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Abstract

Human Papillomavirus (HPV) infection is known as the
main factor for cervical cancer which is a leading cause of
cancer deaths in women worldwide. Because there are
more than 100 types in HPV, it is critical to discriminate the
HPVs related with cervical cancer from those not related
with it. In this paper, the risk type of HPV's using their textual
explanation. The important issue in this problem is to
distinguish false negatives from false positives. That is, we
must find high-risk HPVs as many as possible though we
may miss some low-risk HPVs. For this purpose, the
AdaCost, a cost-sensitive leamer is adopted to consider
different costs between training examples. The
experimental results on the HPV sequence database show
that the consideration of costs gives higher performance.
The improvement in F-score is higher than that of the
accuracy, which implies that the number of high-risk HPVs
found is increased.

Keywords: human papillomavirus, cost-sensitive learning,
naive Bayes classifier, text classification

Introduction

Cervical cancer is a leading cause of cancer deaths in
women worldwide. It, moreover, is the first cause of cancer
deaths in Korean women. Since the main etiologic factor
for cervical cancer is known as high-risk Human
Papillomavirus (HPV) infection (Schiffman et al., 1993), it is
now largely a preventable disease. HPV is a double-strand
DNA tumor virus that belongs to the papovavirus family.
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There are more than 100 types of HPV that are specific for
epithelial cells including skin, respiratory mucosa, and the
genital tract. Genital tract HPV types are classified by their
relative malignant potential into low-risk and high-risk types
{Janicek et al., 2001). The common, unifying oncogenic
feature of the vast majority of cervical cancers is the
presence of high-risk HPV. Therefore, the most important
thing for diagnosis and therapy is discriminating whether
patients have the high-risk HPVs and what HPV types are
highly risky.

One way to discriminate the risk types of HPVs is using
a text mining technique. Since a great number of research
results on HPV have been already reported in biomedical
journals (Furumoto and Irahara, 2002; Ishji, 2000), they
can be used as a source of discriminating HPV risk types.
One problem in discriminating the risk types is that the
costs of high-risk HPVs and low-risk HPVs are not
identical. This is because high-risk HPVs are seldom while
low-fisk HPVs are abundant. In addition, in classifying the
risk types of HPVs, it is important to distinguish false
negatives from false positives. That is, it is not critical to
classify the low-risk HPV's as high-risk ones, because they
can be investigated by further empirical study. However, it
is fatal to classify the high-risk HPVs as low-risk ones. In
this case, dangerous HPVs can be missed, and there is no
further chance to detect cervical cancer by them.

Most machine learning algorithms for classification
problems have focused on minimizing the number of
incorrect predictions. However, this kind of learning
algorithms ignores the differences between different types
of incorrect prediction cost. Thus, recently, there has been
considerable interest in cost-sensitive learning (Provost
and Fawcett, 1997). Ting and Zheng (1998) proposed two
related but different cost-sensitive boosting approaches for
tree classification. Their approaches can be applied only to
situations where the costs change very often. To apply
boosting to situations where misclassification costs are
relatively stable, Fan et al. (1999) proposed the AdaCost.

In this paper, we propose a cost-sensitive learning
method to classify the risk types of HPVs using their textual
explanation. In classifying their risk types, we consider the
learning costs of each example, because it is far more
important to reduce the number of false negatives” than to
reduce that of false positives. For this purpose, we adopt

1) In this paper, false negative implies that high-risk HPV is misclassified as low-risk.

Similarly, false positive means low-risk HPV that is misclassified as high-risk
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AdaCost as a learning algorithm and prove empirically that
it shows great performance in classifying the HPV risk
types.

One advantage of this work is usefulness for designing
the DNA-chip, diagnosing the presence of Human
Papillomavirus in cervical cancer patients. Since there are
about 100 HPV types, making the DNA chip needs to
choose some dangerous ones related with cervical cancer
among them. Therefore, this result classifying the risk of
HPVs can be a big help to save time to understand
information about HPV and cervical cancer from many
papers and to choose the HPV types used for DNA chip.

The rest of this paper is organized as follows. Section 2
expresses the problems of normal machine learning
algorithms. Section 3 describes the cost-sensitive learning
to classify HPV risk types. Section 4 explains how the HPV
dataset is generated. Section 5 presents the experimental
results. Finally, section 6 draws conclusions.

Problems of normal learning methods

First, let us check what happens unless we consider the
cost of each learning example. We classify the risk type of
HPVs by their textual explanation given by Los Alamos
National Laboratory. The details of this explanation will be
explained in Section 4. Table 1 shows the classification
result of HPVs according to their risk types. It is classified
by the naive Bayes classifier {Lang, 1995) without
considering the costs of the examples. This result is
obtained when we used only seven HPVs as a training set.
Among the seven HPVs, five are high-risk (HPV186,
HPV18, HPV31, HPV33, HPV45), and the other two are

Table 1. Classification of the risk types of HPVs by naive Bayes
classifier

Type Risk Type Risk Type Risk Type Risk

HPV1  Low HPV2 High HPV3 Low HPV4  Low
HPV5  High HPV7 Low HPV8 High HPV9 Low

HPV10 Low HPV12 Low HPV13 Low  HPVi4 Low
HPV15 Low HPV17 Low HPV19 Low  HPV20 Low
HPV21 Low HPV22 Low HPV23 Low  HPV24 Low
HPV25 Low HPV26 High HPV27 Low  HPV28 Low
HPV29 Low HPV30 High  HPV32 Low  HPV34 High
HPV35 High HPV36 Low HPV37 Low  HPV38 Low
HPV39 High HPV40 Low HPV41 Low  HPV42 Low
HPV43 Low HPV44 Low HPV47 Low  HPV48 Low
HPV49 Low HPV50 Low HPV51 High  HPV52 High
HPV53 High HPV54 Low HPV55 Low  HPV56 High
HPV57 High HPV58 High  HPV59 Low  HPVE0 High
HPV61 Low HPV62 Low HPV63 High  HPV64 Low
HPV65 Low HPVG6 High  HPV67 High HPV68 High
HPV69 Low HPV70 High  HPV72 Low  HPV73 Low
HPV74 Low HPV75 High HPV76 High HPV77 Low
HPV80 Low

low-risk(HPV11 and HPV6). Because the risk types of
these HPVs are well known (Levy et al, 1994), they are
chosen to be a training set.

The number of tested HPVs is 69. Assuming that Table
2 below is correct, the risk type for four of 69 HPVs is not
known, so that 65 HPVs are evaluated. Twenty among 65
HPVs are classified as high-risk and the remaining 45 are
classified as low-risk, while there are only 12 high-risk
HPVs in Table 2. Since 53 HPVs are correctly classified,
the accuracy is 81.54%.

At first, this accuracy seems reasonable. However, four

of 12 misclassified cases are false negative, and 8 are
false positive. That is, this is not satisfactory because false
negatives are fatal as stated above. The reasons why the
method which ignores the cost does not achieve high
performance can be summarized into two problems.
The first one is that too many high-risk HPVs are predicted.
That is, there are only 12 high-risk ones in the tested
HPVs, but the native Bayes predicted 20 HPVs as high-
risk. Though we used only two low-risk HPVs, in fact there
are far more low-risk HPVs than high-risk HPVs. Therefore,
it is required to give a higher cost to high-risk HPVs during
training.

The other problem is that there are some HPVs that are
difficult o determine their risk types only by their textual
explanation. For instance, HPV54 is explained by a single
sentence which is “HPV-54 was first isolated from a patient
with condyloma acuminata.” This problem is inevitable in
text classification. Thus, it goes beyond interest of this
paper and should be solved by further biomedical
experiments.

Materials and Methods

Classifying by cost-sensitive learning
adacost algorithm

In order to consider the misclassification cost of HPV risk
types, we adopt the AdaCost algorithm (Fan et al, 1999).
The AdaCost is a variant of AdaBoost (Freund and
Schapire, 1996) that uses the cost of misclassifications to
update the training distribution on successive boosting
rounds.

The algorithm is shown in Fig. 1. Let S = {(x.ciyt), A(x
nCmyn)} DE a training set where ¢./0,1] is a cost factor and
is additionally given to the normal »€X and y&{-1,+1}.
First of all, the distribution of each example is set to D'(i) =
c/0C . When t is an index to show the round of boosting,
Dt(i) is the sampling weight given to (¥, ¢, y) at the rth
round. And, & > 0 is a parameter as a weight for weak
learner ht at the +-th round, and its value is given as

1, 14r

a,=71n I
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where > D(i)yh{x)8(i). And, (i) is a cost adjustment
function with two arguments, sign(y;h{x:)) and c. If a{x) is
correct, then g(i) = -0.5¢: + 0.5, otherwise (i) = 0.5¢: + 0.5.

» S={(xi,¢i,yi), A ,(Xm,Cm, ¥m) }:
x€X, ci€[0,1], and yi& {-1,+1}

» weak learner algorithm WeakLearn
» integer Tspecifying the number of iterations

Input:

Inifialize Di(i)=ci/y\} ¢ foralli.

For t=1,..T:
1. Call WeakLearn,
providing it with the distribution D:.

2. Get back a hypothesis 4 X — {-1,+1}.
3. Choose a:ER and f(i),

where 3(i) = (sign(yihdx)),c:).
4. Update distribution D+:

Dusifi) = %{ Didi)exp(-aiyi(x)B (i)

where Z: is a normalizing constant.

Output:  the final hypothesis:

f(x) = sign (ZT: athz(x))

The main difference between AdaBoost and AdaCost is
how the distribution D. is updated. AdaCost has an
additional cost adjustment factor in updating D. (see step 4
in Fig. 1). As AdaBoost does, the weight of an instance will
be increased if it is misclassified. Similarly, its weight will be
decreased otherwise. However, the weight change is
affected by the value of the cost factor. When an instance
has a high cost factor, the weight change will be greater
than that with a low cost factor.

Naive bayes classifier as a weak learner

We have previously proposed the BayesBoost algorithm
and showed that it gives great efficiency in text filtering
(Kim et al., 2000). It uses naive Bayes classifiers as its
weak leamer within AdaBoost. Assume that a document d: is
composed of a sequence of words which is wa,we, A, wilai,
and the words in a document are mutually independent
one another and the probability of a word is independent of
its position within the document. Though these
assumptions are not true in real situations, naive Bayes
classifiers showed rather good performance in text
classification (McCallum and Nigam, 1998).

Due to the independence assumption, the probability
that a document d: is generated from the class y; can be
expressed as

1di|

P @151§)=P(diD] [Pwalyi; gy,

where wa denotes the k-th word in the document 4, the
weight of word occurring in document &, and | d: | is the
number of words in the document. Thus, when assuming
P(l 4 1) is uniform, the best class y* of a document di is
determined by

y* = argmax P(y;|d;; §),

»eEl-1,+1}
where

P(yi|1§) P(di1y130)
P(di19)

P(yildi§)

POAQ[TE, Powas| y )™
2 PO [ Pwarl yrs iy

M

In order to calculate this probability, we need to determine
P(wi|y; ) and P(y; | ). These two values can be estimated
as

L3 7, Nowed)P(y | di)
VI+ ST ST Nowd)P(ys |di)

:11 PQildi)
=

P(wily; §) =

PGilg) =

Here, IVl is the size of vocabulary.

One of the advantages of using naive Bayes classifier
as a weak learner is that the naive Bayes utilizes term
weights such as term frequency naturally. Moreover,
because it is a probabilistic model, it provides a natural
measure for calculating confidence ratios in AdaBoost.
Thus, in this paper, we also use naive Bayes classifier as a
weak learner of AdaCost.

Results and Discussion
Dataset

In general, the research in biomedical domain starts from
investigating previous studies in PubMed designed to
provide access to citations from biomedical literature and
available via the NCBI Entrez retrieval system developed
by National Center for Biotechnology Information (NCBI) at
the National Library of Medicine (NLM) located at the
National Institutes of Health (NIH). Most bioinformatics
research that handles text information has focused on
PubMed as its resource, because it includes most
summaries and citations about biomedical literature.
However, leaming HPV risk types from PubMed is not an
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easy work. The difficulties can be summarized with two
reasons.

©® The PubMed data are too sparse.

For example, there are 3,797 articles about HPV and
cervical cancer in PubMed, but most of them do not
discuss the risk of HPV directly. Thus, it is difficult to
capture the risk of HPV from the articles. In addition, the
term distribution is totally different according to the interest
of the articles.

@ Poor performance of NLP techniques

The current natural language processing (NLP) technigues
are not for text understanding yet. They can not provide
even correct syntactic information. The best thing we can
expect from NLP techniques is morphological analysis and
part-of-speech tagging. Thus, the articles need to be
refined for further study.

In this paper, we use the HPV Sequence Database? in
Los Alamos National Laboratory as a dataset. This
papillomavirus database is an extension of the HPV
compendiums published in 1994, 1995, 1996, and 1997
and provides the complete list of ‘papillomavirus types and
hosts’ and the records for each unique papillomavirus
type. An example of the data made from this database is
given in Fig. 2. This example is for HPV80 and consists of
three parts: definition, source, and comment. The definition
indicates the HPV type, the source expiains where the
information for this HPV is obtained, and the comment
gives the explanation for this HPV.

To measure the performance of the results in the
experiments below, we manually classified HPV risk types
using the 1997 version of Human Papillomaviruses
compendium and the comment in the records of HPV
types. The classifying procedure is as follows. First, we
divided roughly HPV types by the groups in the 1997
version of Human Papillomaviruses compendium. These
groups are shown in Fig. 3. This tree, which contains 108
Papilloma Virus (PV) sequences, was computed for the L1
consensus primer region (CPR) using neighbor joining
method and a distance matrix calculated with a modified
Kimura 2-parameter model (transition/transversion ratio
2.0). Neighbor-joining analysis is a convenient and rapid
way to get an initial estimate of branching relationships,
especially when a large number of taxa are involved. In the
figure, the outermost wide gray arcs show the five PV
supergroups (A-E). Each tree branch is labeled with an
abbreviated sequence name. For HPVs the ‘type’ number
alone is given in most cases, so the branch labeled 40 is
that of HPV40.

2) hitp:/hpv-web.lanl.gov/stdgenivirus/hpv/index.html

«definition>
Human papﬁlomavms type 80 E6, E7, E}, E2, E4; L2, and
L1 genes. ‘

ddeﬁmtlon>

<source>
Human papillomavirus type 80.

</source>

<comment>
The DNA genome of HPVS0 (HPV ted) was isolated
from histologically normal skin, _and sequenced.
HPV80 is most similar to HPV15, and falls within one of the
two major branches of the'B1 or Cutaneous/EV clade. The
E7, El, and B4 orfs, as well as the URR, of HPV15 and
HPV80 share sequence similarities hl her than 90%, while in -
the usually more conservative L1 orf ' '
is only 87%: A detailed comp .
HPVS0 revealed features characteristic of a truly cutaneous
HPYV type [362]. Notice in the alignment below that HPV80
compares closely to the cutaneous types HPV 15 and HPV49
in the important E7 functional regions CR1, pRb binding site,
and CR2. HPV 80 is distinctly different from the high-risk
mucosal viruses represented by HPV16. The locus as defined
by-GenBank is HPVY15176 .

dcommenb

Fig. 2. An example descnphon of HPV80 from Los Alamos
National Labratory.

Second, if the type of the group is skin-related or
cutaneous HPV, the members of the group are classified
into low-risk type. Third, if the group is known to be high-
risk type of cervical cancer-related HPV, the members of
the group are classified into high-risk type. Lastly, we used
the comment of HPV types to classify some types difficuit
to be classified. Table 2 shows the summarized
classification of HPVs according to its risk.

In the all experiments below, we used only <comment>
part. The comment for a HPV type can be considered as a
document in text classification. Therefore, each HPV type
is represented as a vector of which elements are ¢f - idf
values. In 1 - idf, N(w, d)) of Equation (1), the weight of a
word w; appeared in the document d: is given as

NOwids) = tfi-log: ©)

where 1#f; is the frequency of w; in d: and » is the number of
documents where w; occurs at least once.

When we stemmed the documents using the Porter' s
algorithm (Porter, 1980) and removed words from the stop-
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Fig. 3. Neighbor joining phylogenetic tree of 106 PVs based on
CPR region of L1.

Table 2. The manually classified risk types of HPVs.

Type Risk Type Risk Type Risk Type Risk

HPV1 Low HPV2 Low HPV3 Low HPV4 Low
HPV5 Low HPV6 Low HPV7 Low HPV8 Low

HPV9 Low HPV10 Low HPV11 Low  HPV12 Low
HPV13 Low HPV14 Low HPV15 Low  HPV16 High
HPV17 Low HPV18 High HPV19 Low HPV20 Low
HPV21 Low HPV22 Low HPV23 Low HPV24 Low
HPV25 Low HPV26 ? HPV27 Low HPV28 Low
HPV29 Low HPV30 Low HPV31 High HPV32 Low
HPV33 High HPV34 Low HPV35 High HPV36 Low
HPV37 Low HPV38 Low HPV39 High HPV40 Low
HPV41 Low HPV42 Low HPV43 Low HPV44 Low
HPV45 High HPV47 Low HPV48 Low HPV49 Low
HPV50 Low HPV51 High HPV52 High  HPV53 Low
HPV54 2 HPV55 Low HPV56 High HPV57 ?
HPV58 High HPV59 High HPV60O Low  HPV61 High
HPV62 High HPV63 Low HPV64 Low HPV6E5 Low
HPV66 High HPV67 High HPV68 High HPVE9 Low
HPV70 2 HPV72 High HPV73 Low  HPV74 Low
HPV75 Low HPV76 Low HPV77 Low HPV80 Low

list, the size of vocabulary is just 1,434. Thus, each
document is represented as a 1,434-dimensional vector.

Experiments
Evaluation measure

Text classification has various measures to evaluate its
performance. One of these is the break-even point {Lewis,
1995). However, Schapire et al. (1998) asserted that the
break-even points are not very suitable for measuring the
performance of classification algorithms.

Table 3. The contingency table to evaluate the classification
performance.

Answer should be High  Answer should be Low

The Classifier says High a B
The Classifier says Low c d

In this paper, we evaluate the classification performance
using the contingency table method. In this method, recall
and precision are defined as follows:

recall = a_-cll-c -100%

precision = a—-cil—_c -100% (3)

accuracy = gibvc+d _,g:_lz, +a - 100%

where g, b, ¢ and d are defined in Table 3. The Fs-score
which combines precision and recall is
defined as

(82+1)-recall- precision

B2-recall + precision 100%

F;-score =

where g is the weight of recall relative to precision. We use
g = 1 in all experiments, which corresponds to equal
weighting of the two measures.

Experimental Results

Since we have only 74 HPV types and the explanation of
each HPV is relatively short, leave-one-out (LOO) cross-
validation is used to determine the performance of the
proposed method. We normalized each cost «: to [0, 1].
That is, the cost for low-risk HPVs is set to 0.1 when the
cost for high-risk HPVs is set to 0.9.

Fig. 4 demonstrates the performance of AdaCost. The
graphs in this figure show the accuracy and F-score
according to the round of AdaCost. Each graph represents
the ratio of costs for high-risk and low-risk HPVs. For
instance, figure (a) imposes 0.1 on high-risk HPVs and 0.9
on low-risk HPVs. Because the costs in figure (€) are both
set to 0.5, it is the performance of the AdaBoost. Figures
(a)-(d) plot the performance when lower costs are imposed
on high-risk HPVs than those on low-risk HPVs. And,
figures (f)-(i) plot the performance when higher costs are
imposed on high-risk HPVs.

Generally, when we set different costs to low-risk and
high-risk HPVs, higher performance is obtained than
AdaBoost shown by figure (e) except the extreme cases
represented by figure (a) and (i). Among nine graphs,
figure (h) shows the best performance. It implies that 0.8 is
the best cost for high-risk HPVs. It is also interesting to see
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Fig. 4. Performance of AdaCost on HPV risk classification with
various costs. The cost ratios are geiven as high vs. Low. For
instance, figure (a) imposes 0.1 on high-risk HPVs and 0.9 on
lows-risk HPVs.

Table 4. F-score of AdaCost with various cost ratio.

High Low F-score Accuracy (%)
0.1 0.9 96.91+2.1 97.51+1.8
0.2 0.8 98.79+0.9 98.27+0.5
0.3 0.7 98.87+1.5 98.27+0.6
04 06 97.72+15 97.55+0.9
05 a5 98.07+1.2 97.55+1.3
0.6 04 98.96+1.8 98.27+1.0
0.7 0.3 98.92+0.3 98.27+04
0.8 0.2 99.04+0.2 98.27+1.1
0.9 0.1 97.92+2.6 97.55+16

that figure (a) shows the worst performance. That is, in this
case AdaCost shows worse performance than AdaBoost.
Therefore, if we impose wrong cost, we may obtain worse
result.

Table 4 summarizes the graphs in Fig. 4. These results
are obtained when 50 weak learners are used in each
AdaCost. The accuracy is similar with various costs, but
different costs show different performance on F-score. As
shown in Equation (3), precision and recall are related with
the number of found high-risk HPVs while accuracy is
related with the number of correctly predicted HPVs
including both low-risk and high-risk HPVs. In our
experiments, F-scores are higher than accuracies, which
implies that less high-risk HPVs are missed by the
proposed method.

Table 5 shows the predicted risk type for the HPV types
whose risks are not known exactly. These HPVs are
described as ‘7" in Table 2. According to previous

Table 5. The risk type predicted by the proposed method for
four HPVs whose risk types are not known exactly.

HPV Types Risk Types
HPV26 Low
HPV54 Low
HPV57 High
HPV70 Low

research on HPV (Chan et al., 1997; Favre et al., 1990;
Meyer et al., 1998; Nuovo et al., 1988) , HPV70 seems to
be misclassified. This is because the comment for HPV7Q
does not describe its risk but because of its lack of
biomedical research it explains only that it is found at the
cervix of patients and its sequence is analyzed.

Conclusions

This paper proposed a practical method to determine the
risk type of Human Papillomavirus. In classifying the risk
type, it is important to distinguish faise negatives from false
positives, where false-negatives are high-risk HPVs that
are misclassified as low-risk and false positives are low-risk
HPVs misclassified as high-risk.

For this purmpose, we set different costs for low-risk and
high-risk HPVs. As a learning algorithm, we adopted
AdaCost and showed empirically that it outperforms
AdaBoost which does not consider learning cost. In
addition, the experimental results gave higher F-score than
accuracy, and it means that more high-risk HPVs are found
by AdaCost. This result is important because high-risk
HPVs, as stated above, should not be missed. Since HPV
is known as the main cause of cervical cancer, high-risk
HPVs must be found for further medical investigation of the
patients.

Our results can be used as fundamental information to
design the DNA-chips for diagnosing the presence of HPV
in cervical cancer patients. Because the cost is too high to
test all HPV types, the results presented in this paper
reduce time and monetary cost to know their relation with
cervical cancer.
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