YN. et. al, SB 203580 is a specific inhibiter of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995 : 364 : 229-33 https://doi.org/10.1016/0014-5793(95)00357-F
  30. Moncada S, Higgs A. The L-arginine-nitric oxide pathway, N Engl J Med 1993: 329: 2002-12
  31. Chae HJ, Park RK, Kang JS, et. al. Effect of stem cell factor, Interleukin-6, nitric oxide andtransforming growth factor-beta on the osteoclast differentiation induced by 1,25-(OH)2D3 in primary murine bone marrow cultures, Pharmacol Toxicol 1998 : 82 : 223-9
  32. Griswold DE, Hillegass LM, Meunier PC, DiMartino MJ, Hanna N, Effect of inhibitors of eicosanoid metabolism in murine collageninduced arthritis, Arthritis Rheum 1988: 31 : 1406-12
  33. Badger AM, Bradbeer IN, Votta B, et. al. Pharmacological profile of SB203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function, J Pharmacol Exp Ther 1996 : 279 : 1453-61
  34. Votta BJ, Bertolini DR, Cytokine suppressive anti-inflammatory compounds inhibit bone resorption Invitro, Bone 1994 : 15 : 533-8
  35. Young P, McDonnell P, Dunnington D. et. al. Pyridlnyl imidazoles inhibit IL-1 and TNF production at the protein level, Agents Actions 1993: C67-9
  36. Mcinnes IB, Leung BP, Field M, et. ai, Production of nitric oxide in thesynovial membrane of rheumatoid and osteoarthritis patients. J Exp Med 1996: 184: 1519-24
  37. Ray A, LaForge KS, Sehgal PB, On the mechanism for efficient repression of interleukin-6 promoter by glucocorticoids: enhancer, TaTa box, and RNA start site (tnr motif) occlusion, Mol Cell Biol 1990 : 10 : 5736-46
  38. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-B transcription factor, Mol Cell Biol 1990: 10 : 2327-34
  39. Zhang Y, Lin JX, Vilcek J, Interleukin-6 induced by tumor necrosis factor and Interleukine-1 in human fibroblasts involves activation of a nuclear factor binding to a B-like sequence, Mol Cell Biol 1990: 10: 3818-23
  40. Wim VB, Stephane P, Elke B, Karolien DBM, Lienhard, S, Walter F, Guy H, p38 and extracellular signal-regulated kinase mitogenactivated protein kinase pathways are required for nuclear factor-B p65 transactivation mediated by tumor necrosis factor. J Biol Chem 1998 : 273 : 3285-90
  41. Han J, Lee JD, Bibbs L, Ulevitch RJ, A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells, Science 1994 : 265 : 808-11
  42. Rouse J, Cohen P, Trigon S. et. al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins, Cell 1994 : 78: 1027-37